Properties

Label 2-2160-9.4-c1-0-12
Degree 22
Conductor 21602160
Sign 0.710+0.703i0.710 + 0.703i
Analytic cond. 17.247617.2476
Root an. cond. 4.153034.15303
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)5-s + (−0.724 − 1.25i)7-s + 2·17-s − 2.89·19-s + (1.27 − 2.20i)23-s + (−0.499 − 0.866i)25-s + (3.94 + 6.84i)29-s + (5.44 − 9.43i)31-s + 1.44·35-s − 6·37-s + (−0.0505 + 0.0874i)41-s + (−3.89 − 6.75i)43-s + (2.27 + 3.94i)47-s + (2.44 − 4.24i)49-s + 11.7·53-s + ⋯
L(s)  = 1  + (−0.223 + 0.387i)5-s + (−0.273 − 0.474i)7-s + 0.485·17-s − 0.665·19-s + (0.265 − 0.460i)23-s + (−0.0999 − 0.173i)25-s + (0.733 + 1.27i)29-s + (0.978 − 1.69i)31-s + 0.245·35-s − 0.986·37-s + (−0.00788 + 0.0136i)41-s + (−0.594 − 1.02i)43-s + (0.331 + 0.574i)47-s + (0.349 − 0.606i)49-s + 1.62·53-s + ⋯

Functional equation

Λ(s)=(2160s/2ΓC(s)L(s)=((0.710+0.703i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.710 + 0.703i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(2160s/2ΓC(s+1/2)L(s)=((0.710+0.703i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.710 + 0.703i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 21602160    =    243352^{4} \cdot 3^{3} \cdot 5
Sign: 0.710+0.703i0.710 + 0.703i
Analytic conductor: 17.247617.2476
Root analytic conductor: 4.153034.15303
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ2160(1441,)\chi_{2160} (1441, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 2160, ( :1/2), 0.710+0.703i)(2,\ 2160,\ (\ :1/2),\ 0.710 + 0.703i)

Particular Values

L(1)L(1) \approx 1.4499074101.449907410
L(12)L(\frac12) \approx 1.4499074101.449907410
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
5 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
good7 1+(0.724+1.25i)T+(3.5+6.06i)T2 1 + (0.724 + 1.25i)T + (-3.5 + 6.06i)T^{2}
11 1+(5.5+9.52i)T2 1 + (-5.5 + 9.52i)T^{2}
13 1+(6.511.2i)T2 1 + (-6.5 - 11.2i)T^{2}
17 12T+17T2 1 - 2T + 17T^{2}
19 1+2.89T+19T2 1 + 2.89T + 19T^{2}
23 1+(1.27+2.20i)T+(11.519.9i)T2 1 + (-1.27 + 2.20i)T + (-11.5 - 19.9i)T^{2}
29 1+(3.946.84i)T+(14.5+25.1i)T2 1 + (-3.94 - 6.84i)T + (-14.5 + 25.1i)T^{2}
31 1+(5.44+9.43i)T+(15.526.8i)T2 1 + (-5.44 + 9.43i)T + (-15.5 - 26.8i)T^{2}
37 1+6T+37T2 1 + 6T + 37T^{2}
41 1+(0.05050.0874i)T+(20.535.5i)T2 1 + (0.0505 - 0.0874i)T + (-20.5 - 35.5i)T^{2}
43 1+(3.89+6.75i)T+(21.5+37.2i)T2 1 + (3.89 + 6.75i)T + (-21.5 + 37.2i)T^{2}
47 1+(2.273.94i)T+(23.5+40.7i)T2 1 + (-2.27 - 3.94i)T + (-23.5 + 40.7i)T^{2}
53 111.7T+53T2 1 - 11.7T + 53T^{2}
59 1+(5.44+9.43i)T+(29.551.0i)T2 1 + (-5.44 + 9.43i)T + (-29.5 - 51.0i)T^{2}
61 1+(1.52.59i)T+(30.5+52.8i)T2 1 + (-1.5 - 2.59i)T + (-30.5 + 52.8i)T^{2}
67 1+(5.62+9.74i)T+(33.558.0i)T2 1 + (-5.62 + 9.74i)T + (-33.5 - 58.0i)T^{2}
71 1+9.79T+71T2 1 + 9.79T + 71T^{2}
73 1+5.79T+73T2 1 + 5.79T + 73T^{2}
79 1+(1.442.51i)T+(39.5+68.4i)T2 1 + (-1.44 - 2.51i)T + (-39.5 + 68.4i)T^{2}
83 1+(0.2750.476i)T+(41.5+71.8i)T2 1 + (-0.275 - 0.476i)T + (-41.5 + 71.8i)T^{2}
89 116.7T+89T2 1 - 16.7T + 89T^{2}
97 1+(1+1.73i)T+(48.5+84.0i)T2 1 + (1 + 1.73i)T + (-48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.853154885102460873745981534711, −8.261032640920457730204564235374, −7.29835036499755280901564035427, −6.75995113304210617087790432692, −5.91736405618493464233945516111, −4.91083687527932679981700741628, −4.00146965476361049211770660167, −3.20147267838816799584546743316, −2.12651015412862400858851335802, −0.61220779306442116758033154828, 1.04409572270346864466305798018, 2.38361779170187557576398274131, 3.35257568424756317001976607024, 4.35414153523709184134041458416, 5.18278829129028159646251404451, 6.01018507917860200364504927600, 6.81289909606171036596486380788, 7.67945889753309376189035334528, 8.591817073897265510153859262402, 8.916266315605884736102548338824

Graph of the ZZ-function along the critical line