L(s) = 1 | + (−0.5 + 0.866i)5-s + (−0.724 − 1.25i)7-s + 2·17-s − 2.89·19-s + (1.27 − 2.20i)23-s + (−0.499 − 0.866i)25-s + (3.94 + 6.84i)29-s + (5.44 − 9.43i)31-s + 1.44·35-s − 6·37-s + (−0.0505 + 0.0874i)41-s + (−3.89 − 6.75i)43-s + (2.27 + 3.94i)47-s + (2.44 − 4.24i)49-s + 11.7·53-s + ⋯ |
L(s) = 1 | + (−0.223 + 0.387i)5-s + (−0.273 − 0.474i)7-s + 0.485·17-s − 0.665·19-s + (0.265 − 0.460i)23-s + (−0.0999 − 0.173i)25-s + (0.733 + 1.27i)29-s + (0.978 − 1.69i)31-s + 0.245·35-s − 0.986·37-s + (−0.00788 + 0.0136i)41-s + (−0.594 − 1.02i)43-s + (0.331 + 0.574i)47-s + (0.349 − 0.606i)49-s + 1.62·53-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(0.710+0.703i)Λ(2−s)
Λ(s)=(=(2160s/2ΓC(s+1/2)L(s)(0.710+0.703i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
0.710+0.703i
|
Analytic conductor: |
17.2476 |
Root analytic conductor: |
4.15303 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(1441,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :1/2), 0.710+0.703i)
|
Particular Values
L(1) |
≈ |
1.449907410 |
L(21) |
≈ |
1.449907410 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(0.5−0.866i)T |
good | 7 | 1+(0.724+1.25i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−5.5+9.52i)T2 |
| 13 | 1+(−6.5−11.2i)T2 |
| 17 | 1−2T+17T2 |
| 19 | 1+2.89T+19T2 |
| 23 | 1+(−1.27+2.20i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−3.94−6.84i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−5.44+9.43i)T+(−15.5−26.8i)T2 |
| 37 | 1+6T+37T2 |
| 41 | 1+(0.0505−0.0874i)T+(−20.5−35.5i)T2 |
| 43 | 1+(3.89+6.75i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−2.27−3.94i)T+(−23.5+40.7i)T2 |
| 53 | 1−11.7T+53T2 |
| 59 | 1+(−5.44+9.43i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−1.5−2.59i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−5.62+9.74i)T+(−33.5−58.0i)T2 |
| 71 | 1+9.79T+71T2 |
| 73 | 1+5.79T+73T2 |
| 79 | 1+(−1.44−2.51i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−0.275−0.476i)T+(−41.5+71.8i)T2 |
| 89 | 1−16.7T+89T2 |
| 97 | 1+(1+1.73i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.853154885102460873745981534711, −8.261032640920457730204564235374, −7.29835036499755280901564035427, −6.75995113304210617087790432692, −5.91736405618493464233945516111, −4.91083687527932679981700741628, −4.00146965476361049211770660167, −3.20147267838816799584546743316, −2.12651015412862400858851335802, −0.61220779306442116758033154828,
1.04409572270346864466305798018, 2.38361779170187557576398274131, 3.35257568424756317001976607024, 4.35414153523709184134041458416, 5.18278829129028159646251404451, 6.01018507917860200364504927600, 6.81289909606171036596486380788, 7.67945889753309376189035334528, 8.591817073897265510153859262402, 8.916266315605884736102548338824