Properties

Label 2160.2.q.g
Level 21602160
Weight 22
Character orbit 2160.q
Analytic conductor 17.24817.248
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,2,Mod(721,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.721");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2160=24335 2160 = 2^{4} \cdot 3^{3} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2160.q (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 17.247686836617.2476868366
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(2,3)\Q(\sqrt{-2}, \sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x42x2+4 x^{4} - 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 3 3
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β11)q5+(β2+β1)q7+2q17+(2β3+2)q19+(β3+β25β1+5)q23β1q25+(2β2+3β1)q29+2β1q97+O(q100) q + (\beta_1 - 1) q^{5} + ( - \beta_{2} + \beta_1) q^{7} + 2 q^{17} + ( - 2 \beta_{3} + 2) q^{19} + ( - \beta_{3} + \beta_{2} - 5 \beta_1 + 5) q^{23} - \beta_1 q^{25} + (2 \beta_{2} + 3 \beta_1) q^{29}+ \cdots - 2 \beta_1 q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q5+2q7+8q17+8q19+10q232q25+6q29+12q314q3524q3710q41+4q43+14q47+8q53+12q59+6q612q67+16q73+4q97+O(q100) 4 q - 2 q^{5} + 2 q^{7} + 8 q^{17} + 8 q^{19} + 10 q^{23} - 2 q^{25} + 6 q^{29} + 12 q^{31} - 4 q^{35} - 24 q^{37} - 10 q^{41} + 4 q^{43} + 14 q^{47} + 8 q^{53} + 12 q^{59} + 6 q^{61} - 2 q^{67} + 16 q^{73}+ \cdots - 4 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x42x2+4 x^{4} - 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== (ν2)/2 ( \nu^{2} ) / 2 Copy content Toggle raw display
β2\beta_{2}== (ν3+2ν)/2 ( \nu^{3} + 2\nu ) / 2 Copy content Toggle raw display
β3\beta_{3}== (ν3+4ν)/2 ( -\nu^{3} + 4\nu ) / 2 Copy content Toggle raw display
ν\nu== (β3+β2)/3 ( \beta_{3} + \beta_{2} ) / 3 Copy content Toggle raw display
ν2\nu^{2}== 2β1 2\beta_1 Copy content Toggle raw display
ν3\nu^{3}== (2β3+4β2)/3 ( -2\beta_{3} + 4\beta_{2} ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2160Z)×\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times.

nn 271271 12971297 16211621 20812081
χ(n)\chi(n) 11 11 11 1+β1-1 + \beta_{1}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
721.1
1.22474 0.707107i
−1.22474 + 0.707107i
1.22474 + 0.707107i
−1.22474 0.707107i
0 0 0 −0.500000 0.866025i 0 −0.724745 + 1.25529i 0 0 0
721.2 0 0 0 −0.500000 0.866025i 0 1.72474 2.98735i 0 0 0
1441.1 0 0 0 −0.500000 + 0.866025i 0 −0.724745 1.25529i 0 0 0
1441.2 0 0 0 −0.500000 + 0.866025i 0 1.72474 + 2.98735i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2160.2.q.g 4
3.b odd 2 1 720.2.q.g 4
4.b odd 2 1 1080.2.q.c 4
9.c even 3 1 inner 2160.2.q.g 4
9.c even 3 1 6480.2.a.bl 2
9.d odd 6 1 720.2.q.g 4
9.d odd 6 1 6480.2.a.bc 2
12.b even 2 1 360.2.q.c 4
36.f odd 6 1 1080.2.q.c 4
36.f odd 6 1 3240.2.a.o 2
36.h even 6 1 360.2.q.c 4
36.h even 6 1 3240.2.a.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
360.2.q.c 4 12.b even 2 1
360.2.q.c 4 36.h even 6 1
720.2.q.g 4 3.b odd 2 1
720.2.q.g 4 9.d odd 6 1
1080.2.q.c 4 4.b odd 2 1
1080.2.q.c 4 36.f odd 6 1
2160.2.q.g 4 1.a even 1 1 trivial
2160.2.q.g 4 9.c even 3 1 inner
3240.2.a.j 2 36.h even 6 1
3240.2.a.o 2 36.f odd 6 1
6480.2.a.bc 2 9.d odd 6 1
6480.2.a.bl 2 9.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2160,[χ])S_{2}^{\mathrm{new}}(2160, [\chi]):

T742T73+9T72+10T7+25 T_{7}^{4} - 2T_{7}^{3} + 9T_{7}^{2} + 10T_{7} + 25 Copy content Toggle raw display
T11 T_{11} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
77 T42T3++25 T^{4} - 2 T^{3} + \cdots + 25 Copy content Toggle raw display
1111 T4 T^{4} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 (T2)4 (T - 2)^{4} Copy content Toggle raw display
1919 (T24T20)2 (T^{2} - 4 T - 20)^{2} Copy content Toggle raw display
2323 T410T3++361 T^{4} - 10 T^{3} + \cdots + 361 Copy content Toggle raw display
2929 T46T3++225 T^{4} - 6 T^{3} + \cdots + 225 Copy content Toggle raw display
3131 T412T3++144 T^{4} - 12 T^{3} + \cdots + 144 Copy content Toggle raw display
3737 (T+6)4 (T + 6)^{4} Copy content Toggle raw display
4141 T4+10T3++1 T^{4} + 10 T^{3} + \cdots + 1 Copy content Toggle raw display
4343 T44T3++8464 T^{4} - 4 T^{3} + \cdots + 8464 Copy content Toggle raw display
4747 T414T3++1849 T^{4} - 14 T^{3} + \cdots + 1849 Copy content Toggle raw display
5353 (T24T92)2 (T^{2} - 4 T - 92)^{2} Copy content Toggle raw display
5959 T412T3++144 T^{4} - 12 T^{3} + \cdots + 144 Copy content Toggle raw display
6161 (T23T+9)2 (T^{2} - 3 T + 9)^{2} Copy content Toggle raw display
6767 T4+2T3++22201 T^{4} + 2 T^{3} + \cdots + 22201 Copy content Toggle raw display
7171 (T296)2 (T^{2} - 96)^{2} Copy content Toggle raw display
7373 (T28T80)2 (T^{2} - 8 T - 80)^{2} Copy content Toggle raw display
7979 T4+4T3++400 T^{4} + 4 T^{3} + \cdots + 400 Copy content Toggle raw display
8383 T46T3++9 T^{4} - 6 T^{3} + \cdots + 9 Copy content Toggle raw display
8989 (T214T47)2 (T^{2} - 14 T - 47)^{2} Copy content Toggle raw display
9797 (T2+2T+4)2 (T^{2} + 2 T + 4)^{2} Copy content Toggle raw display
show more
show less