Properties

Label 14-2175e7-1.1-c1e7-0-0
Degree 1414
Conductor 2.303×10232.303\times 10^{23}
Sign 11
Analytic cond. 4.76600×1084.76600\times 10^{8}
Root an. cond. 4.167424.16742
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 7·3-s + 14·6-s + 7-s + 3·8-s + 28·9-s + 4·11-s + 13-s − 2·14-s − 4·16-s − 8·17-s − 56·18-s + 15·19-s − 7·21-s − 8·22-s − 14·23-s − 21·24-s − 2·26-s − 84·27-s − 7·29-s + 5·31-s − 28·33-s + 16·34-s + 6·37-s − 30·38-s − 7·39-s + 22·41-s + ⋯
L(s)  = 1  − 1.41·2-s − 4.04·3-s + 5.71·6-s + 0.377·7-s + 1.06·8-s + 28/3·9-s + 1.20·11-s + 0.277·13-s − 0.534·14-s − 16-s − 1.94·17-s − 13.1·18-s + 3.44·19-s − 1.52·21-s − 1.70·22-s − 2.91·23-s − 4.28·24-s − 0.392·26-s − 16.1·27-s − 1.29·29-s + 0.898·31-s − 4.87·33-s + 2.74·34-s + 0.986·37-s − 4.86·38-s − 1.12·39-s + 3.43·41-s + ⋯

Functional equation

Λ(s)=((37514297)s/2ΓC(s)7L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{7} \cdot 5^{14} \cdot 29^{7}\right)^{s/2} \, \Gamma_{\C}(s)^{7} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
Λ(s)=((37514297)s/2ΓC(s+1/2)7L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{7} \cdot 5^{14} \cdot 29^{7}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{7} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 1414
Conductor: 375142973^{7} \cdot 5^{14} \cdot 29^{7}
Sign: 11
Analytic conductor: 4.76600×1084.76600\times 10^{8}
Root analytic conductor: 4.167424.16742
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (14, 37514297, ( :[1/2]7), 1)(14,\ 3^{7} \cdot 5^{14} \cdot 29^{7} ,\ ( \ : [1/2]^{7} ),\ 1 )

Particular Values

L(1)L(1) \approx 0.64033767620.6403376762
L(12)L(\frac12) \approx 0.64033767620.6403376762
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 (1+T)7 ( 1 + T )^{7}
5 1 1
29 (1+T)7 ( 1 + T )^{7}
good2 1+pT+p2T2+5T3+p3T4+3p2T5+21T6+13pT7+21pT8+3p4T9+p6T10+5p4T11+p7T12+p7T13+p7T14 1 + p T + p^{2} T^{2} + 5 T^{3} + p^{3} T^{4} + 3 p^{2} T^{5} + 21 T^{6} + 13 p T^{7} + 21 p T^{8} + 3 p^{4} T^{9} + p^{6} T^{10} + 5 p^{4} T^{11} + p^{7} T^{12} + p^{7} T^{13} + p^{7} T^{14}
7 1T+19T24T3+4p2T48T5+1809T6405T7+1809pT88p2T9+4p5T104p4T11+19p5T12p6T13+p7T14 1 - T + 19 T^{2} - 4 T^{3} + 4 p^{2} T^{4} - 8 T^{5} + 1809 T^{6} - 405 T^{7} + 1809 p T^{8} - 8 p^{2} T^{9} + 4 p^{5} T^{10} - 4 p^{4} T^{11} + 19 p^{5} T^{12} - p^{6} T^{13} + p^{7} T^{14}
11 14T+17T274T3+346T41348T5+4717T611650T7+4717pT81348p2T9+346p3T1074p4T11+17p5T124p6T13+p7T14 1 - 4 T + 17 T^{2} - 74 T^{3} + 346 T^{4} - 1348 T^{5} + 4717 T^{6} - 11650 T^{7} + 4717 p T^{8} - 1348 p^{2} T^{9} + 346 p^{3} T^{10} - 74 p^{4} T^{11} + 17 p^{5} T^{12} - 4 p^{6} T^{13} + p^{7} T^{14}
13 1T+33T2+46T3+534T4+2130T5+5519T6+42241T7+5519pT8+2130p2T9+534p3T10+46p4T11+33p5T12p6T13+p7T14 1 - T + 33 T^{2} + 46 T^{3} + 534 T^{4} + 2130 T^{5} + 5519 T^{6} + 42241 T^{7} + 5519 p T^{8} + 2130 p^{2} T^{9} + 534 p^{3} T^{10} + 46 p^{4} T^{11} + 33 p^{5} T^{12} - p^{6} T^{13} + p^{7} T^{14}
17 1+8T+43T2+236T3+1582T4+8242T5+35495T6+136294T7+35495pT8+8242p2T9+1582p3T10+236p4T11+43p5T12+8p6T13+p7T14 1 + 8 T + 43 T^{2} + 236 T^{3} + 1582 T^{4} + 8242 T^{5} + 35495 T^{6} + 136294 T^{7} + 35495 p T^{8} + 8242 p^{2} T^{9} + 1582 p^{3} T^{10} + 236 p^{4} T^{11} + 43 p^{5} T^{12} + 8 p^{6} T^{13} + p^{7} T^{14}
19 115T+161T21258T3+8505T449369T5+258353T61189196T7+258353pT849369p2T9+8505p3T101258p4T11+161p5T1215p6T13+p7T14 1 - 15 T + 161 T^{2} - 1258 T^{3} + 8505 T^{4} - 49369 T^{5} + 258353 T^{6} - 1189196 T^{7} + 258353 p T^{8} - 49369 p^{2} T^{9} + 8505 p^{3} T^{10} - 1258 p^{4} T^{11} + 161 p^{5} T^{12} - 15 p^{6} T^{13} + p^{7} T^{14}
23 1+14T+153T2+996T3+5629T4+21330T5+86229T6+295096T7+86229pT8+21330p2T9+5629p3T10+996p4T11+153p5T12+14p6T13+p7T14 1 + 14 T + 153 T^{2} + 996 T^{3} + 5629 T^{4} + 21330 T^{5} + 86229 T^{6} + 295096 T^{7} + 86229 p T^{8} + 21330 p^{2} T^{9} + 5629 p^{3} T^{10} + 996 p^{4} T^{11} + 153 p^{5} T^{12} + 14 p^{6} T^{13} + p^{7} T^{14}
31 15T+97T210pT3+3325T4277pT5+74429T6246580T7+74429pT8277p3T9+3325p3T1010p5T11+97p5T125p6T13+p7T14 1 - 5 T + 97 T^{2} - 10 p T^{3} + 3325 T^{4} - 277 p T^{5} + 74429 T^{6} - 246580 T^{7} + 74429 p T^{8} - 277 p^{3} T^{9} + 3325 p^{3} T^{10} - 10 p^{5} T^{11} + 97 p^{5} T^{12} - 5 p^{6} T^{13} + p^{7} T^{14}
37 16T+183T2996T3+16657T478442T5+934479T63671800T7+934479pT878442p2T9+16657p3T10996p4T11+183p5T126p6T13+p7T14 1 - 6 T + 183 T^{2} - 996 T^{3} + 16657 T^{4} - 78442 T^{5} + 934479 T^{6} - 3671800 T^{7} + 934479 p T^{8} - 78442 p^{2} T^{9} + 16657 p^{3} T^{10} - 996 p^{4} T^{11} + 183 p^{5} T^{12} - 6 p^{6} T^{13} + p^{7} T^{14}
41 122T+326T23328T3+29567T4228704T5+1694159T611224148T7+1694159pT8228704p2T9+29567p3T103328p4T11+326p5T1222p6T13+p7T14 1 - 22 T + 326 T^{2} - 3328 T^{3} + 29567 T^{4} - 228704 T^{5} + 1694159 T^{6} - 11224148 T^{7} + 1694159 p T^{8} - 228704 p^{2} T^{9} + 29567 p^{3} T^{10} - 3328 p^{4} T^{11} + 326 p^{5} T^{12} - 22 p^{6} T^{13} + p^{7} T^{14}
43 119T+347T24166T3+46407T4409893T5+3355901T622823892T7+3355901pT8409893p2T9+46407p3T104166p4T11+347p5T1219p6T13+p7T14 1 - 19 T + 347 T^{2} - 4166 T^{3} + 46407 T^{4} - 409893 T^{5} + 3355901 T^{6} - 22823892 T^{7} + 3355901 p T^{8} - 409893 p^{2} T^{9} + 46407 p^{3} T^{10} - 4166 p^{4} T^{11} + 347 p^{5} T^{12} - 19 p^{6} T^{13} + p^{7} T^{14}
47 1+22T+421T2+5464T3+63328T4+592886T5+5040195T6+36162386T7+5040195pT8+592886p2T9+63328p3T10+5464p4T11+421p5T12+22p6T13+p7T14 1 + 22 T + 421 T^{2} + 5464 T^{3} + 63328 T^{4} + 592886 T^{5} + 5040195 T^{6} + 36162386 T^{7} + 5040195 p T^{8} + 592886 p^{2} T^{9} + 63328 p^{3} T^{10} + 5464 p^{4} T^{11} + 421 p^{5} T^{12} + 22 p^{6} T^{13} + p^{7} T^{14}
53 1+10T+171T2+1924T3+23061T4+180870T5+1739015T6+12570552T7+1739015pT8+180870p2T9+23061p3T10+1924p4T11+171p5T12+10p6T13+p7T14 1 + 10 T + 171 T^{2} + 1924 T^{3} + 23061 T^{4} + 180870 T^{5} + 1739015 T^{6} + 12570552 T^{7} + 1739015 p T^{8} + 180870 p^{2} T^{9} + 23061 p^{3} T^{10} + 1924 p^{4} T^{11} + 171 p^{5} T^{12} + 10 p^{6} T^{13} + p^{7} T^{14}
59 16T+241T21540T3+31113T4182410T5+2656289T613355128T7+2656289pT8182410p2T9+31113p3T101540p4T11+241p5T126p6T13+p7T14 1 - 6 T + 241 T^{2} - 1540 T^{3} + 31113 T^{4} - 182410 T^{5} + 2656289 T^{6} - 13355128 T^{7} + 2656289 p T^{8} - 182410 p^{2} T^{9} + 31113 p^{3} T^{10} - 1540 p^{4} T^{11} + 241 p^{5} T^{12} - 6 p^{6} T^{13} + p^{7} T^{14}
61 123T+411T24614T3+46205T4339329T5+2592159T617450100T7+2592159pT8339329p2T9+46205p3T104614p4T11+411p5T1223p6T13+p7T14 1 - 23 T + 411 T^{2} - 4614 T^{3} + 46205 T^{4} - 339329 T^{5} + 2592159 T^{6} - 17450100 T^{7} + 2592159 p T^{8} - 339329 p^{2} T^{9} + 46205 p^{3} T^{10} - 4614 p^{4} T^{11} + 411 p^{5} T^{12} - 23 p^{6} T^{13} + p^{7} T^{14}
67 113T+295T23096T3+39964T4349620T5+3421013T626910289T7+3421013pT8349620p2T9+39964p3T103096p4T11+295p5T1213p6T13+p7T14 1 - 13 T + 295 T^{2} - 3096 T^{3} + 39964 T^{4} - 349620 T^{5} + 3421013 T^{6} - 26910289 T^{7} + 3421013 p T^{8} - 349620 p^{2} T^{9} + 39964 p^{3} T^{10} - 3096 p^{4} T^{11} + 295 p^{5} T^{12} - 13 p^{6} T^{13} + p^{7} T^{14}
71 126T+585T29492T3+131485T41533958T5+15838501T6140769112T7+15838501pT81533958p2T9+131485p3T109492p4T11+585p5T1226p6T13+p7T14 1 - 26 T + 585 T^{2} - 9492 T^{3} + 131485 T^{4} - 1533958 T^{5} + 15838501 T^{6} - 140769112 T^{7} + 15838501 p T^{8} - 1533958 p^{2} T^{9} + 131485 p^{3} T^{10} - 9492 p^{4} T^{11} + 585 p^{5} T^{12} - 26 p^{6} T^{13} + p^{7} T^{14}
73 124T+459T25928T3+73905T4770216T5+7983475T669602480T7+7983475pT8770216p2T9+73905p3T105928p4T11+459p5T1224p6T13+p7T14 1 - 24 T + 459 T^{2} - 5928 T^{3} + 73905 T^{4} - 770216 T^{5} + 7983475 T^{6} - 69602480 T^{7} + 7983475 p T^{8} - 770216 p^{2} T^{9} + 73905 p^{3} T^{10} - 5928 p^{4} T^{11} + 459 p^{5} T^{12} - 24 p^{6} T^{13} + p^{7} T^{14}
79 114T+449T24540T3+1011pT4628562T5+8354141T656447048T7+8354141pT8628562p2T9+1011p4T104540p4T11+449p5T1214p6T13+p7T14 1 - 14 T + 449 T^{2} - 4540 T^{3} + 1011 p T^{4} - 628562 T^{5} + 8354141 T^{6} - 56447048 T^{7} + 8354141 p T^{8} - 628562 p^{2} T^{9} + 1011 p^{4} T^{10} - 4540 p^{4} T^{11} + 449 p^{5} T^{12} - 14 p^{6} T^{13} + p^{7} T^{14}
83 1+10T+501T2+4476T3+114237T4+864230T5+15185521T6+93232840T7+15185521pT8+864230p2T9+114237p3T10+4476p4T11+501p5T12+10p6T13+p7T14 1 + 10 T + 501 T^{2} + 4476 T^{3} + 114237 T^{4} + 864230 T^{5} + 15185521 T^{6} + 93232840 T^{7} + 15185521 p T^{8} + 864230 p^{2} T^{9} + 114237 p^{3} T^{10} + 4476 p^{4} T^{11} + 501 p^{5} T^{12} + 10 p^{6} T^{13} + p^{7} T^{14}
89 114T+421T24676T3+83234T4766332T5+10594021T681837236T7+10594021pT8766332p2T9+83234p3T104676p4T11+421p5T1214p6T13+p7T14 1 - 14 T + 421 T^{2} - 4676 T^{3} + 83234 T^{4} - 766332 T^{5} + 10594021 T^{6} - 81837236 T^{7} + 10594021 p T^{8} - 766332 p^{2} T^{9} + 83234 p^{3} T^{10} - 4676 p^{4} T^{11} + 421 p^{5} T^{12} - 14 p^{6} T^{13} + p^{7} T^{14}
97 131T+609T29602T3+123511T41501713T5+17079559T6173792924T7+17079559pT81501713p2T9+123511p3T109602p4T11+609p5T1231p6T13+p7T14 1 - 31 T + 609 T^{2} - 9602 T^{3} + 123511 T^{4} - 1501713 T^{5} + 17079559 T^{6} - 173792924 T^{7} + 17079559 p T^{8} - 1501713 p^{2} T^{9} + 123511 p^{3} T^{10} - 9602 p^{4} T^{11} + 609 p^{5} T^{12} - 31 p^{6} T^{13} + p^{7} T^{14}
show more
show less
   L(s)=p j=114(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{14} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−4.19289818021193808504136536984, −4.11307252849259335785251141687, −4.06740684127135385280676452325, −3.98402738369101836133915587932, −3.75242842147108719678119899357, −3.54866664353302200250335193421, −3.45827037235196307659753610624, −3.41867480863150989055727545481, −3.37472649750434607845588471185, −2.90763899115558260939117157652, −2.61023099584197387327062384380, −2.44212949335232541260235104019, −2.38344205188089769363062483193, −2.34394616893858795940599577437, −2.03738678077670244844773244886, −1.78161934335717031107631019572, −1.71974356643536391713853410367, −1.53708590639601758346834133363, −1.39056736795133797244020417178, −1.07489796017433509545714203180, −0.834733188292331876571569817971, −0.822724460421109999941447272957, −0.58370932640766198592224533619, −0.41388092543812425358550677346, −0.34138934485228128137122512189, 0.34138934485228128137122512189, 0.41388092543812425358550677346, 0.58370932640766198592224533619, 0.822724460421109999941447272957, 0.834733188292331876571569817971, 1.07489796017433509545714203180, 1.39056736795133797244020417178, 1.53708590639601758346834133363, 1.71974356643536391713853410367, 1.78161934335717031107631019572, 2.03738678077670244844773244886, 2.34394616893858795940599577437, 2.38344205188089769363062483193, 2.44212949335232541260235104019, 2.61023099584197387327062384380, 2.90763899115558260939117157652, 3.37472649750434607845588471185, 3.41867480863150989055727545481, 3.45827037235196307659753610624, 3.54866664353302200250335193421, 3.75242842147108719678119899357, 3.98402738369101836133915587932, 4.06740684127135385280676452325, 4.11307252849259335785251141687, 4.19289818021193808504136536984

Graph of the ZZ-function along the critical line

Plot not available for L-functions of degree greater than 10.