Properties

Label 2-2156-1.1-c1-0-16
Degree $2$
Conductor $2156$
Sign $-1$
Analytic cond. $17.2157$
Root an. cond. $4.14918$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.65·3-s − 2.91·5-s − 0.255·9-s + 11-s − 0.343·13-s + 4.82·15-s + 1.25·17-s + 4.39·19-s + 8.70·23-s + 3.48·25-s + 5.39·27-s + 5.22·29-s − 9.73·31-s − 1.65·33-s + 2.17·37-s + 0.568·39-s − 9.99·41-s − 3.79·43-s + 0.744·45-s − 9.70·47-s − 2.08·51-s − 4.34·53-s − 2.91·55-s − 7.27·57-s + 4.99·59-s + 0.511·61-s + 65-s + ⋯
L(s)  = 1  − 0.956·3-s − 1.30·5-s − 0.0852·9-s + 0.301·11-s − 0.0952·13-s + 1.24·15-s + 0.304·17-s + 1.00·19-s + 1.81·23-s + 0.696·25-s + 1.03·27-s + 0.970·29-s − 1.74·31-s − 0.288·33-s + 0.357·37-s + 0.0910·39-s − 1.56·41-s − 0.578·43-s + 0.110·45-s − 1.41·47-s − 0.291·51-s − 0.596·53-s − 0.392·55-s − 0.964·57-s + 0.649·59-s + 0.0654·61-s + 0.124·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2156\)    =    \(2^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(17.2157\)
Root analytic conductor: \(4.14918\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2156,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good3 \( 1 + 1.65T + 3T^{2} \)
5 \( 1 + 2.91T + 5T^{2} \)
13 \( 1 + 0.343T + 13T^{2} \)
17 \( 1 - 1.25T + 17T^{2} \)
19 \( 1 - 4.39T + 19T^{2} \)
23 \( 1 - 8.70T + 23T^{2} \)
29 \( 1 - 5.22T + 29T^{2} \)
31 \( 1 + 9.73T + 31T^{2} \)
37 \( 1 - 2.17T + 37T^{2} \)
41 \( 1 + 9.99T + 41T^{2} \)
43 \( 1 + 3.79T + 43T^{2} \)
47 \( 1 + 9.70T + 47T^{2} \)
53 \( 1 + 4.34T + 53T^{2} \)
59 \( 1 - 4.99T + 59T^{2} \)
61 \( 1 - 0.511T + 61T^{2} \)
67 \( 1 + 10.3T + 67T^{2} \)
71 \( 1 - 4.45T + 71T^{2} \)
73 \( 1 - 7.28T + 73T^{2} \)
79 \( 1 - 10.9T + 79T^{2} \)
83 \( 1 + 4.11T + 83T^{2} \)
89 \( 1 + 2.26T + 89T^{2} \)
97 \( 1 + 1.14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.614711496269650076393770884659, −7.84571927772915964006822975864, −7.06156892111758091911946536898, −6.46144291448875524985003605157, −5.25285577588910344806110232343, −4.91676274859652781926695113938, −3.69916054482749458103697846082, −3.02668771153405704820279894340, −1.19802951458921137436160928554, 0, 1.19802951458921137436160928554, 3.02668771153405704820279894340, 3.69916054482749458103697846082, 4.91676274859652781926695113938, 5.25285577588910344806110232343, 6.46144291448875524985003605157, 7.06156892111758091911946536898, 7.84571927772915964006822975864, 8.614711496269650076393770884659

Graph of the $Z$-function along the critical line