Properties

Label 2106.2.b.a
Level $2106$
Weight $2$
Character orbit 2106.b
Analytic conductor $16.816$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2106,2,Mod(649,2106)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2106, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2106.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2106 = 2 \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2106.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.8164946657\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.5089536.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 16x^{2} - 24x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{2} - q^{4} + (\beta_{5} + \beta_{4}) q^{5} + \beta_{2} q^{7} + \beta_{4} q^{8} + ( - \beta_1 + 1) q^{10} + ( - \beta_{5} - \beta_{4} - \beta_{2}) q^{11} + ( - \beta_{5} - \beta_{4} - \beta_{3} + \cdots + 1) q^{13}+ \cdots + (2 \beta_{5} - 2 \beta_{4} - 2 \beta_{2}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} + 8 q^{10} + 2 q^{13} - 2 q^{14} + 6 q^{16} - 4 q^{17} - 6 q^{22} + 8 q^{23} - 2 q^{25} - 8 q^{26} + 10 q^{29} - 4 q^{35} - 6 q^{38} - 8 q^{40} - 8 q^{43} + 4 q^{49} - 2 q^{52} + 42 q^{53}+ \cdots - 8 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 16x^{2} - 24x + 18 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{5} + 24\nu^{4} - 6\nu^{3} - \nu^{2} + 6\nu + 285 ) / 131 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -5\nu^{5} - 11\nu^{4} + 101\nu^{3} - 136\nu^{2} + 292\nu - 147 ) / 393 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 6\nu^{5} - 13\nu^{4} + 36\nu^{3} + 6\nu^{2} - 36\nu - 7 ) / 131 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 23\nu^{5} - 28\nu^{4} + 7\nu^{3} + 154\nu^{2} + 386\nu - 267 ) / 393 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -23\nu^{5} + 28\nu^{4} - 7\nu^{3} - 23\nu^{2} - 386\nu + 267 ) / 131 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{4} - \beta_{3} + \beta_{2} + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + 3\beta_{4} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + 2\beta_{4} + 2\beta_{3} + 2\beta_{2} + \beta _1 - 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{3} + 6\beta _1 - 13 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -7\beta_{5} - 12\beta_{4} + 9\beta_{3} - 9\beta_{2} + 7\beta _1 - 12 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2106\mathbb{Z}\right)^\times\).

\(n\) \(1379\) \(1783\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
649.1
0.675970 + 0.675970i
−1.33641 1.33641i
1.66044 + 1.66044i
1.66044 1.66044i
−1.33641 + 1.33641i
0.675970 0.675970i
1.00000i 0 −1.00000 1.08613i 0 0.351939i 1.00000i 0 −1.08613
649.2 1.00000i 0 −1.00000 1.57199i 0 3.67282i 1.00000i 0 1.57199
649.3 1.00000i 0 −1.00000 3.51414i 0 2.32088i 1.00000i 0 3.51414
649.4 1.00000i 0 −1.00000 3.51414i 0 2.32088i 1.00000i 0 3.51414
649.5 1.00000i 0 −1.00000 1.57199i 0 3.67282i 1.00000i 0 1.57199
649.6 1.00000i 0 −1.00000 1.08613i 0 0.351939i 1.00000i 0 −1.08613
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 649.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2106.2.b.a 6
3.b odd 2 1 2106.2.b.b yes 6
13.b even 2 1 inner 2106.2.b.a 6
39.d odd 2 1 2106.2.b.b yes 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2106.2.b.a 6 1.a even 1 1 trivial
2106.2.b.a 6 13.b even 2 1 inner
2106.2.b.b yes 6 3.b odd 2 1
2106.2.b.b yes 6 39.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2106, [\chi])\):

\( T_{5}^{6} + 16T_{5}^{4} + 48T_{5}^{2} + 36 \) Copy content Toggle raw display
\( T_{17}^{3} + 2T_{17}^{2} - 36T_{17} - 108 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 16 T^{4} + \cdots + 36 \) Copy content Toggle raw display
$7$ \( T^{6} + 19 T^{4} + \cdots + 9 \) Copy content Toggle raw display
$11$ \( T^{6} + 39 T^{4} + \cdots + 81 \) Copy content Toggle raw display
$13$ \( T^{6} - 2 T^{5} + \cdots + 2197 \) Copy content Toggle raw display
$17$ \( (T^{3} + 2 T^{2} + \cdots - 108)^{2} \) Copy content Toggle raw display
$19$ \( T^{6} + 75 T^{4} + \cdots + 13689 \) Copy content Toggle raw display
$23$ \( (T^{3} - 4 T^{2} - 6 T + 18)^{2} \) Copy content Toggle raw display
$29$ \( (T^{3} - 5 T^{2} - 3 T + 9)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + 40 T^{4} + \cdots + 144 \) Copy content Toggle raw display
$37$ \( T^{6} + 172 T^{4} + \cdots + 576 \) Copy content Toggle raw display
$41$ \( T^{6} + 220 T^{4} + \cdots + 79524 \) Copy content Toggle raw display
$43$ \( (T^{3} + 4 T^{2} - 40 T - 16)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + 48 T^{4} + \cdots + 1296 \) Copy content Toggle raw display
$53$ \( (T^{3} - 21 T^{2} + \cdots + 27)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + 283 T^{4} + \cdots + 19881 \) Copy content Toggle raw display
$61$ \( (T^{3} + 5 T^{2} + \cdots + 361)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 112 T^{4} + \cdots + 20736 \) Copy content Toggle raw display
$71$ \( T^{6} + 243 T^{4} + \cdots + 210681 \) Copy content Toggle raw display
$73$ \( T^{6} + 124 T^{4} + \cdots + 5184 \) Copy content Toggle raw display
$79$ \( (T^{3} + 10 T^{2} + 22 T - 6)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 151 T^{4} + \cdots + 62001 \) Copy content Toggle raw display
$89$ \( T^{6} + 84 T^{4} + \cdots + 324 \) Copy content Toggle raw display
$97$ \( T^{6} + 552 T^{4} + \cdots + 544644 \) Copy content Toggle raw display
show more
show less