L(s) = 1 | + (−1.60 − 0.923i)3-s + (1.60 − 0.923i)5-s + (0.207 + 0.358i)9-s + (−2.23 − 2.44i)11-s − 5.84·13-s − 3.41·15-s + (−1.21 + 2.09i)17-s + (4.13 + 7.15i)19-s + (−2.12 − 3.67i)23-s + (−0.792 + 1.37i)25-s + 4.77i·27-s − 4.47i·29-s + (7.06 + 4.07i)31-s + (1.32 + 5.98i)33-s + (3.41 + 5.91i)37-s + ⋯ |
L(s) = 1 | + (−0.923 − 0.533i)3-s + (0.715 − 0.413i)5-s + (0.0690 + 0.119i)9-s + (−0.674 − 0.737i)11-s − 1.62·13-s − 0.881·15-s + (−0.293 + 0.508i)17-s + (0.947 + 1.64i)19-s + (−0.442 − 0.766i)23-s + (−0.158 + 0.274i)25-s + 0.919i·27-s − 0.830i·29-s + (1.26 + 0.732i)31-s + (0.230 + 1.04i)33-s + (0.561 + 0.972i)37-s + ⋯ |
Λ(s)=(=(2156s/2ΓC(s)L(s)(0.426−0.904i)Λ(2−s)
Λ(s)=(=(2156s/2ΓC(s+1/2)L(s)(0.426−0.904i)Λ(1−s)
Degree: |
2 |
Conductor: |
2156
= 22⋅72⋅11
|
Sign: |
0.426−0.904i
|
Analytic conductor: |
17.2157 |
Root analytic conductor: |
4.14918 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2156(2089,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2156, ( :1/2), 0.426−0.904i)
|
Particular Values
L(1) |
≈ |
0.6030837891 |
L(21) |
≈ |
0.6030837891 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 11 | 1+(2.23+2.44i)T |
good | 3 | 1+(1.60+0.923i)T+(1.5+2.59i)T2 |
| 5 | 1+(−1.60+0.923i)T+(2.5−4.33i)T2 |
| 13 | 1+5.84T+13T2 |
| 17 | 1+(1.21−2.09i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−4.13−7.15i)T+(−9.5+16.4i)T2 |
| 23 | 1+(2.12+3.67i)T+(−11.5+19.9i)T2 |
| 29 | 1+4.47iT−29T2 |
| 31 | 1+(−7.06−4.07i)T+(15.5+26.8i)T2 |
| 37 | 1+(−3.41−5.91i)T+(−18.5+32.0i)T2 |
| 41 | 1+9.26T+41T2 |
| 43 | 1−1.85iT−43T2 |
| 47 | 1+(−4.25+2.45i)T+(23.5−40.7i)T2 |
| 53 | 1+(3.53−6.12i)T+(−26.5−45.8i)T2 |
| 59 | 1+(3.47+2.00i)T+(29.5+51.0i)T2 |
| 61 | 1+(−1.21−2.09i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−5.53+9.58i)T+(−33.5−58.0i)T2 |
| 71 | 1−3.75T+71T2 |
| 73 | 1+(5.34−9.25i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−11.6+6.70i)T+(39.5−68.4i)T2 |
| 83 | 1−4.84T+83T2 |
| 89 | 1+(−3.86+2.23i)T+(44.5−77.0i)T2 |
| 97 | 1+5.35iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.361498898301545447962337982968, −8.252398697884258963799464387671, −7.72873041158819036350919047556, −6.64010992800712577694081013164, −6.03688487822513837377258108883, −5.37871820000042513984114971986, −4.72433886217457433822222105899, −3.32614977666911909735788117357, −2.19852240790898094355514764745, −1.06409868353984020759810844362,
0.26120230318499306612644704569, 2.21470322723820414844673784289, 2.81379959274154704848980542700, 4.41473470304177018579762903901, 5.08153327803172700149031915784, 5.48524377564650213493068631194, 6.61607579635947561099650084619, 7.22121908468530676916105365202, 8.011385737100841185227400994482, 9.422287469483145431767563811540