Properties

Label 2156.2.q.d
Level $2156$
Weight $2$
Character orbit 2156.q
Analytic conductor $17.216$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,2,Mod(901,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.901");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2156.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2157466758\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.721389578983833600000000.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 8x^{14} + 44x^{12} + 128x^{10} + 223x^{8} - 464x^{6} - 724x^{4} + 784x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{5} + \beta_{2}) q^{3} - \beta_{5} q^{5} + ( - \beta_{8} - \beta_{6} - 1) q^{9} + ( - \beta_{8} + \beta_{4}) q^{11} + \beta_{9} q^{13} + (\beta_1 - 2) q^{15} - \beta_{12} q^{17} + ( - \beta_{13} - \beta_{12} + \cdots - \beta_{9}) q^{19}+ \cdots + (\beta_{15} - \beta_{14} - \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{9} + 8 q^{11} - 32 q^{15} - 24 q^{25} + 32 q^{37} + 32 q^{67} + 128 q^{71} + 24 q^{81} - 64 q^{93} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 8x^{14} + 44x^{12} + 128x^{10} + 223x^{8} - 464x^{6} - 724x^{4} + 784x^{2} + 2401 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 60 \nu^{14} + 722 \nu^{12} + 2403 \nu^{10} + 6744 \nu^{8} - 9017 \nu^{6} - 19728 \nu^{4} + \cdots + 1110634 ) / 743967 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 1720 \nu^{15} + 11218 \nu^{13} + 44304 \nu^{11} + 58127 \nu^{9} - 383968 \nu^{7} + \cdots + 6818840 \nu ) / 12647439 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 2144 \nu^{14} + 13114 \nu^{12} + 51792 \nu^{10} + 516140 \nu^{8} - 448864 \nu^{6} + \cdots + 7971320 ) / 12647439 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 733 \nu^{14} - 2370 \nu^{12} - 9360 \nu^{10} - 55270 \nu^{8} + 81120 \nu^{6} + 550530 \nu^{4} + \cdots - 1440600 ) / 4215813 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 460 \nu^{15} + 3286 \nu^{13} + 18423 \nu^{11} + 51704 \nu^{9} + 127124 \nu^{7} - 151248 \nu^{5} + \cdots - 567385 \nu ) / 1806777 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 4551 \nu^{14} - 19168 \nu^{12} - 83325 \nu^{10} + 107934 \nu^{8} + 922903 \nu^{6} + \cdots - 231182 ) / 12647439 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 4067 \nu^{15} + 26149 \nu^{13} + 103272 \nu^{11} + 53986 \nu^{9} - 895024 \nu^{7} + \cdots + 15894620 \nu ) / 12647439 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 1576 \nu^{14} - 7268 \nu^{12} - 28704 \nu^{10} + 12139 \nu^{8} + 248768 \nu^{6} + \cdots - 4417840 ) / 4215813 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 315 \nu^{15} + 1501 \nu^{13} + 5928 \nu^{11} - 5805 \nu^{9} - 51376 \nu^{7} - 348669 \nu^{5} + \cdots + 912380 \nu ) / 743967 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 8505 \nu^{15} - 82220 \nu^{13} - 454317 \nu^{11} - 1656549 \nu^{9} - 3490447 \nu^{7} + \cdots - 9412459 \nu ) / 12647439 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 8600 \nu^{15} - 60187 \nu^{13} - 344430 \nu^{11} - 966640 \nu^{9} - 2033765 \nu^{7} + \cdots + 8866942 \nu ) / 12647439 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 14927 \nu^{15} - 167676 \nu^{13} - 1005273 \nu^{11} - 3843469 \nu^{9} - 8753145 \nu^{7} + \cdots - 21043491 \nu ) / 12647439 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 949 \nu^{15} - 3555 \nu^{13} - 14040 \nu^{11} + 20725 \nu^{9} + 121680 \nu^{7} + \cdots - 2160900 \nu ) / 743967 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 460 \nu^{14} + 3286 \nu^{12} + 18423 \nu^{10} + 51704 \nu^{8} + 98445 \nu^{6} - 151248 \nu^{4} + \cdots + 264306 ) / 200753 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 160 \nu^{14} - 1174 \nu^{12} - 6408 \nu^{10} - 17984 \nu^{8} - 37760 \nu^{6} + 52608 \nu^{4} + \cdots - 89180 ) / 52479 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{13} - \beta_{12} + 2\beta_{11} + \beta_{10} - \beta_{9} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 4\beta_{8} - 3\beta_{6} + \beta_{4} + 3\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{13} + 5\beta_{9} - 6\beta_{7} + 8\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 3\beta_{15} + 4\beta_{14} - 12\beta_{8} + 12\beta_{6} - 4\beta_{4} - 3\beta_{3} - 12 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 5\beta_{12} - 20\beta_{11} - 15\beta_{10} + 20\beta_{7} - 62\beta_{5} - 62\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -18\beta_{15} - 23\beta_{14} - 27\beta _1 + 40 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -15\beta_{13} - 15\beta_{12} + 128\beta_{11} + 29\beta_{10} - 29\beta_{9} + 322\beta_{5} ) / 4 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 23\beta_{8} - 12\beta_{6} + 60\beta_{4} + 42\beta_{3} + 12\beta_1 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( -13\beta_{13} - 37\beta_{9} - 622\beta_{7} + 1464\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 360\beta_{15} + 515\beta_{14} + 436\beta_{8} - 303\beta_{6} - 515\beta_{4} - 360\beta_{3} + 436 ) / 2 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( -373\beta_{12} - 2442\beta_{11} + 881\beta_{10} + 2442\beta_{7} - 5872\beta_{5} - 5872\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( -1341\beta_{15} - 1892\beta_{14} + 3060\beta _1 - 4356 ) / 2 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 2729\beta_{13} + 2729\beta_{12} + 8164\beta_{11} - 6579\beta_{10} + 6579\beta_{9} + 19810\beta_{5} ) / 4 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( -27352\beta_{8} + 19359\beta_{6} + 5629\beta_{4} + 3990\beta_{3} - 19359\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( -15315\beta_{13} - 37025\beta_{9} - 20152\beta_{7} + 48686\beta_{2} ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2156\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1079\) \(1277\)
\(\chi(n)\) \(-1\) \(1\) \(1 + \beta_{8}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
901.1
0.701515 1.98043i
−1.36434 + 1.59774i
0.372250 + 1.20300i
1.22796 0.279124i
−0.372250 1.20300i
−1.22796 + 0.279124i
−0.701515 + 1.98043i
1.36434 1.59774i
0.701515 + 1.98043i
−1.36434 1.59774i
0.372250 1.20300i
1.22796 + 0.279124i
−0.372250 + 1.20300i
−1.22796 0.279124i
−0.701515 1.98043i
1.36434 + 1.59774i
0 −1.60021 + 0.923880i 0 1.60021 + 0.923880i 0 0 0 0.207107 0.358719i 0
901.2 0 −1.60021 + 0.923880i 0 1.60021 + 0.923880i 0 0 0 0.207107 0.358719i 0
901.3 0 −0.662827 + 0.382683i 0 0.662827 + 0.382683i 0 0 0 −1.20711 + 2.09077i 0
901.4 0 −0.662827 + 0.382683i 0 0.662827 + 0.382683i 0 0 0 −1.20711 + 2.09077i 0
901.5 0 0.662827 0.382683i 0 −0.662827 0.382683i 0 0 0 −1.20711 + 2.09077i 0
901.6 0 0.662827 0.382683i 0 −0.662827 0.382683i 0 0 0 −1.20711 + 2.09077i 0
901.7 0 1.60021 0.923880i 0 −1.60021 0.923880i 0 0 0 0.207107 0.358719i 0
901.8 0 1.60021 0.923880i 0 −1.60021 0.923880i 0 0 0 0.207107 0.358719i 0
2089.1 0 −1.60021 0.923880i 0 1.60021 0.923880i 0 0 0 0.207107 + 0.358719i 0
2089.2 0 −1.60021 0.923880i 0 1.60021 0.923880i 0 0 0 0.207107 + 0.358719i 0
2089.3 0 −0.662827 0.382683i 0 0.662827 0.382683i 0 0 0 −1.20711 2.09077i 0
2089.4 0 −0.662827 0.382683i 0 0.662827 0.382683i 0 0 0 −1.20711 2.09077i 0
2089.5 0 0.662827 + 0.382683i 0 −0.662827 + 0.382683i 0 0 0 −1.20711 2.09077i 0
2089.6 0 0.662827 + 0.382683i 0 −0.662827 + 0.382683i 0 0 0 −1.20711 2.09077i 0
2089.7 0 1.60021 + 0.923880i 0 −1.60021 + 0.923880i 0 0 0 0.207107 + 0.358719i 0
2089.8 0 1.60021 + 0.923880i 0 −1.60021 + 0.923880i 0 0 0 0.207107 + 0.358719i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 901.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
7.c even 3 1 inner
7.d odd 6 1 inner
11.b odd 2 1 inner
77.b even 2 1 inner
77.h odd 6 1 inner
77.i even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2156.2.q.d 16
7.b odd 2 1 inner 2156.2.q.d 16
7.c even 3 1 2156.2.c.a 8
7.c even 3 1 inner 2156.2.q.d 16
7.d odd 6 1 2156.2.c.a 8
7.d odd 6 1 inner 2156.2.q.d 16
11.b odd 2 1 inner 2156.2.q.d 16
77.b even 2 1 inner 2156.2.q.d 16
77.h odd 6 1 2156.2.c.a 8
77.h odd 6 1 inner 2156.2.q.d 16
77.i even 6 1 2156.2.c.a 8
77.i even 6 1 inner 2156.2.q.d 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2156.2.c.a 8 7.c even 3 1
2156.2.c.a 8 7.d odd 6 1
2156.2.c.a 8 77.h odd 6 1
2156.2.c.a 8 77.i even 6 1
2156.2.q.d 16 1.a even 1 1 trivial
2156.2.q.d 16 7.b odd 2 1 inner
2156.2.q.d 16 7.c even 3 1 inner
2156.2.q.d 16 7.d odd 6 1 inner
2156.2.q.d 16 11.b odd 2 1 inner
2156.2.q.d 16 77.b even 2 1 inner
2156.2.q.d 16 77.h odd 6 1 inner
2156.2.q.d 16 77.i even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} - 4T_{3}^{6} + 14T_{3}^{4} - 8T_{3}^{2} + 4 \) acting on \(S_{2}^{\mathrm{new}}(2156, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( (T^{8} - 4 T^{6} + 14 T^{4} + \cdots + 4)^{2} \) Copy content Toggle raw display
$5$ \( (T^{8} - 4 T^{6} + 14 T^{4} + \cdots + 4)^{2} \) Copy content Toggle raw display
$7$ \( T^{16} \) Copy content Toggle raw display
$11$ \( (T^{4} - 2 T^{3} + \cdots + 121)^{4} \) Copy content Toggle raw display
$13$ \( (T^{4} - 40 T^{2} + 200)^{4} \) Copy content Toggle raw display
$17$ \( (T^{8} + 40 T^{6} + \cdots + 40000)^{2} \) Copy content Toggle raw display
$19$ \( (T^{8} + 80 T^{6} + \cdots + 640000)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + 18 T^{2} + 324)^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} + 20)^{8} \) Copy content Toggle raw display
$31$ \( (T^{8} - 68 T^{6} + \cdots + 9604)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} - 8 T^{3} + 56 T^{2} + \cdots + 64)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} - 200 T^{2} + 9800)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} + 120 T^{2} + 400)^{4} \) Copy content Toggle raw display
$47$ \( (T^{8} - 68 T^{6} + \cdots + 1119364)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 50 T^{2} + 2500)^{4} \) Copy content Toggle raw display
$59$ \( (T^{8} - 52 T^{6} + \cdots + 334084)^{2} \) Copy content Toggle raw display
$61$ \( (T^{8} + 40 T^{6} + \cdots + 40000)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} - 8 T^{3} + \cdots + 1156)^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} - 16 T + 46)^{8} \) Copy content Toggle raw display
$73$ \( (T^{8} + 200 T^{6} + \cdots + 96040000)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} - 180 T^{2} + 32400)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} - 160 T^{2} + 3200)^{4} \) Copy content Toggle raw display
$89$ \( (T^{8} - 20 T^{6} + 398 T^{4} + \cdots + 4)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 196 T^{2} + 4802)^{4} \) Copy content Toggle raw display
show more
show less