L(s) = 1 | + (−1.60 − 0.923i)3-s + (1.60 − 0.923i)5-s + (0.207 + 0.358i)9-s + (−2.23 − 2.44i)11-s − 5.84·13-s − 3.41·15-s + (−1.21 + 2.09i)17-s + (4.13 + 7.15i)19-s + (−2.12 − 3.67i)23-s + (−0.792 + 1.37i)25-s + 4.77i·27-s − 4.47i·29-s + (7.06 + 4.07i)31-s + (1.32 + 5.98i)33-s + (3.41 + 5.91i)37-s + ⋯ |
L(s) = 1 | + (−0.923 − 0.533i)3-s + (0.715 − 0.413i)5-s + (0.0690 + 0.119i)9-s + (−0.674 − 0.737i)11-s − 1.62·13-s − 0.881·15-s + (−0.293 + 0.508i)17-s + (0.947 + 1.64i)19-s + (−0.442 − 0.766i)23-s + (−0.158 + 0.274i)25-s + 0.919i·27-s − 0.830i·29-s + (1.26 + 0.732i)31-s + (0.230 + 1.04i)33-s + (0.561 + 0.972i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.426 - 0.904i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.426 - 0.904i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6030837891\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6030837891\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 + (2.23 + 2.44i)T \) |
good | 3 | \( 1 + (1.60 + 0.923i)T + (1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.60 + 0.923i)T + (2.5 - 4.33i)T^{2} \) |
| 13 | \( 1 + 5.84T + 13T^{2} \) |
| 17 | \( 1 + (1.21 - 2.09i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.13 - 7.15i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.12 + 3.67i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 4.47iT - 29T^{2} \) |
| 31 | \( 1 + (-7.06 - 4.07i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.41 - 5.91i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 9.26T + 41T^{2} \) |
| 43 | \( 1 - 1.85iT - 43T^{2} \) |
| 47 | \( 1 + (-4.25 + 2.45i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (3.53 - 6.12i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3.47 + 2.00i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.21 - 2.09i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.53 + 9.58i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 3.75T + 71T^{2} \) |
| 73 | \( 1 + (5.34 - 9.25i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-11.6 + 6.70i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 4.84T + 83T^{2} \) |
| 89 | \( 1 + (-3.86 + 2.23i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 5.35iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.361498898301545447962337982968, −8.252398697884258963799464387671, −7.72873041158819036350919047556, −6.64010992800712577694081013164, −6.03688487822513837377258108883, −5.37871820000042513984114971986, −4.72433886217457433822222105899, −3.32614977666911909735788117357, −2.19852240790898094355514764745, −1.06409868353984020759810844362,
0.26120230318499306612644704569, 2.21470322723820414844673784289, 2.81379959274154704848980542700, 4.41473470304177018579762903901, 5.08153327803172700149031915784, 5.48524377564650213493068631194, 6.61607579635947561099650084619, 7.22121908468530676916105365202, 8.011385737100841185227400994482, 9.422287469483145431767563811540