Properties

Label 2175.2.a.ba.1.1
Level $2175$
Weight $2$
Character 2175.1
Self dual yes
Analytic conductor $17.367$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,2,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 10x^{5} + 19x^{4} + 24x^{3} - 44x^{2} - 3x + 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.66356\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.66356 q^{2} -1.00000 q^{3} +5.09453 q^{4} +2.66356 q^{6} +0.0170416 q^{7} -8.24244 q^{8} +1.00000 q^{9} +1.70990 q^{11} -5.09453 q^{12} +4.69566 q^{13} -0.0453913 q^{14} +11.7651 q^{16} +3.91494 q^{17} -2.66356 q^{18} +6.02411 q^{19} -0.0170416 q^{21} -4.55440 q^{22} -4.82786 q^{23} +8.24244 q^{24} -12.5071 q^{26} -1.00000 q^{27} +0.0868190 q^{28} -1.00000 q^{29} +1.33709 q^{31} -14.8522 q^{32} -1.70990 q^{33} -10.4277 q^{34} +5.09453 q^{36} +8.18905 q^{37} -16.0455 q^{38} -4.69566 q^{39} +8.36721 q^{41} +0.0453913 q^{42} -3.72560 q^{43} +8.71111 q^{44} +12.8593 q^{46} +5.36826 q^{47} -11.7651 q^{48} -6.99971 q^{49} -3.91494 q^{51} +23.9222 q^{52} +7.21637 q^{53} +2.66356 q^{54} -0.140465 q^{56} -6.02411 q^{57} +2.66356 q^{58} -8.65422 q^{59} +5.72637 q^{61} -3.56141 q^{62} +0.0170416 q^{63} +16.0294 q^{64} +4.55440 q^{66} -3.87486 q^{67} +19.9448 q^{68} +4.82786 q^{69} -4.32991 q^{71} -8.24244 q^{72} +1.78245 q^{73} -21.8120 q^{74} +30.6900 q^{76} +0.0291394 q^{77} +12.5071 q^{78} +0.233544 q^{79} +1.00000 q^{81} -22.2865 q^{82} +6.15497 q^{83} -0.0868190 q^{84} +9.92334 q^{86} +1.00000 q^{87} -14.0937 q^{88} -12.4053 q^{89} +0.0800217 q^{91} -24.5957 q^{92} -1.33709 q^{93} -14.2986 q^{94} +14.8522 q^{96} +19.2918 q^{97} +18.6441 q^{98} +1.70990 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 2 q^{2} - 7 q^{3} + 10 q^{4} + 2 q^{6} + q^{7} - 3 q^{8} + 7 q^{9} + 4 q^{11} - 10 q^{12} + q^{13} + 15 q^{14} + 12 q^{16} - 8 q^{17} - 2 q^{18} + 15 q^{19} - q^{21} - 3 q^{22} - 14 q^{23} + 3 q^{24}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.66356 −1.88342 −0.941709 0.336429i \(-0.890781\pi\)
−0.941709 + 0.336429i \(0.890781\pi\)
\(3\) −1.00000 −0.577350
\(4\) 5.09453 2.54726
\(5\) 0 0
\(6\) 2.66356 1.08739
\(7\) 0.0170416 0.00644113 0.00322057 0.999995i \(-0.498975\pi\)
0.00322057 + 0.999995i \(0.498975\pi\)
\(8\) −8.24244 −2.91414
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 1.70990 0.515553 0.257777 0.966205i \(-0.417010\pi\)
0.257777 + 0.966205i \(0.417010\pi\)
\(12\) −5.09453 −1.47066
\(13\) 4.69566 1.30234 0.651171 0.758931i \(-0.274278\pi\)
0.651171 + 0.758931i \(0.274278\pi\)
\(14\) −0.0453913 −0.0121313
\(15\) 0 0
\(16\) 11.7651 2.94129
\(17\) 3.91494 0.949513 0.474757 0.880117i \(-0.342536\pi\)
0.474757 + 0.880117i \(0.342536\pi\)
\(18\) −2.66356 −0.627806
\(19\) 6.02411 1.38202 0.691012 0.722843i \(-0.257165\pi\)
0.691012 + 0.722843i \(0.257165\pi\)
\(20\) 0 0
\(21\) −0.0170416 −0.00371879
\(22\) −4.55440 −0.971002
\(23\) −4.82786 −1.00668 −0.503339 0.864089i \(-0.667895\pi\)
−0.503339 + 0.864089i \(0.667895\pi\)
\(24\) 8.24244 1.68248
\(25\) 0 0
\(26\) −12.5071 −2.45285
\(27\) −1.00000 −0.192450
\(28\) 0.0868190 0.0164073
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 1.33709 0.240148 0.120074 0.992765i \(-0.461687\pi\)
0.120074 + 0.992765i \(0.461687\pi\)
\(32\) −14.8522 −2.62553
\(33\) −1.70990 −0.297655
\(34\) −10.4277 −1.78833
\(35\) 0 0
\(36\) 5.09453 0.849088
\(37\) 8.18905 1.34627 0.673136 0.739519i \(-0.264947\pi\)
0.673136 + 0.739519i \(0.264947\pi\)
\(38\) −16.0455 −2.60293
\(39\) −4.69566 −0.751907
\(40\) 0 0
\(41\) 8.36721 1.30674 0.653369 0.757039i \(-0.273355\pi\)
0.653369 + 0.757039i \(0.273355\pi\)
\(42\) 0.0453913 0.00700403
\(43\) −3.72560 −0.568149 −0.284074 0.958802i \(-0.591686\pi\)
−0.284074 + 0.958802i \(0.591686\pi\)
\(44\) 8.71111 1.31325
\(45\) 0 0
\(46\) 12.8593 1.89600
\(47\) 5.36826 0.783041 0.391520 0.920169i \(-0.371949\pi\)
0.391520 + 0.920169i \(0.371949\pi\)
\(48\) −11.7651 −1.69815
\(49\) −6.99971 −0.999959
\(50\) 0 0
\(51\) −3.91494 −0.548202
\(52\) 23.9222 3.31741
\(53\) 7.21637 0.991245 0.495622 0.868538i \(-0.334940\pi\)
0.495622 + 0.868538i \(0.334940\pi\)
\(54\) 2.66356 0.362464
\(55\) 0 0
\(56\) −0.140465 −0.0187704
\(57\) −6.02411 −0.797912
\(58\) 2.66356 0.349742
\(59\) −8.65422 −1.12668 −0.563342 0.826224i \(-0.690485\pi\)
−0.563342 + 0.826224i \(0.690485\pi\)
\(60\) 0 0
\(61\) 5.72637 0.733187 0.366594 0.930381i \(-0.380524\pi\)
0.366594 + 0.930381i \(0.380524\pi\)
\(62\) −3.56141 −0.452299
\(63\) 0.0170416 0.00214704
\(64\) 16.0294 2.00368
\(65\) 0 0
\(66\) 4.55440 0.560608
\(67\) −3.87486 −0.473390 −0.236695 0.971584i \(-0.576064\pi\)
−0.236695 + 0.971584i \(0.576064\pi\)
\(68\) 19.9448 2.41866
\(69\) 4.82786 0.581206
\(70\) 0 0
\(71\) −4.32991 −0.513866 −0.256933 0.966429i \(-0.582712\pi\)
−0.256933 + 0.966429i \(0.582712\pi\)
\(72\) −8.24244 −0.971381
\(73\) 1.78245 0.208620 0.104310 0.994545i \(-0.466737\pi\)
0.104310 + 0.994545i \(0.466737\pi\)
\(74\) −21.8120 −2.53559
\(75\) 0 0
\(76\) 30.6900 3.52038
\(77\) 0.0291394 0.00332075
\(78\) 12.5071 1.41616
\(79\) 0.233544 0.0262757 0.0131379 0.999914i \(-0.495818\pi\)
0.0131379 + 0.999914i \(0.495818\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −22.2865 −2.46114
\(83\) 6.15497 0.675596 0.337798 0.941219i \(-0.390318\pi\)
0.337798 + 0.941219i \(0.390318\pi\)
\(84\) −0.0868190 −0.00947273
\(85\) 0 0
\(86\) 9.92334 1.07006
\(87\) 1.00000 0.107211
\(88\) −14.0937 −1.50240
\(89\) −12.4053 −1.31496 −0.657478 0.753474i \(-0.728377\pi\)
−0.657478 + 0.753474i \(0.728377\pi\)
\(90\) 0 0
\(91\) 0.0800217 0.00838855
\(92\) −24.5957 −2.56427
\(93\) −1.33709 −0.138650
\(94\) −14.2986 −1.47479
\(95\) 0 0
\(96\) 14.8522 1.51585
\(97\) 19.2918 1.95879 0.979395 0.201954i \(-0.0647293\pi\)
0.979395 + 0.201954i \(0.0647293\pi\)
\(98\) 18.6441 1.88334
\(99\) 1.70990 0.171851
\(100\) 0 0
\(101\) −8.74987 −0.870644 −0.435322 0.900275i \(-0.643366\pi\)
−0.435322 + 0.900275i \(0.643366\pi\)
\(102\) 10.4277 1.03249
\(103\) −10.9615 −1.08007 −0.540036 0.841642i \(-0.681589\pi\)
−0.540036 + 0.841642i \(0.681589\pi\)
\(104\) −38.7037 −3.79521
\(105\) 0 0
\(106\) −19.2212 −1.86693
\(107\) −15.8139 −1.52879 −0.764393 0.644750i \(-0.776961\pi\)
−0.764393 + 0.644750i \(0.776961\pi\)
\(108\) −5.09453 −0.490221
\(109\) −20.2768 −1.94216 −0.971082 0.238747i \(-0.923263\pi\)
−0.971082 + 0.238747i \(0.923263\pi\)
\(110\) 0 0
\(111\) −8.18905 −0.777270
\(112\) 0.200497 0.0189452
\(113\) −8.86901 −0.834326 −0.417163 0.908832i \(-0.636976\pi\)
−0.417163 + 0.908832i \(0.636976\pi\)
\(114\) 16.0455 1.50280
\(115\) 0 0
\(116\) −5.09453 −0.473015
\(117\) 4.69566 0.434114
\(118\) 23.0510 2.12202
\(119\) 0.0667170 0.00611594
\(120\) 0 0
\(121\) −8.07625 −0.734205
\(122\) −15.2525 −1.38090
\(123\) −8.36721 −0.754446
\(124\) 6.81183 0.611721
\(125\) 0 0
\(126\) −0.0453913 −0.00404378
\(127\) 4.88854 0.433788 0.216894 0.976195i \(-0.430407\pi\)
0.216894 + 0.976195i \(0.430407\pi\)
\(128\) −12.9909 −1.14824
\(129\) 3.72560 0.328021
\(130\) 0 0
\(131\) 14.0971 1.23167 0.615833 0.787876i \(-0.288819\pi\)
0.615833 + 0.787876i \(0.288819\pi\)
\(132\) −8.71111 −0.758205
\(133\) 0.102661 0.00890180
\(134\) 10.3209 0.891591
\(135\) 0 0
\(136\) −32.2687 −2.76702
\(137\) −3.57023 −0.305025 −0.152513 0.988302i \(-0.548736\pi\)
−0.152513 + 0.988302i \(0.548736\pi\)
\(138\) −12.8593 −1.09465
\(139\) 11.7235 0.994371 0.497185 0.867644i \(-0.334367\pi\)
0.497185 + 0.867644i \(0.334367\pi\)
\(140\) 0 0
\(141\) −5.36826 −0.452089
\(142\) 11.5330 0.967825
\(143\) 8.02909 0.671426
\(144\) 11.7651 0.980429
\(145\) 0 0
\(146\) −4.74766 −0.392919
\(147\) 6.99971 0.577326
\(148\) 41.7193 3.42931
\(149\) −0.672890 −0.0551253 −0.0275626 0.999620i \(-0.508775\pi\)
−0.0275626 + 0.999620i \(0.508775\pi\)
\(150\) 0 0
\(151\) 24.2619 1.97441 0.987203 0.159468i \(-0.0509779\pi\)
0.987203 + 0.159468i \(0.0509779\pi\)
\(152\) −49.6533 −4.02742
\(153\) 3.91494 0.316504
\(154\) −0.0776145 −0.00625435
\(155\) 0 0
\(156\) −23.9222 −1.91531
\(157\) 14.0158 1.11859 0.559293 0.828970i \(-0.311073\pi\)
0.559293 + 0.828970i \(0.311073\pi\)
\(158\) −0.622057 −0.0494882
\(159\) −7.21637 −0.572296
\(160\) 0 0
\(161\) −0.0822746 −0.00648415
\(162\) −2.66356 −0.209269
\(163\) −9.77061 −0.765293 −0.382646 0.923895i \(-0.624987\pi\)
−0.382646 + 0.923895i \(0.624987\pi\)
\(164\) 42.6270 3.32861
\(165\) 0 0
\(166\) −16.3941 −1.27243
\(167\) −5.91586 −0.457783 −0.228891 0.973452i \(-0.573510\pi\)
−0.228891 + 0.973452i \(0.573510\pi\)
\(168\) 0.140465 0.0108371
\(169\) 9.04921 0.696093
\(170\) 0 0
\(171\) 6.02411 0.460675
\(172\) −18.9802 −1.44722
\(173\) 20.1704 1.53353 0.766763 0.641930i \(-0.221866\pi\)
0.766763 + 0.641930i \(0.221866\pi\)
\(174\) −2.66356 −0.201924
\(175\) 0 0
\(176\) 20.1172 1.51639
\(177\) 8.65422 0.650491
\(178\) 33.0421 2.47661
\(179\) 15.4896 1.15775 0.578873 0.815418i \(-0.303493\pi\)
0.578873 + 0.815418i \(0.303493\pi\)
\(180\) 0 0
\(181\) 17.2509 1.28225 0.641126 0.767436i \(-0.278468\pi\)
0.641126 + 0.767436i \(0.278468\pi\)
\(182\) −0.213142 −0.0157991
\(183\) −5.72637 −0.423306
\(184\) 39.7933 2.93360
\(185\) 0 0
\(186\) 3.56141 0.261135
\(187\) 6.69415 0.489525
\(188\) 27.3487 1.99461
\(189\) −0.0170416 −0.00123960
\(190\) 0 0
\(191\) 11.5130 0.833048 0.416524 0.909125i \(-0.363248\pi\)
0.416524 + 0.909125i \(0.363248\pi\)
\(192\) −16.0294 −1.15683
\(193\) −13.0261 −0.937642 −0.468821 0.883293i \(-0.655321\pi\)
−0.468821 + 0.883293i \(0.655321\pi\)
\(194\) −51.3849 −3.68922
\(195\) 0 0
\(196\) −35.6602 −2.54716
\(197\) −14.3280 −1.02083 −0.510415 0.859928i \(-0.670508\pi\)
−0.510415 + 0.859928i \(0.670508\pi\)
\(198\) −4.55440 −0.323667
\(199\) −16.2728 −1.15355 −0.576775 0.816903i \(-0.695689\pi\)
−0.576775 + 0.816903i \(0.695689\pi\)
\(200\) 0 0
\(201\) 3.87486 0.273312
\(202\) 23.3058 1.63979
\(203\) −0.0170416 −0.00119609
\(204\) −19.9448 −1.39641
\(205\) 0 0
\(206\) 29.1966 2.03423
\(207\) −4.82786 −0.335559
\(208\) 55.2451 3.83056
\(209\) 10.3006 0.712507
\(210\) 0 0
\(211\) −24.3854 −1.67876 −0.839380 0.543544i \(-0.817082\pi\)
−0.839380 + 0.543544i \(0.817082\pi\)
\(212\) 36.7640 2.52496
\(213\) 4.32991 0.296681
\(214\) 42.1212 2.87934
\(215\) 0 0
\(216\) 8.24244 0.560827
\(217\) 0.0227862 0.00154683
\(218\) 54.0083 3.65791
\(219\) −1.78245 −0.120447
\(220\) 0 0
\(221\) 18.3832 1.23659
\(222\) 21.8120 1.46393
\(223\) −0.753555 −0.0504617 −0.0252309 0.999682i \(-0.508032\pi\)
−0.0252309 + 0.999682i \(0.508032\pi\)
\(224\) −0.253106 −0.0169114
\(225\) 0 0
\(226\) 23.6231 1.57138
\(227\) 21.1711 1.40518 0.702589 0.711596i \(-0.252027\pi\)
0.702589 + 0.711596i \(0.252027\pi\)
\(228\) −30.6900 −2.03249
\(229\) −7.97533 −0.527025 −0.263512 0.964656i \(-0.584881\pi\)
−0.263512 + 0.964656i \(0.584881\pi\)
\(230\) 0 0
\(231\) −0.0291394 −0.00191723
\(232\) 8.24244 0.541143
\(233\) −14.0847 −0.922718 −0.461359 0.887214i \(-0.652638\pi\)
−0.461359 + 0.887214i \(0.652638\pi\)
\(234\) −12.5071 −0.817618
\(235\) 0 0
\(236\) −44.0892 −2.86996
\(237\) −0.233544 −0.0151703
\(238\) −0.177705 −0.0115189
\(239\) 15.4813 1.00140 0.500701 0.865620i \(-0.333076\pi\)
0.500701 + 0.865620i \(0.333076\pi\)
\(240\) 0 0
\(241\) 12.1294 0.781324 0.390662 0.920534i \(-0.372246\pi\)
0.390662 + 0.920534i \(0.372246\pi\)
\(242\) 21.5115 1.38281
\(243\) −1.00000 −0.0641500
\(244\) 29.1732 1.86762
\(245\) 0 0
\(246\) 22.2865 1.42094
\(247\) 28.2871 1.79987
\(248\) −11.0209 −0.699826
\(249\) −6.15497 −0.390055
\(250\) 0 0
\(251\) 14.1090 0.890550 0.445275 0.895394i \(-0.353106\pi\)
0.445275 + 0.895394i \(0.353106\pi\)
\(252\) 0.0868190 0.00546909
\(253\) −8.25514 −0.518996
\(254\) −13.0209 −0.817003
\(255\) 0 0
\(256\) 2.54296 0.158935
\(257\) 26.6644 1.66328 0.831639 0.555317i \(-0.187403\pi\)
0.831639 + 0.555317i \(0.187403\pi\)
\(258\) −9.92334 −0.617800
\(259\) 0.139555 0.00867151
\(260\) 0 0
\(261\) −1.00000 −0.0618984
\(262\) −37.5483 −2.31974
\(263\) −5.74517 −0.354263 −0.177131 0.984187i \(-0.556682\pi\)
−0.177131 + 0.984187i \(0.556682\pi\)
\(264\) 14.0937 0.867409
\(265\) 0 0
\(266\) −0.273442 −0.0167658
\(267\) 12.4053 0.759190
\(268\) −19.7406 −1.20585
\(269\) 19.3477 1.17965 0.589826 0.807530i \(-0.299196\pi\)
0.589826 + 0.807530i \(0.299196\pi\)
\(270\) 0 0
\(271\) −30.7485 −1.86784 −0.933920 0.357482i \(-0.883635\pi\)
−0.933920 + 0.357482i \(0.883635\pi\)
\(272\) 46.0599 2.79279
\(273\) −0.0800217 −0.00484313
\(274\) 9.50950 0.574490
\(275\) 0 0
\(276\) 24.5957 1.48048
\(277\) 24.0737 1.44645 0.723225 0.690613i \(-0.242659\pi\)
0.723225 + 0.690613i \(0.242659\pi\)
\(278\) −31.2261 −1.87282
\(279\) 1.33709 0.0800494
\(280\) 0 0
\(281\) 23.4067 1.39633 0.698164 0.715938i \(-0.254001\pi\)
0.698164 + 0.715938i \(0.254001\pi\)
\(282\) 14.2986 0.851472
\(283\) 20.8589 1.23993 0.619967 0.784628i \(-0.287146\pi\)
0.619967 + 0.784628i \(0.287146\pi\)
\(284\) −22.0589 −1.30895
\(285\) 0 0
\(286\) −21.3859 −1.26458
\(287\) 0.142591 0.00841688
\(288\) −14.8522 −0.875176
\(289\) −1.67321 −0.0984242
\(290\) 0 0
\(291\) −19.2918 −1.13091
\(292\) 9.08075 0.531410
\(293\) 12.0727 0.705294 0.352647 0.935756i \(-0.385282\pi\)
0.352647 + 0.935756i \(0.385282\pi\)
\(294\) −18.6441 −1.08735
\(295\) 0 0
\(296\) −67.4978 −3.92323
\(297\) −1.70990 −0.0992183
\(298\) 1.79228 0.103824
\(299\) −22.6700 −1.31104
\(300\) 0 0
\(301\) −0.0634903 −0.00365952
\(302\) −64.6229 −3.71863
\(303\) 8.74987 0.502667
\(304\) 70.8745 4.06493
\(305\) 0 0
\(306\) −10.4277 −0.596110
\(307\) −20.4035 −1.16449 −0.582245 0.813013i \(-0.697826\pi\)
−0.582245 + 0.813013i \(0.697826\pi\)
\(308\) 0.148452 0.00845881
\(309\) 10.9615 0.623579
\(310\) 0 0
\(311\) −12.4159 −0.704040 −0.352020 0.935993i \(-0.614505\pi\)
−0.352020 + 0.935993i \(0.614505\pi\)
\(312\) 38.7037 2.19116
\(313\) −14.8518 −0.839473 −0.419737 0.907646i \(-0.637878\pi\)
−0.419737 + 0.907646i \(0.637878\pi\)
\(314\) −37.3320 −2.10677
\(315\) 0 0
\(316\) 1.18980 0.0669312
\(317\) 21.8783 1.22881 0.614404 0.788992i \(-0.289397\pi\)
0.614404 + 0.788992i \(0.289397\pi\)
\(318\) 19.2212 1.07787
\(319\) −1.70990 −0.0957358
\(320\) 0 0
\(321\) 15.8139 0.882645
\(322\) 0.219143 0.0122124
\(323\) 23.5840 1.31225
\(324\) 5.09453 0.283029
\(325\) 0 0
\(326\) 26.0245 1.44137
\(327\) 20.2768 1.12131
\(328\) −68.9662 −3.80802
\(329\) 0.0914839 0.00504367
\(330\) 0 0
\(331\) 28.6380 1.57409 0.787043 0.616898i \(-0.211611\pi\)
0.787043 + 0.616898i \(0.211611\pi\)
\(332\) 31.3567 1.72092
\(333\) 8.18905 0.448757
\(334\) 15.7572 0.862196
\(335\) 0 0
\(336\) −0.200497 −0.0109380
\(337\) −6.75074 −0.367736 −0.183868 0.982951i \(-0.558862\pi\)
−0.183868 + 0.982951i \(0.558862\pi\)
\(338\) −24.1031 −1.31103
\(339\) 8.86901 0.481698
\(340\) 0 0
\(341\) 2.28628 0.123809
\(342\) −16.0455 −0.867643
\(343\) −0.238578 −0.0128820
\(344\) 30.7081 1.65567
\(345\) 0 0
\(346\) −53.7249 −2.88827
\(347\) 1.87591 0.100704 0.0503520 0.998732i \(-0.483966\pi\)
0.0503520 + 0.998732i \(0.483966\pi\)
\(348\) 5.09453 0.273095
\(349\) 24.6359 1.31873 0.659364 0.751824i \(-0.270826\pi\)
0.659364 + 0.751824i \(0.270826\pi\)
\(350\) 0 0
\(351\) −4.69566 −0.250636
\(352\) −25.3958 −1.35360
\(353\) 13.3468 0.710379 0.355189 0.934794i \(-0.384416\pi\)
0.355189 + 0.934794i \(0.384416\pi\)
\(354\) −23.0510 −1.22515
\(355\) 0 0
\(356\) −63.1989 −3.34954
\(357\) −0.0667170 −0.00353104
\(358\) −41.2574 −2.18052
\(359\) 21.5263 1.13611 0.568057 0.822990i \(-0.307695\pi\)
0.568057 + 0.822990i \(0.307695\pi\)
\(360\) 0 0
\(361\) 17.2898 0.909992
\(362\) −45.9488 −2.41502
\(363\) 8.07625 0.423893
\(364\) 0.407673 0.0213678
\(365\) 0 0
\(366\) 15.2525 0.797262
\(367\) −9.36534 −0.488867 −0.244433 0.969666i \(-0.578602\pi\)
−0.244433 + 0.969666i \(0.578602\pi\)
\(368\) −56.8005 −2.96093
\(369\) 8.36721 0.435580
\(370\) 0 0
\(371\) 0.122979 0.00638474
\(372\) −6.81183 −0.353177
\(373\) −19.3366 −1.00121 −0.500605 0.865676i \(-0.666889\pi\)
−0.500605 + 0.865676i \(0.666889\pi\)
\(374\) −17.8302 −0.921980
\(375\) 0 0
\(376\) −44.2475 −2.28189
\(377\) −4.69566 −0.241839
\(378\) 0.0453913 0.00233468
\(379\) −12.4163 −0.637783 −0.318891 0.947791i \(-0.603311\pi\)
−0.318891 + 0.947791i \(0.603311\pi\)
\(380\) 0 0
\(381\) −4.88854 −0.250447
\(382\) −30.6654 −1.56898
\(383\) −24.5909 −1.25653 −0.628267 0.777998i \(-0.716236\pi\)
−0.628267 + 0.777998i \(0.716236\pi\)
\(384\) 12.9909 0.662937
\(385\) 0 0
\(386\) 34.6958 1.76597
\(387\) −3.72560 −0.189383
\(388\) 98.2828 4.98955
\(389\) 17.1567 0.869880 0.434940 0.900460i \(-0.356770\pi\)
0.434940 + 0.900460i \(0.356770\pi\)
\(390\) 0 0
\(391\) −18.9008 −0.955854
\(392\) 57.6947 2.91402
\(393\) −14.0971 −0.711103
\(394\) 38.1635 1.92265
\(395\) 0 0
\(396\) 8.71111 0.437750
\(397\) −2.90545 −0.145820 −0.0729102 0.997339i \(-0.523229\pi\)
−0.0729102 + 0.997339i \(0.523229\pi\)
\(398\) 43.3436 2.17262
\(399\) −0.102661 −0.00513946
\(400\) 0 0
\(401\) 20.4427 1.02086 0.510431 0.859919i \(-0.329486\pi\)
0.510431 + 0.859919i \(0.329486\pi\)
\(402\) −10.3209 −0.514760
\(403\) 6.27851 0.312755
\(404\) −44.5764 −2.21776
\(405\) 0 0
\(406\) 0.0453913 0.00225273
\(407\) 14.0024 0.694075
\(408\) 32.2687 1.59754
\(409\) −3.13657 −0.155093 −0.0775467 0.996989i \(-0.524709\pi\)
−0.0775467 + 0.996989i \(0.524709\pi\)
\(410\) 0 0
\(411\) 3.57023 0.176106
\(412\) −55.8438 −2.75123
\(413\) −0.147482 −0.00725712
\(414\) 12.8593 0.631999
\(415\) 0 0
\(416\) −69.7410 −3.41933
\(417\) −11.7235 −0.574100
\(418\) −27.4362 −1.34195
\(419\) 36.6119 1.78861 0.894305 0.447458i \(-0.147670\pi\)
0.894305 + 0.447458i \(0.147670\pi\)
\(420\) 0 0
\(421\) −13.8706 −0.676012 −0.338006 0.941144i \(-0.609752\pi\)
−0.338006 + 0.941144i \(0.609752\pi\)
\(422\) 64.9519 3.16181
\(423\) 5.36826 0.261014
\(424\) −59.4805 −2.88863
\(425\) 0 0
\(426\) −11.5330 −0.558774
\(427\) 0.0975868 0.00472256
\(428\) −80.5643 −3.89422
\(429\) −8.02909 −0.387648
\(430\) 0 0
\(431\) −29.6786 −1.42957 −0.714785 0.699344i \(-0.753475\pi\)
−0.714785 + 0.699344i \(0.753475\pi\)
\(432\) −11.7651 −0.566051
\(433\) 32.1319 1.54416 0.772081 0.635525i \(-0.219216\pi\)
0.772081 + 0.635525i \(0.219216\pi\)
\(434\) −0.0606922 −0.00291332
\(435\) 0 0
\(436\) −103.301 −4.94720
\(437\) −29.0835 −1.39125
\(438\) 4.74766 0.226852
\(439\) 34.9322 1.66722 0.833611 0.552352i \(-0.186269\pi\)
0.833611 + 0.552352i \(0.186269\pi\)
\(440\) 0 0
\(441\) −6.99971 −0.333320
\(442\) −48.9648 −2.32902
\(443\) −30.7938 −1.46306 −0.731528 0.681812i \(-0.761192\pi\)
−0.731528 + 0.681812i \(0.761192\pi\)
\(444\) −41.7193 −1.97991
\(445\) 0 0
\(446\) 2.00713 0.0950406
\(447\) 0.672890 0.0318266
\(448\) 0.273168 0.0129060
\(449\) 26.6304 1.25677 0.628383 0.777904i \(-0.283717\pi\)
0.628383 + 0.777904i \(0.283717\pi\)
\(450\) 0 0
\(451\) 14.3071 0.673693
\(452\) −45.1834 −2.12525
\(453\) −24.2619 −1.13992
\(454\) −56.3905 −2.64654
\(455\) 0 0
\(456\) 49.6533 2.32523
\(457\) −9.03169 −0.422485 −0.211242 0.977434i \(-0.567751\pi\)
−0.211242 + 0.977434i \(0.567751\pi\)
\(458\) 21.2427 0.992608
\(459\) −3.91494 −0.182734
\(460\) 0 0
\(461\) −17.6240 −0.820832 −0.410416 0.911898i \(-0.634616\pi\)
−0.410416 + 0.911898i \(0.634616\pi\)
\(462\) 0.0776145 0.00361095
\(463\) 11.1431 0.517865 0.258933 0.965895i \(-0.416629\pi\)
0.258933 + 0.965895i \(0.416629\pi\)
\(464\) −11.7651 −0.546183
\(465\) 0 0
\(466\) 37.5153 1.73786
\(467\) 19.8932 0.920548 0.460274 0.887777i \(-0.347751\pi\)
0.460274 + 0.887777i \(0.347751\pi\)
\(468\) 23.9222 1.10580
\(469\) −0.0660340 −0.00304917
\(470\) 0 0
\(471\) −14.0158 −0.645816
\(472\) 71.3319 3.28332
\(473\) −6.37039 −0.292911
\(474\) 0.622057 0.0285720
\(475\) 0 0
\(476\) 0.339892 0.0155789
\(477\) 7.21637 0.330415
\(478\) −41.2353 −1.88606
\(479\) −21.6917 −0.991118 −0.495559 0.868574i \(-0.665037\pi\)
−0.495559 + 0.868574i \(0.665037\pi\)
\(480\) 0 0
\(481\) 38.4530 1.75331
\(482\) −32.3073 −1.47156
\(483\) 0.0822746 0.00374362
\(484\) −41.1447 −1.87021
\(485\) 0 0
\(486\) 2.66356 0.120821
\(487\) −11.1364 −0.504639 −0.252320 0.967644i \(-0.581193\pi\)
−0.252320 + 0.967644i \(0.581193\pi\)
\(488\) −47.1993 −2.13661
\(489\) 9.77061 0.441842
\(490\) 0 0
\(491\) 27.7172 1.25086 0.625431 0.780280i \(-0.284923\pi\)
0.625431 + 0.780280i \(0.284923\pi\)
\(492\) −42.6270 −1.92177
\(493\) −3.91494 −0.176320
\(494\) −75.3444 −3.38990
\(495\) 0 0
\(496\) 15.7310 0.706344
\(497\) −0.0737888 −0.00330988
\(498\) 16.3941 0.734637
\(499\) −29.8657 −1.33697 −0.668485 0.743725i \(-0.733057\pi\)
−0.668485 + 0.743725i \(0.733057\pi\)
\(500\) 0 0
\(501\) 5.91586 0.264301
\(502\) −37.5800 −1.67728
\(503\) −28.6721 −1.27843 −0.639213 0.769030i \(-0.720740\pi\)
−0.639213 + 0.769030i \(0.720740\pi\)
\(504\) −0.140465 −0.00625679
\(505\) 0 0
\(506\) 21.9880 0.977487
\(507\) −9.04921 −0.401889
\(508\) 24.9048 1.10497
\(509\) −22.7354 −1.00773 −0.503864 0.863783i \(-0.668089\pi\)
−0.503864 + 0.863783i \(0.668089\pi\)
\(510\) 0 0
\(511\) 0.0303759 0.00134375
\(512\) 19.2084 0.848899
\(513\) −6.02411 −0.265971
\(514\) −71.0220 −3.13265
\(515\) 0 0
\(516\) 18.9802 0.835556
\(517\) 9.17916 0.403699
\(518\) −0.371712 −0.0163321
\(519\) −20.1704 −0.885382
\(520\) 0 0
\(521\) 15.8392 0.693926 0.346963 0.937879i \(-0.387213\pi\)
0.346963 + 0.937879i \(0.387213\pi\)
\(522\) 2.66356 0.116581
\(523\) −28.1248 −1.22981 −0.614905 0.788601i \(-0.710806\pi\)
−0.614905 + 0.788601i \(0.710806\pi\)
\(524\) 71.8179 3.13738
\(525\) 0 0
\(526\) 15.3026 0.667224
\(527\) 5.23463 0.228024
\(528\) −20.1172 −0.875488
\(529\) 0.308221 0.0134009
\(530\) 0 0
\(531\) −8.65422 −0.375561
\(532\) 0.523007 0.0226752
\(533\) 39.2896 1.70182
\(534\) −33.0421 −1.42987
\(535\) 0 0
\(536\) 31.9383 1.37953
\(537\) −15.4896 −0.668425
\(538\) −51.5338 −2.22178
\(539\) −11.9688 −0.515532
\(540\) 0 0
\(541\) −23.9993 −1.03181 −0.515906 0.856645i \(-0.672545\pi\)
−0.515906 + 0.856645i \(0.672545\pi\)
\(542\) 81.9004 3.51792
\(543\) −17.2509 −0.740309
\(544\) −58.1457 −2.49297
\(545\) 0 0
\(546\) 0.213142 0.00912164
\(547\) 24.1285 1.03166 0.515831 0.856691i \(-0.327483\pi\)
0.515831 + 0.856691i \(0.327483\pi\)
\(548\) −18.1886 −0.776980
\(549\) 5.72637 0.244396
\(550\) 0 0
\(551\) −6.02411 −0.256636
\(552\) −39.7933 −1.69372
\(553\) 0.00397997 0.000169245 0
\(554\) −64.1217 −2.72427
\(555\) 0 0
\(556\) 59.7255 2.53292
\(557\) −29.8474 −1.26467 −0.632337 0.774693i \(-0.717904\pi\)
−0.632337 + 0.774693i \(0.717904\pi\)
\(558\) −3.56141 −0.150766
\(559\) −17.4942 −0.739924
\(560\) 0 0
\(561\) −6.69415 −0.282627
\(562\) −62.3451 −2.62987
\(563\) −9.29980 −0.391940 −0.195970 0.980610i \(-0.562786\pi\)
−0.195970 + 0.980610i \(0.562786\pi\)
\(564\) −27.3487 −1.15159
\(565\) 0 0
\(566\) −55.5589 −2.33531
\(567\) 0.0170416 0.000715681 0
\(568\) 35.6891 1.49748
\(569\) −10.7468 −0.450529 −0.225264 0.974298i \(-0.572325\pi\)
−0.225264 + 0.974298i \(0.572325\pi\)
\(570\) 0 0
\(571\) −22.3620 −0.935822 −0.467911 0.883776i \(-0.654993\pi\)
−0.467911 + 0.883776i \(0.654993\pi\)
\(572\) 40.9044 1.71030
\(573\) −11.5130 −0.480961
\(574\) −0.379799 −0.0158525
\(575\) 0 0
\(576\) 16.0294 0.667894
\(577\) 29.7336 1.23783 0.618913 0.785459i \(-0.287573\pi\)
0.618913 + 0.785459i \(0.287573\pi\)
\(578\) 4.45669 0.185374
\(579\) 13.0261 0.541348
\(580\) 0 0
\(581\) 0.104891 0.00435160
\(582\) 51.3849 2.12997
\(583\) 12.3392 0.511039
\(584\) −14.6918 −0.607949
\(585\) 0 0
\(586\) −32.1563 −1.32836
\(587\) −25.9770 −1.07219 −0.536093 0.844159i \(-0.680101\pi\)
−0.536093 + 0.844159i \(0.680101\pi\)
\(588\) 35.6602 1.47060
\(589\) 8.05476 0.331891
\(590\) 0 0
\(591\) 14.3280 0.589377
\(592\) 96.3454 3.95977
\(593\) 30.1217 1.23695 0.618476 0.785804i \(-0.287750\pi\)
0.618476 + 0.785804i \(0.287750\pi\)
\(594\) 4.55440 0.186869
\(595\) 0 0
\(596\) −3.42805 −0.140419
\(597\) 16.2728 0.666002
\(598\) 60.3827 2.46923
\(599\) −27.4666 −1.12226 −0.561128 0.827729i \(-0.689632\pi\)
−0.561128 + 0.827729i \(0.689632\pi\)
\(600\) 0 0
\(601\) −6.66716 −0.271959 −0.135980 0.990712i \(-0.543418\pi\)
−0.135980 + 0.990712i \(0.543418\pi\)
\(602\) 0.169110 0.00689241
\(603\) −3.87486 −0.157797
\(604\) 123.603 5.02933
\(605\) 0 0
\(606\) −23.3058 −0.946732
\(607\) 15.4510 0.627138 0.313569 0.949565i \(-0.398475\pi\)
0.313569 + 0.949565i \(0.398475\pi\)
\(608\) −89.4714 −3.62854
\(609\) 0.0170416 0.000690562 0
\(610\) 0 0
\(611\) 25.2075 1.01979
\(612\) 19.9448 0.806220
\(613\) −23.4474 −0.947031 −0.473516 0.880785i \(-0.657015\pi\)
−0.473516 + 0.880785i \(0.657015\pi\)
\(614\) 54.3459 2.19322
\(615\) 0 0
\(616\) −0.240180 −0.00967713
\(617\) −36.8162 −1.48216 −0.741082 0.671415i \(-0.765687\pi\)
−0.741082 + 0.671415i \(0.765687\pi\)
\(618\) −29.1966 −1.17446
\(619\) 24.5202 0.985551 0.492776 0.870156i \(-0.335982\pi\)
0.492776 + 0.870156i \(0.335982\pi\)
\(620\) 0 0
\(621\) 4.82786 0.193735
\(622\) 33.0704 1.32600
\(623\) −0.211406 −0.00846980
\(624\) −55.2451 −2.21157
\(625\) 0 0
\(626\) 39.5586 1.58108
\(627\) −10.3006 −0.411366
\(628\) 71.4041 2.84933
\(629\) 32.0597 1.27830
\(630\) 0 0
\(631\) 11.1275 0.442978 0.221489 0.975163i \(-0.428908\pi\)
0.221489 + 0.975163i \(0.428908\pi\)
\(632\) −1.92497 −0.0765712
\(633\) 24.3854 0.969233
\(634\) −58.2740 −2.31436
\(635\) 0 0
\(636\) −36.7640 −1.45779
\(637\) −32.8682 −1.30229
\(638\) 4.55440 0.180311
\(639\) −4.32991 −0.171289
\(640\) 0 0
\(641\) 26.2776 1.03790 0.518951 0.854804i \(-0.326323\pi\)
0.518951 + 0.854804i \(0.326323\pi\)
\(642\) −42.1212 −1.66239
\(643\) 6.11885 0.241304 0.120652 0.992695i \(-0.461502\pi\)
0.120652 + 0.992695i \(0.461502\pi\)
\(644\) −0.419150 −0.0165168
\(645\) 0 0
\(646\) −62.8174 −2.47152
\(647\) −26.3758 −1.03694 −0.518470 0.855096i \(-0.673498\pi\)
−0.518470 + 0.855096i \(0.673498\pi\)
\(648\) −8.24244 −0.323794
\(649\) −14.7978 −0.580865
\(650\) 0 0
\(651\) −0.0227862 −0.000893060 0
\(652\) −49.7766 −1.94940
\(653\) 47.9227 1.87536 0.937679 0.347502i \(-0.112970\pi\)
0.937679 + 0.347502i \(0.112970\pi\)
\(654\) −54.0083 −2.11189
\(655\) 0 0
\(656\) 98.4415 3.84349
\(657\) 1.78245 0.0695401
\(658\) −0.243672 −0.00949934
\(659\) 33.0636 1.28798 0.643988 0.765036i \(-0.277279\pi\)
0.643988 + 0.765036i \(0.277279\pi\)
\(660\) 0 0
\(661\) 20.6186 0.801970 0.400985 0.916085i \(-0.368668\pi\)
0.400985 + 0.916085i \(0.368668\pi\)
\(662\) −76.2789 −2.96466
\(663\) −18.3832 −0.713946
\(664\) −50.7320 −1.96878
\(665\) 0 0
\(666\) −21.8120 −0.845198
\(667\) 4.82786 0.186935
\(668\) −30.1385 −1.16609
\(669\) 0.753555 0.0291341
\(670\) 0 0
\(671\) 9.79151 0.377997
\(672\) 0.253106 0.00976379
\(673\) −28.1489 −1.08506 −0.542529 0.840037i \(-0.682533\pi\)
−0.542529 + 0.840037i \(0.682533\pi\)
\(674\) 17.9810 0.692601
\(675\) 0 0
\(676\) 46.1014 1.77313
\(677\) −4.01689 −0.154382 −0.0771908 0.997016i \(-0.524595\pi\)
−0.0771908 + 0.997016i \(0.524595\pi\)
\(678\) −23.6231 −0.907239
\(679\) 0.328764 0.0126168
\(680\) 0 0
\(681\) −21.1711 −0.811279
\(682\) −6.08964 −0.233184
\(683\) 2.61163 0.0999312 0.0499656 0.998751i \(-0.484089\pi\)
0.0499656 + 0.998751i \(0.484089\pi\)
\(684\) 30.6900 1.17346
\(685\) 0 0
\(686\) 0.635465 0.0242622
\(687\) 7.97533 0.304278
\(688\) −43.8322 −1.67109
\(689\) 33.8856 1.29094
\(690\) 0 0
\(691\) −19.9707 −0.759723 −0.379861 0.925043i \(-0.624028\pi\)
−0.379861 + 0.925043i \(0.624028\pi\)
\(692\) 102.759 3.90629
\(693\) 0.0291394 0.00110692
\(694\) −4.99658 −0.189668
\(695\) 0 0
\(696\) −8.24244 −0.312429
\(697\) 32.7572 1.24077
\(698\) −65.6190 −2.48372
\(699\) 14.0847 0.532731
\(700\) 0 0
\(701\) 17.4402 0.658709 0.329355 0.944206i \(-0.393169\pi\)
0.329355 + 0.944206i \(0.393169\pi\)
\(702\) 12.5071 0.472052
\(703\) 49.3317 1.86058
\(704\) 27.4087 1.03300
\(705\) 0 0
\(706\) −35.5500 −1.33794
\(707\) −0.149112 −0.00560793
\(708\) 44.0892 1.65697
\(709\) −27.8452 −1.04575 −0.522874 0.852410i \(-0.675140\pi\)
−0.522874 + 0.852410i \(0.675140\pi\)
\(710\) 0 0
\(711\) 0.233544 0.00875858
\(712\) 102.250 3.83197
\(713\) −6.45527 −0.241752
\(714\) 0.177705 0.00665042
\(715\) 0 0
\(716\) 78.9121 2.94908
\(717\) −15.4813 −0.578160
\(718\) −57.3364 −2.13978
\(719\) −23.3574 −0.871085 −0.435542 0.900168i \(-0.643443\pi\)
−0.435542 + 0.900168i \(0.643443\pi\)
\(720\) 0 0
\(721\) −0.186802 −0.00695688
\(722\) −46.0525 −1.71389
\(723\) −12.1294 −0.451097
\(724\) 87.8854 3.26623
\(725\) 0 0
\(726\) −21.5115 −0.798368
\(727\) 22.8360 0.846939 0.423470 0.905910i \(-0.360812\pi\)
0.423470 + 0.905910i \(0.360812\pi\)
\(728\) −0.659574 −0.0244454
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −14.5855 −0.539465
\(732\) −29.1732 −1.07827
\(733\) 1.44837 0.0534967 0.0267484 0.999642i \(-0.491485\pi\)
0.0267484 + 0.999642i \(0.491485\pi\)
\(734\) 24.9451 0.920741
\(735\) 0 0
\(736\) 71.7045 2.64306
\(737\) −6.62561 −0.244058
\(738\) −22.2865 −0.820378
\(739\) −21.4167 −0.787824 −0.393912 0.919148i \(-0.628879\pi\)
−0.393912 + 0.919148i \(0.628879\pi\)
\(740\) 0 0
\(741\) −28.2871 −1.03915
\(742\) −0.327561 −0.0120251
\(743\) 16.7848 0.615776 0.307888 0.951423i \(-0.400378\pi\)
0.307888 + 0.951423i \(0.400378\pi\)
\(744\) 11.0209 0.404045
\(745\) 0 0
\(746\) 51.5040 1.88570
\(747\) 6.15497 0.225199
\(748\) 34.1035 1.24695
\(749\) −0.269495 −0.00984712
\(750\) 0 0
\(751\) −13.1194 −0.478733 −0.239366 0.970929i \(-0.576940\pi\)
−0.239366 + 0.970929i \(0.576940\pi\)
\(752\) 63.1583 2.30315
\(753\) −14.1090 −0.514159
\(754\) 12.5071 0.455483
\(755\) 0 0
\(756\) −0.0868190 −0.00315758
\(757\) −15.3278 −0.557099 −0.278549 0.960422i \(-0.589854\pi\)
−0.278549 + 0.960422i \(0.589854\pi\)
\(758\) 33.0715 1.20121
\(759\) 8.25514 0.299643
\(760\) 0 0
\(761\) 16.7398 0.606818 0.303409 0.952860i \(-0.401875\pi\)
0.303409 + 0.952860i \(0.401875\pi\)
\(762\) 13.0209 0.471697
\(763\) −0.345549 −0.0125097
\(764\) 58.6531 2.12199
\(765\) 0 0
\(766\) 65.4991 2.36658
\(767\) −40.6373 −1.46733
\(768\) −2.54296 −0.0917611
\(769\) −19.4502 −0.701391 −0.350696 0.936489i \(-0.614055\pi\)
−0.350696 + 0.936489i \(0.614055\pi\)
\(770\) 0 0
\(771\) −26.6644 −0.960294
\(772\) −66.3620 −2.38842
\(773\) −34.5781 −1.24369 −0.621844 0.783142i \(-0.713616\pi\)
−0.621844 + 0.783142i \(0.713616\pi\)
\(774\) 9.92334 0.356687
\(775\) 0 0
\(776\) −159.012 −5.70819
\(777\) −0.139555 −0.00500650
\(778\) −45.6978 −1.63835
\(779\) 50.4050 1.80595
\(780\) 0 0
\(781\) −7.40370 −0.264925
\(782\) 50.3433 1.80027
\(783\) 1.00000 0.0357371
\(784\) −82.3526 −2.94116
\(785\) 0 0
\(786\) 37.5483 1.33930
\(787\) 39.5669 1.41041 0.705204 0.709004i \(-0.250855\pi\)
0.705204 + 0.709004i \(0.250855\pi\)
\(788\) −72.9946 −2.60033
\(789\) 5.74517 0.204534
\(790\) 0 0
\(791\) −0.151142 −0.00537400
\(792\) −14.0937 −0.500799
\(793\) 26.8891 0.954860
\(794\) 7.73883 0.274641
\(795\) 0 0
\(796\) −82.9023 −2.93839
\(797\) −32.0055 −1.13369 −0.566847 0.823823i \(-0.691837\pi\)
−0.566847 + 0.823823i \(0.691837\pi\)
\(798\) 0.273442 0.00967975
\(799\) 21.0164 0.743508
\(800\) 0 0
\(801\) −12.4053 −0.438318
\(802\) −54.4504 −1.92271
\(803\) 3.04781 0.107555
\(804\) 19.7406 0.696197
\(805\) 0 0
\(806\) −16.7232 −0.589048
\(807\) −19.3477 −0.681073
\(808\) 72.1203 2.53718
\(809\) 27.5627 0.969052 0.484526 0.874777i \(-0.338992\pi\)
0.484526 + 0.874777i \(0.338992\pi\)
\(810\) 0 0
\(811\) −25.3316 −0.889514 −0.444757 0.895651i \(-0.646710\pi\)
−0.444757 + 0.895651i \(0.646710\pi\)
\(812\) −0.0868190 −0.00304675
\(813\) 30.7485 1.07840
\(814\) −37.2963 −1.30723
\(815\) 0 0
\(816\) −46.0599 −1.61242
\(817\) −22.4434 −0.785196
\(818\) 8.35442 0.292106
\(819\) 0.0800217 0.00279618
\(820\) 0 0
\(821\) −46.4854 −1.62235 −0.811177 0.584801i \(-0.801173\pi\)
−0.811177 + 0.584801i \(0.801173\pi\)
\(822\) −9.50950 −0.331682
\(823\) 16.9991 0.592552 0.296276 0.955102i \(-0.404255\pi\)
0.296276 + 0.955102i \(0.404255\pi\)
\(824\) 90.3497 3.14748
\(825\) 0 0
\(826\) 0.392827 0.0136682
\(827\) −14.1835 −0.493208 −0.246604 0.969116i \(-0.579315\pi\)
−0.246604 + 0.969116i \(0.579315\pi\)
\(828\) −24.5957 −0.854758
\(829\) 28.9652 1.00600 0.503001 0.864286i \(-0.332229\pi\)
0.503001 + 0.864286i \(0.332229\pi\)
\(830\) 0 0
\(831\) −24.0737 −0.835108
\(832\) 75.2688 2.60948
\(833\) −27.4035 −0.949474
\(834\) 31.2261 1.08127
\(835\) 0 0
\(836\) 52.4767 1.81494
\(837\) −1.33709 −0.0462165
\(838\) −97.5179 −3.36870
\(839\) 22.6082 0.780523 0.390262 0.920704i \(-0.372385\pi\)
0.390262 + 0.920704i \(0.372385\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 36.9451 1.27321
\(843\) −23.4067 −0.806171
\(844\) −124.232 −4.27625
\(845\) 0 0
\(846\) −14.2986 −0.491598
\(847\) −0.137633 −0.00472911
\(848\) 84.9017 2.91554
\(849\) −20.8589 −0.715876
\(850\) 0 0
\(851\) −39.5356 −1.35526
\(852\) 22.0589 0.755724
\(853\) −35.6577 −1.22090 −0.610448 0.792057i \(-0.709010\pi\)
−0.610448 + 0.792057i \(0.709010\pi\)
\(854\) −0.259928 −0.00889455
\(855\) 0 0
\(856\) 130.345 4.45510
\(857\) −3.41032 −0.116494 −0.0582472 0.998302i \(-0.518551\pi\)
−0.0582472 + 0.998302i \(0.518551\pi\)
\(858\) 21.3859 0.730103
\(859\) −28.5267 −0.973318 −0.486659 0.873592i \(-0.661785\pi\)
−0.486659 + 0.873592i \(0.661785\pi\)
\(860\) 0 0
\(861\) −0.142591 −0.00485949
\(862\) 79.0507 2.69248
\(863\) −24.5873 −0.836962 −0.418481 0.908226i \(-0.637437\pi\)
−0.418481 + 0.908226i \(0.637437\pi\)
\(864\) 14.8522 0.505283
\(865\) 0 0
\(866\) −85.5851 −2.90830
\(867\) 1.67321 0.0568252
\(868\) 0.116085 0.00394017
\(869\) 0.399336 0.0135465
\(870\) 0 0
\(871\) −18.1950 −0.616515
\(872\) 167.130 5.65974
\(873\) 19.2918 0.652930
\(874\) 77.4656 2.62031
\(875\) 0 0
\(876\) −9.08075 −0.306810
\(877\) −58.0640 −1.96068 −0.980341 0.197310i \(-0.936780\pi\)
−0.980341 + 0.197310i \(0.936780\pi\)
\(878\) −93.0438 −3.14008
\(879\) −12.0727 −0.407202
\(880\) 0 0
\(881\) 52.7466 1.77708 0.888538 0.458802i \(-0.151721\pi\)
0.888538 + 0.458802i \(0.151721\pi\)
\(882\) 18.6441 0.627780
\(883\) −38.1567 −1.28408 −0.642038 0.766672i \(-0.721911\pi\)
−0.642038 + 0.766672i \(0.721911\pi\)
\(884\) 93.6539 3.14992
\(885\) 0 0
\(886\) 82.0209 2.75555
\(887\) −22.8088 −0.765845 −0.382922 0.923781i \(-0.625082\pi\)
−0.382922 + 0.923781i \(0.625082\pi\)
\(888\) 67.4978 2.26508
\(889\) 0.0833087 0.00279408
\(890\) 0 0
\(891\) 1.70990 0.0572837
\(892\) −3.83900 −0.128539
\(893\) 32.3389 1.08218
\(894\) −1.79228 −0.0599428
\(895\) 0 0
\(896\) −0.221385 −0.00739596
\(897\) 22.6700 0.756928
\(898\) −70.9316 −2.36702
\(899\) −1.33709 −0.0445944
\(900\) 0 0
\(901\) 28.2517 0.941200
\(902\) −38.1077 −1.26885
\(903\) 0.0634903 0.00211283
\(904\) 73.1023 2.43135
\(905\) 0 0
\(906\) 64.6229 2.14695
\(907\) 33.4371 1.11026 0.555131 0.831763i \(-0.312668\pi\)
0.555131 + 0.831763i \(0.312668\pi\)
\(908\) 107.857 3.57936
\(909\) −8.74987 −0.290215
\(910\) 0 0
\(911\) −18.0752 −0.598857 −0.299428 0.954119i \(-0.596796\pi\)
−0.299428 + 0.954119i \(0.596796\pi\)
\(912\) −70.8745 −2.34689
\(913\) 10.5244 0.348305
\(914\) 24.0564 0.795715
\(915\) 0 0
\(916\) −40.6305 −1.34247
\(917\) 0.240237 0.00793333
\(918\) 10.4277 0.344164
\(919\) 38.7798 1.27923 0.639614 0.768696i \(-0.279094\pi\)
0.639614 + 0.768696i \(0.279094\pi\)
\(920\) 0 0
\(921\) 20.4035 0.672319
\(922\) 46.9425 1.54597
\(923\) −20.3318 −0.669229
\(924\) −0.148452 −0.00488370
\(925\) 0 0
\(926\) −29.6804 −0.975357
\(927\) −10.9615 −0.360024
\(928\) 14.8522 0.487548
\(929\) 8.16319 0.267826 0.133913 0.990993i \(-0.457246\pi\)
0.133913 + 0.990993i \(0.457246\pi\)
\(930\) 0 0
\(931\) −42.1670 −1.38197
\(932\) −71.7547 −2.35040
\(933\) 12.4159 0.406477
\(934\) −52.9866 −1.73378
\(935\) 0 0
\(936\) −38.7037 −1.26507
\(937\) 16.7498 0.547192 0.273596 0.961845i \(-0.411787\pi\)
0.273596 + 0.961845i \(0.411787\pi\)
\(938\) 0.175885 0.00574285
\(939\) 14.8518 0.484670
\(940\) 0 0
\(941\) 1.27331 0.0415088 0.0207544 0.999785i \(-0.493393\pi\)
0.0207544 + 0.999785i \(0.493393\pi\)
\(942\) 37.3320 1.21634
\(943\) −40.3957 −1.31547
\(944\) −101.818 −3.31390
\(945\) 0 0
\(946\) 16.9679 0.551674
\(947\) −38.5681 −1.25329 −0.626647 0.779303i \(-0.715573\pi\)
−0.626647 + 0.779303i \(0.715573\pi\)
\(948\) −1.18980 −0.0386428
\(949\) 8.36978 0.271695
\(950\) 0 0
\(951\) −21.8783 −0.709452
\(952\) −0.549911 −0.0178227
\(953\) 47.2051 1.52912 0.764561 0.644551i \(-0.222956\pi\)
0.764561 + 0.644551i \(0.222956\pi\)
\(954\) −19.2212 −0.622309
\(955\) 0 0
\(956\) 78.8699 2.55084
\(957\) 1.70990 0.0552731
\(958\) 57.7770 1.86669
\(959\) −0.0608425 −0.00196471
\(960\) 0 0
\(961\) −29.2122 −0.942329
\(962\) −102.422 −3.30221
\(963\) −15.8139 −0.509596
\(964\) 61.7936 1.99024
\(965\) 0 0
\(966\) −0.219143 −0.00705081
\(967\) −14.9495 −0.480743 −0.240371 0.970681i \(-0.577269\pi\)
−0.240371 + 0.970681i \(0.577269\pi\)
\(968\) 66.5680 2.13958
\(969\) −23.5840 −0.757628
\(970\) 0 0
\(971\) 30.4517 0.977240 0.488620 0.872497i \(-0.337500\pi\)
0.488620 + 0.872497i \(0.337500\pi\)
\(972\) −5.09453 −0.163407
\(973\) 0.199787 0.00640487
\(974\) 29.6625 0.950447
\(975\) 0 0
\(976\) 67.3716 2.15651
\(977\) 0.336322 0.0107599 0.00537995 0.999986i \(-0.498287\pi\)
0.00537995 + 0.999986i \(0.498287\pi\)
\(978\) −26.0245 −0.832173
\(979\) −21.2117 −0.677929
\(980\) 0 0
\(981\) −20.2768 −0.647388
\(982\) −73.8264 −2.35590
\(983\) 1.44050 0.0459449 0.0229724 0.999736i \(-0.492687\pi\)
0.0229724 + 0.999736i \(0.492687\pi\)
\(984\) 68.9662 2.19856
\(985\) 0 0
\(986\) 10.4277 0.332085
\(987\) −0.0914839 −0.00291196
\(988\) 144.110 4.58474
\(989\) 17.9867 0.571943
\(990\) 0 0
\(991\) 40.0507 1.27225 0.636126 0.771585i \(-0.280536\pi\)
0.636126 + 0.771585i \(0.280536\pi\)
\(992\) −19.8587 −0.630516
\(993\) −28.6380 −0.908799
\(994\) 0.196541 0.00623389
\(995\) 0 0
\(996\) −31.3567 −0.993574
\(997\) 24.3419 0.770916 0.385458 0.922725i \(-0.374043\pi\)
0.385458 + 0.922725i \(0.374043\pi\)
\(998\) 79.5488 2.51807
\(999\) −8.18905 −0.259090
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.2.a.ba.1.1 7
3.2 odd 2 6525.2.a.bx.1.7 7
5.2 odd 4 2175.2.c.o.349.1 14
5.3 odd 4 2175.2.c.o.349.14 14
5.4 even 2 2175.2.a.bb.1.7 yes 7
15.14 odd 2 6525.2.a.bu.1.1 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2175.2.a.ba.1.1 7 1.1 even 1 trivial
2175.2.a.bb.1.7 yes 7 5.4 even 2
2175.2.c.o.349.1 14 5.2 odd 4
2175.2.c.o.349.14 14 5.3 odd 4
6525.2.a.bu.1.1 7 15.14 odd 2
6525.2.a.bx.1.7 7 3.2 odd 2