L(s) = 1 | − 2·2-s − 7·3-s + 14·6-s + 7-s + 3·8-s + 28·9-s + 4·11-s + 13-s − 2·14-s − 4·16-s − 8·17-s − 56·18-s + 15·19-s − 7·21-s − 8·22-s − 14·23-s − 21·24-s − 2·26-s − 84·27-s − 7·29-s + 5·31-s − 28·33-s + 16·34-s + 6·37-s − 30·38-s − 7·39-s + 22·41-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 4.04·3-s + 5.71·6-s + 0.377·7-s + 1.06·8-s + 28/3·9-s + 1.20·11-s + 0.277·13-s − 0.534·14-s − 16-s − 1.94·17-s − 13.1·18-s + 3.44·19-s − 1.52·21-s − 1.70·22-s − 2.91·23-s − 4.28·24-s − 0.392·26-s − 16.1·27-s − 1.29·29-s + 0.898·31-s − 4.87·33-s + 2.74·34-s + 0.986·37-s − 4.86·38-s − 1.12·39-s + 3.43·41-s + ⋯ |
Λ(s)=(=((37⋅514⋅297)s/2ΓC(s)7L(s)Λ(2−s)
Λ(s)=(=((37⋅514⋅297)s/2ΓC(s+1/2)7L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.6403376762 |
L(21) |
≈ |
0.6403376762 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | (1+T)7 |
| 5 | 1 |
| 29 | (1+T)7 |
good | 2 | 1+pT+p2T2+5T3+p3T4+3p2T5+21T6+13pT7+21pT8+3p4T9+p6T10+5p4T11+p7T12+p7T13+p7T14 |
| 7 | 1−T+19T2−4T3+4p2T4−8T5+1809T6−405T7+1809pT8−8p2T9+4p5T10−4p4T11+19p5T12−p6T13+p7T14 |
| 11 | 1−4T+17T2−74T3+346T4−1348T5+4717T6−11650T7+4717pT8−1348p2T9+346p3T10−74p4T11+17p5T12−4p6T13+p7T14 |
| 13 | 1−T+33T2+46T3+534T4+2130T5+5519T6+42241T7+5519pT8+2130p2T9+534p3T10+46p4T11+33p5T12−p6T13+p7T14 |
| 17 | 1+8T+43T2+236T3+1582T4+8242T5+35495T6+136294T7+35495pT8+8242p2T9+1582p3T10+236p4T11+43p5T12+8p6T13+p7T14 |
| 19 | 1−15T+161T2−1258T3+8505T4−49369T5+258353T6−1189196T7+258353pT8−49369p2T9+8505p3T10−1258p4T11+161p5T12−15p6T13+p7T14 |
| 23 | 1+14T+153T2+996T3+5629T4+21330T5+86229T6+295096T7+86229pT8+21330p2T9+5629p3T10+996p4T11+153p5T12+14p6T13+p7T14 |
| 31 | 1−5T+97T2−10pT3+3325T4−277pT5+74429T6−246580T7+74429pT8−277p3T9+3325p3T10−10p5T11+97p5T12−5p6T13+p7T14 |
| 37 | 1−6T+183T2−996T3+16657T4−78442T5+934479T6−3671800T7+934479pT8−78442p2T9+16657p3T10−996p4T11+183p5T12−6p6T13+p7T14 |
| 41 | 1−22T+326T2−3328T3+29567T4−228704T5+1694159T6−11224148T7+1694159pT8−228704p2T9+29567p3T10−3328p4T11+326p5T12−22p6T13+p7T14 |
| 43 | 1−19T+347T2−4166T3+46407T4−409893T5+3355901T6−22823892T7+3355901pT8−409893p2T9+46407p3T10−4166p4T11+347p5T12−19p6T13+p7T14 |
| 47 | 1+22T+421T2+5464T3+63328T4+592886T5+5040195T6+36162386T7+5040195pT8+592886p2T9+63328p3T10+5464p4T11+421p5T12+22p6T13+p7T14 |
| 53 | 1+10T+171T2+1924T3+23061T4+180870T5+1739015T6+12570552T7+1739015pT8+180870p2T9+23061p3T10+1924p4T11+171p5T12+10p6T13+p7T14 |
| 59 | 1−6T+241T2−1540T3+31113T4−182410T5+2656289T6−13355128T7+2656289pT8−182410p2T9+31113p3T10−1540p4T11+241p5T12−6p6T13+p7T14 |
| 61 | 1−23T+411T2−4614T3+46205T4−339329T5+2592159T6−17450100T7+2592159pT8−339329p2T9+46205p3T10−4614p4T11+411p5T12−23p6T13+p7T14 |
| 67 | 1−13T+295T2−3096T3+39964T4−349620T5+3421013T6−26910289T7+3421013pT8−349620p2T9+39964p3T10−3096p4T11+295p5T12−13p6T13+p7T14 |
| 71 | 1−26T+585T2−9492T3+131485T4−1533958T5+15838501T6−140769112T7+15838501pT8−1533958p2T9+131485p3T10−9492p4T11+585p5T12−26p6T13+p7T14 |
| 73 | 1−24T+459T2−5928T3+73905T4−770216T5+7983475T6−69602480T7+7983475pT8−770216p2T9+73905p3T10−5928p4T11+459p5T12−24p6T13+p7T14 |
| 79 | 1−14T+449T2−4540T3+1011pT4−628562T5+8354141T6−56447048T7+8354141pT8−628562p2T9+1011p4T10−4540p4T11+449p5T12−14p6T13+p7T14 |
| 83 | 1+10T+501T2+4476T3+114237T4+864230T5+15185521T6+93232840T7+15185521pT8+864230p2T9+114237p3T10+4476p4T11+501p5T12+10p6T13+p7T14 |
| 89 | 1−14T+421T2−4676T3+83234T4−766332T5+10594021T6−81837236T7+10594021pT8−766332p2T9+83234p3T10−4676p4T11+421p5T12−14p6T13+p7T14 |
| 97 | 1−31T+609T2−9602T3+123511T4−1501713T5+17079559T6−173792924T7+17079559pT8−1501713p2T9+123511p3T10−9602p4T11+609p5T12−31p6T13+p7T14 |
show more | |
show less | |
L(s)=p∏ j=1∏14(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.19289818021193808504136536984, −4.11307252849259335785251141687, −4.06740684127135385280676452325, −3.98402738369101836133915587932, −3.75242842147108719678119899357, −3.54866664353302200250335193421, −3.45827037235196307659753610624, −3.41867480863150989055727545481, −3.37472649750434607845588471185, −2.90763899115558260939117157652, −2.61023099584197387327062384380, −2.44212949335232541260235104019, −2.38344205188089769363062483193, −2.34394616893858795940599577437, −2.03738678077670244844773244886, −1.78161934335717031107631019572, −1.71974356643536391713853410367, −1.53708590639601758346834133363, −1.39056736795133797244020417178, −1.07489796017433509545714203180, −0.834733188292331876571569817971, −0.822724460421109999941447272957, −0.58370932640766198592224533619, −0.41388092543812425358550677346, −0.34138934485228128137122512189,
0.34138934485228128137122512189, 0.41388092543812425358550677346, 0.58370932640766198592224533619, 0.822724460421109999941447272957, 0.834733188292331876571569817971, 1.07489796017433509545714203180, 1.39056736795133797244020417178, 1.53708590639601758346834133363, 1.71974356643536391713853410367, 1.78161934335717031107631019572, 2.03738678077670244844773244886, 2.34394616893858795940599577437, 2.38344205188089769363062483193, 2.44212949335232541260235104019, 2.61023099584197387327062384380, 2.90763899115558260939117157652, 3.37472649750434607845588471185, 3.41867480863150989055727545481, 3.45827037235196307659753610624, 3.54866664353302200250335193421, 3.75242842147108719678119899357, 3.98402738369101836133915587932, 4.06740684127135385280676452325, 4.11307252849259335785251141687, 4.19289818021193808504136536984
Plot not available for L-functions of degree greater than 10.