Properties

Label 6525.2.a.bx.1.7
Level 65256525
Weight 22
Character 6525.1
Self dual yes
Analytic conductor 52.10252.102
Analytic rank 00
Dimension 77
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6525,2,Mod(1,6525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 6525=325229 6525 = 3^{2} \cdot 5^{2} \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 6525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 52.102387318952.1023873189
Analytic rank: 00
Dimension: 77
Coefficient field: Q[x]/(x7)\mathbb{Q}[x]/(x^{7} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x72x610x5+19x4+24x344x23x+14 x^{7} - 2x^{6} - 10x^{5} + 19x^{4} + 24x^{3} - 44x^{2} - 3x + 14 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 2175)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.7
Root 2.663562.66356 of defining polynomial
Character χ\chi == 6525.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.66356q2+5.09453q4+0.0170416q7+8.24244q81.70990q11+4.69566q13+0.0453913q14+11.7651q163.91494q17+6.02411q194.55440q22+4.82786q23+12.5071q26+0.0868190q28+1.00000q29+1.33709q31+14.8522q3210.4277q34+8.18905q37+16.0455q388.36721q413.72560q438.71111q44+12.8593q465.36826q476.99971q49+23.9222q527.21637q53+0.140465q56+2.66356q58+8.65422q59+5.72637q61+3.56141q62+16.0294q643.87486q6719.9448q68+4.32991q71+1.78245q73+21.8120q74+30.6900q760.0291394q77+0.233544q7922.2865q826.15497q839.92334q8614.0937q88+12.4053q89+0.0800217q91+24.5957q9214.2986q94+19.2918q9718.6441q98+O(q100)q+2.66356 q^{2} +5.09453 q^{4} +0.0170416 q^{7} +8.24244 q^{8} -1.70990 q^{11} +4.69566 q^{13} +0.0453913 q^{14} +11.7651 q^{16} -3.91494 q^{17} +6.02411 q^{19} -4.55440 q^{22} +4.82786 q^{23} +12.5071 q^{26} +0.0868190 q^{28} +1.00000 q^{29} +1.33709 q^{31} +14.8522 q^{32} -10.4277 q^{34} +8.18905 q^{37} +16.0455 q^{38} -8.36721 q^{41} -3.72560 q^{43} -8.71111 q^{44} +12.8593 q^{46} -5.36826 q^{47} -6.99971 q^{49} +23.9222 q^{52} -7.21637 q^{53} +0.140465 q^{56} +2.66356 q^{58} +8.65422 q^{59} +5.72637 q^{61} +3.56141 q^{62} +16.0294 q^{64} -3.87486 q^{67} -19.9448 q^{68} +4.32991 q^{71} +1.78245 q^{73} +21.8120 q^{74} +30.6900 q^{76} -0.0291394 q^{77} +0.233544 q^{79} -22.2865 q^{82} -6.15497 q^{83} -9.92334 q^{86} -14.0937 q^{88} +12.4053 q^{89} +0.0800217 q^{91} +24.5957 q^{92} -14.2986 q^{94} +19.2918 q^{97} -18.6441 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 7q+2q2+10q4+q7+3q84q11+q1315q14+12q16+8q17+15q193q22+14q236q26+24q28+7q29+5q31+18q32+7q34+59q98+O(q100) 7 q + 2 q^{2} + 10 q^{4} + q^{7} + 3 q^{8} - 4 q^{11} + q^{13} - 15 q^{14} + 12 q^{16} + 8 q^{17} + 15 q^{19} - 3 q^{22} + 14 q^{23} - 6 q^{26} + 24 q^{28} + 7 q^{29} + 5 q^{31} + 18 q^{32} + 7 q^{34}+ \cdots - 59 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.66356 1.88342 0.941709 0.336429i 0.109219π-0.109219\pi
0.941709 + 0.336429i 0.109219π0.109219\pi
33 0 0
44 5.09453 2.54726
55 0 0
66 0 0
77 0.0170416 0.00644113 0.00322057 0.999995i 0.498975π-0.498975\pi
0.00322057 + 0.999995i 0.498975π0.498975\pi
88 8.24244 2.91414
99 0 0
1010 0 0
1111 −1.70990 −0.515553 −0.257777 0.966205i 0.582990π-0.582990\pi
−0.257777 + 0.966205i 0.582990π0.582990\pi
1212 0 0
1313 4.69566 1.30234 0.651171 0.758931i 0.274278π-0.274278\pi
0.651171 + 0.758931i 0.274278π0.274278\pi
1414 0.0453913 0.0121313
1515 0 0
1616 11.7651 2.94129
1717 −3.91494 −0.949513 −0.474757 0.880117i 0.657464π-0.657464\pi
−0.474757 + 0.880117i 0.657464π0.657464\pi
1818 0 0
1919 6.02411 1.38202 0.691012 0.722843i 0.257165π-0.257165\pi
0.691012 + 0.722843i 0.257165π0.257165\pi
2020 0 0
2121 0 0
2222 −4.55440 −0.971002
2323 4.82786 1.00668 0.503339 0.864089i 0.332105π-0.332105\pi
0.503339 + 0.864089i 0.332105π0.332105\pi
2424 0 0
2525 0 0
2626 12.5071 2.45285
2727 0 0
2828 0.0868190 0.0164073
2929 1.00000 0.185695
3030 0 0
3131 1.33709 0.240148 0.120074 0.992765i 0.461687π-0.461687\pi
0.120074 + 0.992765i 0.461687π0.461687\pi
3232 14.8522 2.62553
3333 0 0
3434 −10.4277 −1.78833
3535 0 0
3636 0 0
3737 8.18905 1.34627 0.673136 0.739519i 0.264947π-0.264947\pi
0.673136 + 0.739519i 0.264947π0.264947\pi
3838 16.0455 2.60293
3939 0 0
4040 0 0
4141 −8.36721 −1.30674 −0.653369 0.757039i 0.726645π-0.726645\pi
−0.653369 + 0.757039i 0.726645π0.726645\pi
4242 0 0
4343 −3.72560 −0.568149 −0.284074 0.958802i 0.591686π-0.591686\pi
−0.284074 + 0.958802i 0.591686π0.591686\pi
4444 −8.71111 −1.31325
4545 0 0
4646 12.8593 1.89600
4747 −5.36826 −0.783041 −0.391520 0.920169i 0.628051π-0.628051\pi
−0.391520 + 0.920169i 0.628051π0.628051\pi
4848 0 0
4949 −6.99971 −0.999959
5050 0 0
5151 0 0
5252 23.9222 3.31741
5353 −7.21637 −0.991245 −0.495622 0.868538i 0.665060π-0.665060\pi
−0.495622 + 0.868538i 0.665060π0.665060\pi
5454 0 0
5555 0 0
5656 0.140465 0.0187704
5757 0 0
5858 2.66356 0.349742
5959 8.65422 1.12668 0.563342 0.826224i 0.309515π-0.309515\pi
0.563342 + 0.826224i 0.309515π0.309515\pi
6060 0 0
6161 5.72637 0.733187 0.366594 0.930381i 0.380524π-0.380524\pi
0.366594 + 0.930381i 0.380524π0.380524\pi
6262 3.56141 0.452299
6363 0 0
6464 16.0294 2.00368
6565 0 0
6666 0 0
6767 −3.87486 −0.473390 −0.236695 0.971584i 0.576064π-0.576064\pi
−0.236695 + 0.971584i 0.576064π0.576064\pi
6868 −19.9448 −2.41866
6969 0 0
7070 0 0
7171 4.32991 0.513866 0.256933 0.966429i 0.417288π-0.417288\pi
0.256933 + 0.966429i 0.417288π0.417288\pi
7272 0 0
7373 1.78245 0.208620 0.104310 0.994545i 0.466737π-0.466737\pi
0.104310 + 0.994545i 0.466737π0.466737\pi
7474 21.8120 2.53559
7575 0 0
7676 30.6900 3.52038
7777 −0.0291394 −0.00332075
7878 0 0
7979 0.233544 0.0262757 0.0131379 0.999914i 0.495818π-0.495818\pi
0.0131379 + 0.999914i 0.495818π0.495818\pi
8080 0 0
8181 0 0
8282 −22.2865 −2.46114
8383 −6.15497 −0.675596 −0.337798 0.941219i 0.609682π-0.609682\pi
−0.337798 + 0.941219i 0.609682π0.609682\pi
8484 0 0
8585 0 0
8686 −9.92334 −1.07006
8787 0 0
8888 −14.0937 −1.50240
8989 12.4053 1.31496 0.657478 0.753474i 0.271623π-0.271623\pi
0.657478 + 0.753474i 0.271623π0.271623\pi
9090 0 0
9191 0.0800217 0.00838855
9292 24.5957 2.56427
9393 0 0
9494 −14.2986 −1.47479
9595 0 0
9696 0 0
9797 19.2918 1.95879 0.979395 0.201954i 0.0647293π-0.0647293\pi
0.979395 + 0.201954i 0.0647293π0.0647293\pi
9898 −18.6441 −1.88334
9999 0 0
100100 0 0
101101 8.74987 0.870644 0.435322 0.900275i 0.356634π-0.356634\pi
0.435322 + 0.900275i 0.356634π0.356634\pi
102102 0 0
103103 −10.9615 −1.08007 −0.540036 0.841642i 0.681589π-0.681589\pi
−0.540036 + 0.841642i 0.681589π0.681589\pi
104104 38.7037 3.79521
105105 0 0
106106 −19.2212 −1.86693
107107 15.8139 1.52879 0.764393 0.644750i 0.223039π-0.223039\pi
0.764393 + 0.644750i 0.223039π0.223039\pi
108108 0 0
109109 −20.2768 −1.94216 −0.971082 0.238747i 0.923263π-0.923263\pi
−0.971082 + 0.238747i 0.923263π0.923263\pi
110110 0 0
111111 0 0
112112 0.200497 0.0189452
113113 8.86901 0.834326 0.417163 0.908832i 0.363024π-0.363024\pi
0.417163 + 0.908832i 0.363024π0.363024\pi
114114 0 0
115115 0 0
116116 5.09453 0.473015
117117 0 0
118118 23.0510 2.12202
119119 −0.0667170 −0.00611594
120120 0 0
121121 −8.07625 −0.734205
122122 15.2525 1.38090
123123 0 0
124124 6.81183 0.611721
125125 0 0
126126 0 0
127127 4.88854 0.433788 0.216894 0.976195i 0.430407π-0.430407\pi
0.216894 + 0.976195i 0.430407π0.430407\pi
128128 12.9909 1.14824
129129 0 0
130130 0 0
131131 −14.0971 −1.23167 −0.615833 0.787876i 0.711181π-0.711181\pi
−0.615833 + 0.787876i 0.711181π0.711181\pi
132132 0 0
133133 0.102661 0.00890180
134134 −10.3209 −0.891591
135135 0 0
136136 −32.2687 −2.76702
137137 3.57023 0.305025 0.152513 0.988302i 0.451264π-0.451264\pi
0.152513 + 0.988302i 0.451264π0.451264\pi
138138 0 0
139139 11.7235 0.994371 0.497185 0.867644i 0.334367π-0.334367\pi
0.497185 + 0.867644i 0.334367π0.334367\pi
140140 0 0
141141 0 0
142142 11.5330 0.967825
143143 −8.02909 −0.671426
144144 0 0
145145 0 0
146146 4.74766 0.392919
147147 0 0
148148 41.7193 3.42931
149149 0.672890 0.0551253 0.0275626 0.999620i 0.491225π-0.491225\pi
0.0275626 + 0.999620i 0.491225π0.491225\pi
150150 0 0
151151 24.2619 1.97441 0.987203 0.159468i 0.0509779π-0.0509779\pi
0.987203 + 0.159468i 0.0509779π0.0509779\pi
152152 49.6533 4.02742
153153 0 0
154154 −0.0776145 −0.00625435
155155 0 0
156156 0 0
157157 14.0158 1.11859 0.559293 0.828970i 0.311073π-0.311073\pi
0.559293 + 0.828970i 0.311073π0.311073\pi
158158 0.622057 0.0494882
159159 0 0
160160 0 0
161161 0.0822746 0.00648415
162162 0 0
163163 −9.77061 −0.765293 −0.382646 0.923895i 0.624987π-0.624987\pi
−0.382646 + 0.923895i 0.624987π0.624987\pi
164164 −42.6270 −3.32861
165165 0 0
166166 −16.3941 −1.27243
167167 5.91586 0.457783 0.228891 0.973452i 0.426490π-0.426490\pi
0.228891 + 0.973452i 0.426490π0.426490\pi
168168 0 0
169169 9.04921 0.696093
170170 0 0
171171 0 0
172172 −18.9802 −1.44722
173173 −20.1704 −1.53353 −0.766763 0.641930i 0.778134π-0.778134\pi
−0.766763 + 0.641930i 0.778134π0.778134\pi
174174 0 0
175175 0 0
176176 −20.1172 −1.51639
177177 0 0
178178 33.0421 2.47661
179179 −15.4896 −1.15775 −0.578873 0.815418i 0.696507π-0.696507\pi
−0.578873 + 0.815418i 0.696507π0.696507\pi
180180 0 0
181181 17.2509 1.28225 0.641126 0.767436i 0.278468π-0.278468\pi
0.641126 + 0.767436i 0.278468π0.278468\pi
182182 0.213142 0.0157991
183183 0 0
184184 39.7933 2.93360
185185 0 0
186186 0 0
187187 6.69415 0.489525
188188 −27.3487 −1.99461
189189 0 0
190190 0 0
191191 −11.5130 −0.833048 −0.416524 0.909125i 0.636752π-0.636752\pi
−0.416524 + 0.909125i 0.636752π0.636752\pi
192192 0 0
193193 −13.0261 −0.937642 −0.468821 0.883293i 0.655321π-0.655321\pi
−0.468821 + 0.883293i 0.655321π0.655321\pi
194194 51.3849 3.68922
195195 0 0
196196 −35.6602 −2.54716
197197 14.3280 1.02083 0.510415 0.859928i 0.329492π-0.329492\pi
0.510415 + 0.859928i 0.329492π0.329492\pi
198198 0 0
199199 −16.2728 −1.15355 −0.576775 0.816903i 0.695689π-0.695689\pi
−0.576775 + 0.816903i 0.695689π0.695689\pi
200200 0 0
201201 0 0
202202 23.3058 1.63979
203203 0.0170416 0.00119609
204204 0 0
205205 0 0
206206 −29.1966 −2.03423
207207 0 0
208208 55.2451 3.83056
209209 −10.3006 −0.712507
210210 0 0
211211 −24.3854 −1.67876 −0.839380 0.543544i 0.817082π-0.817082\pi
−0.839380 + 0.543544i 0.817082π0.817082\pi
212212 −36.7640 −2.52496
213213 0 0
214214 42.1212 2.87934
215215 0 0
216216 0 0
217217 0.0227862 0.00154683
218218 −54.0083 −3.65791
219219 0 0
220220 0 0
221221 −18.3832 −1.23659
222222 0 0
223223 −0.753555 −0.0504617 −0.0252309 0.999682i 0.508032π-0.508032\pi
−0.0252309 + 0.999682i 0.508032π0.508032\pi
224224 0.253106 0.0169114
225225 0 0
226226 23.6231 1.57138
227227 −21.1711 −1.40518 −0.702589 0.711596i 0.747973π-0.747973\pi
−0.702589 + 0.711596i 0.747973π0.747973\pi
228228 0 0
229229 −7.97533 −0.527025 −0.263512 0.964656i 0.584881π-0.584881\pi
−0.263512 + 0.964656i 0.584881π0.584881\pi
230230 0 0
231231 0 0
232232 8.24244 0.541143
233233 14.0847 0.922718 0.461359 0.887214i 0.347362π-0.347362\pi
0.461359 + 0.887214i 0.347362π0.347362\pi
234234 0 0
235235 0 0
236236 44.0892 2.86996
237237 0 0
238238 −0.177705 −0.0115189
239239 −15.4813 −1.00140 −0.500701 0.865620i 0.666924π-0.666924\pi
−0.500701 + 0.865620i 0.666924π0.666924\pi
240240 0 0
241241 12.1294 0.781324 0.390662 0.920534i 0.372246π-0.372246\pi
0.390662 + 0.920534i 0.372246π0.372246\pi
242242 −21.5115 −1.38281
243243 0 0
244244 29.1732 1.86762
245245 0 0
246246 0 0
247247 28.2871 1.79987
248248 11.0209 0.699826
249249 0 0
250250 0 0
251251 −14.1090 −0.890550 −0.445275 0.895394i 0.646894π-0.646894\pi
−0.445275 + 0.895394i 0.646894π0.646894\pi
252252 0 0
253253 −8.25514 −0.518996
254254 13.0209 0.817003
255255 0 0
256256 2.54296 0.158935
257257 −26.6644 −1.66328 −0.831639 0.555317i 0.812597π-0.812597\pi
−0.831639 + 0.555317i 0.812597π0.812597\pi
258258 0 0
259259 0.139555 0.00867151
260260 0 0
261261 0 0
262262 −37.5483 −2.31974
263263 5.74517 0.354263 0.177131 0.984187i 0.443318π-0.443318\pi
0.177131 + 0.984187i 0.443318π0.443318\pi
264264 0 0
265265 0 0
266266 0.273442 0.0167658
267267 0 0
268268 −19.7406 −1.20585
269269 −19.3477 −1.17965 −0.589826 0.807530i 0.700804π-0.700804\pi
−0.589826 + 0.807530i 0.700804π0.700804\pi
270270 0 0
271271 −30.7485 −1.86784 −0.933920 0.357482i 0.883635π-0.883635\pi
−0.933920 + 0.357482i 0.883635π0.883635\pi
272272 −46.0599 −2.79279
273273 0 0
274274 9.50950 0.574490
275275 0 0
276276 0 0
277277 24.0737 1.44645 0.723225 0.690613i 0.242659π-0.242659\pi
0.723225 + 0.690613i 0.242659π0.242659\pi
278278 31.2261 1.87282
279279 0 0
280280 0 0
281281 −23.4067 −1.39633 −0.698164 0.715938i 0.745999π-0.745999\pi
−0.698164 + 0.715938i 0.745999π0.745999\pi
282282 0 0
283283 20.8589 1.23993 0.619967 0.784628i 0.287146π-0.287146\pi
0.619967 + 0.784628i 0.287146π0.287146\pi
284284 22.0589 1.30895
285285 0 0
286286 −21.3859 −1.26458
287287 −0.142591 −0.00841688
288288 0 0
289289 −1.67321 −0.0984242
290290 0 0
291291 0 0
292292 9.08075 0.531410
293293 −12.0727 −0.705294 −0.352647 0.935756i 0.614718π-0.614718\pi
−0.352647 + 0.935756i 0.614718π0.614718\pi
294294 0 0
295295 0 0
296296 67.4978 3.92323
297297 0 0
298298 1.79228 0.103824
299299 22.6700 1.31104
300300 0 0
301301 −0.0634903 −0.00365952
302302 64.6229 3.71863
303303 0 0
304304 70.8745 4.06493
305305 0 0
306306 0 0
307307 −20.4035 −1.16449 −0.582245 0.813013i 0.697826π-0.697826\pi
−0.582245 + 0.813013i 0.697826π0.697826\pi
308308 −0.148452 −0.00845881
309309 0 0
310310 0 0
311311 12.4159 0.704040 0.352020 0.935993i 0.385495π-0.385495\pi
0.352020 + 0.935993i 0.385495π0.385495\pi
312312 0 0
313313 −14.8518 −0.839473 −0.419737 0.907646i 0.637878π-0.637878\pi
−0.419737 + 0.907646i 0.637878π0.637878\pi
314314 37.3320 2.10677
315315 0 0
316316 1.18980 0.0669312
317317 −21.8783 −1.22881 −0.614404 0.788992i 0.710603π-0.710603\pi
−0.614404 + 0.788992i 0.710603π0.710603\pi
318318 0 0
319319 −1.70990 −0.0957358
320320 0 0
321321 0 0
322322 0.219143 0.0122124
323323 −23.5840 −1.31225
324324 0 0
325325 0 0
326326 −26.0245 −1.44137
327327 0 0
328328 −68.9662 −3.80802
329329 −0.0914839 −0.00504367
330330 0 0
331331 28.6380 1.57409 0.787043 0.616898i 0.211611π-0.211611\pi
0.787043 + 0.616898i 0.211611π0.211611\pi
332332 −31.3567 −1.72092
333333 0 0
334334 15.7572 0.862196
335335 0 0
336336 0 0
337337 −6.75074 −0.367736 −0.183868 0.982951i 0.558862π-0.558862\pi
−0.183868 + 0.982951i 0.558862π0.558862\pi
338338 24.1031 1.31103
339339 0 0
340340 0 0
341341 −2.28628 −0.123809
342342 0 0
343343 −0.238578 −0.0128820
344344 −30.7081 −1.65567
345345 0 0
346346 −53.7249 −2.88827
347347 −1.87591 −0.100704 −0.0503520 0.998732i 0.516034π-0.516034\pi
−0.0503520 + 0.998732i 0.516034π0.516034\pi
348348 0 0
349349 24.6359 1.31873 0.659364 0.751824i 0.270826π-0.270826\pi
0.659364 + 0.751824i 0.270826π0.270826\pi
350350 0 0
351351 0 0
352352 −25.3958 −1.35360
353353 −13.3468 −0.710379 −0.355189 0.934794i 0.615584π-0.615584\pi
−0.355189 + 0.934794i 0.615584π0.615584\pi
354354 0 0
355355 0 0
356356 63.1989 3.34954
357357 0 0
358358 −41.2574 −2.18052
359359 −21.5263 −1.13611 −0.568057 0.822990i 0.692305π-0.692305\pi
−0.568057 + 0.822990i 0.692305π0.692305\pi
360360 0 0
361361 17.2898 0.909992
362362 45.9488 2.41502
363363 0 0
364364 0.407673 0.0213678
365365 0 0
366366 0 0
367367 −9.36534 −0.488867 −0.244433 0.969666i 0.578602π-0.578602\pi
−0.244433 + 0.969666i 0.578602π0.578602\pi
368368 56.8005 2.96093
369369 0 0
370370 0 0
371371 −0.122979 −0.00638474
372372 0 0
373373 −19.3366 −1.00121 −0.500605 0.865676i 0.666889π-0.666889\pi
−0.500605 + 0.865676i 0.666889π0.666889\pi
374374 17.8302 0.921980
375375 0 0
376376 −44.2475 −2.28189
377377 4.69566 0.241839
378378 0 0
379379 −12.4163 −0.637783 −0.318891 0.947791i 0.603311π-0.603311\pi
−0.318891 + 0.947791i 0.603311π0.603311\pi
380380 0 0
381381 0 0
382382 −30.6654 −1.56898
383383 24.5909 1.25653 0.628267 0.777998i 0.283764π-0.283764\pi
0.628267 + 0.777998i 0.283764π0.283764\pi
384384 0 0
385385 0 0
386386 −34.6958 −1.76597
387387 0 0
388388 98.2828 4.98955
389389 −17.1567 −0.869880 −0.434940 0.900460i 0.643230π-0.643230\pi
−0.434940 + 0.900460i 0.643230π0.643230\pi
390390 0 0
391391 −18.9008 −0.955854
392392 −57.6947 −2.91402
393393 0 0
394394 38.1635 1.92265
395395 0 0
396396 0 0
397397 −2.90545 −0.145820 −0.0729102 0.997339i 0.523229π-0.523229\pi
−0.0729102 + 0.997339i 0.523229π0.523229\pi
398398 −43.3436 −2.17262
399399 0 0
400400 0 0
401401 −20.4427 −1.02086 −0.510431 0.859919i 0.670514π-0.670514\pi
−0.510431 + 0.859919i 0.670514π0.670514\pi
402402 0 0
403403 6.27851 0.312755
404404 44.5764 2.21776
405405 0 0
406406 0.0453913 0.00225273
407407 −14.0024 −0.694075
408408 0 0
409409 −3.13657 −0.155093 −0.0775467 0.996989i 0.524709π-0.524709\pi
−0.0775467 + 0.996989i 0.524709π0.524709\pi
410410 0 0
411411 0 0
412412 −55.8438 −2.75123
413413 0.147482 0.00725712
414414 0 0
415415 0 0
416416 69.7410 3.41933
417417 0 0
418418 −27.4362 −1.34195
419419 −36.6119 −1.78861 −0.894305 0.447458i 0.852330π-0.852330\pi
−0.894305 + 0.447458i 0.852330π0.852330\pi
420420 0 0
421421 −13.8706 −0.676012 −0.338006 0.941144i 0.609752π-0.609752\pi
−0.338006 + 0.941144i 0.609752π0.609752\pi
422422 −64.9519 −3.16181
423423 0 0
424424 −59.4805 −2.88863
425425 0 0
426426 0 0
427427 0.0975868 0.00472256
428428 80.5643 3.89422
429429 0 0
430430 0 0
431431 29.6786 1.42957 0.714785 0.699344i 0.246525π-0.246525\pi
0.714785 + 0.699344i 0.246525π0.246525\pi
432432 0 0
433433 32.1319 1.54416 0.772081 0.635525i 0.219216π-0.219216\pi
0.772081 + 0.635525i 0.219216π0.219216\pi
434434 0.0606922 0.00291332
435435 0 0
436436 −103.301 −4.94720
437437 29.0835 1.39125
438438 0 0
439439 34.9322 1.66722 0.833611 0.552352i 0.186269π-0.186269\pi
0.833611 + 0.552352i 0.186269π0.186269\pi
440440 0 0
441441 0 0
442442 −48.9648 −2.32902
443443 30.7938 1.46306 0.731528 0.681812i 0.238808π-0.238808\pi
0.731528 + 0.681812i 0.238808π0.238808\pi
444444 0 0
445445 0 0
446446 −2.00713 −0.0950406
447447 0 0
448448 0.273168 0.0129060
449449 −26.6304 −1.25677 −0.628383 0.777904i 0.716283π-0.716283\pi
−0.628383 + 0.777904i 0.716283π0.716283\pi
450450 0 0
451451 14.3071 0.673693
452452 45.1834 2.12525
453453 0 0
454454 −56.3905 −2.64654
455455 0 0
456456 0 0
457457 −9.03169 −0.422485 −0.211242 0.977434i 0.567751π-0.567751\pi
−0.211242 + 0.977434i 0.567751π0.567751\pi
458458 −21.2427 −0.992608
459459 0 0
460460 0 0
461461 17.6240 0.820832 0.410416 0.911898i 0.365384π-0.365384\pi
0.410416 + 0.911898i 0.365384π0.365384\pi
462462 0 0
463463 11.1431 0.517865 0.258933 0.965895i 0.416629π-0.416629\pi
0.258933 + 0.965895i 0.416629π0.416629\pi
464464 11.7651 0.546183
465465 0 0
466466 37.5153 1.73786
467467 −19.8932 −0.920548 −0.460274 0.887777i 0.652249π-0.652249\pi
−0.460274 + 0.887777i 0.652249π0.652249\pi
468468 0 0
469469 −0.0660340 −0.00304917
470470 0 0
471471 0 0
472472 71.3319 3.28332
473473 6.37039 0.292911
474474 0 0
475475 0 0
476476 −0.339892 −0.0155789
477477 0 0
478478 −41.2353 −1.88606
479479 21.6917 0.991118 0.495559 0.868574i 0.334963π-0.334963\pi
0.495559 + 0.868574i 0.334963π0.334963\pi
480480 0 0
481481 38.4530 1.75331
482482 32.3073 1.47156
483483 0 0
484484 −41.1447 −1.87021
485485 0 0
486486 0 0
487487 −11.1364 −0.504639 −0.252320 0.967644i 0.581193π-0.581193\pi
−0.252320 + 0.967644i 0.581193π0.581193\pi
488488 47.1993 2.13661
489489 0 0
490490 0 0
491491 −27.7172 −1.25086 −0.625431 0.780280i 0.715077π-0.715077\pi
−0.625431 + 0.780280i 0.715077π0.715077\pi
492492 0 0
493493 −3.91494 −0.176320
494494 75.3444 3.38990
495495 0 0
496496 15.7310 0.706344
497497 0.0737888 0.00330988
498498 0 0
499499 −29.8657 −1.33697 −0.668485 0.743725i 0.733057π-0.733057\pi
−0.668485 + 0.743725i 0.733057π0.733057\pi
500500 0 0
501501 0 0
502502 −37.5800 −1.67728
503503 28.6721 1.27843 0.639213 0.769030i 0.279260π-0.279260\pi
0.639213 + 0.769030i 0.279260π0.279260\pi
504504 0 0
505505 0 0
506506 −21.9880 −0.977487
507507 0 0
508508 24.9048 1.10497
509509 22.7354 1.00773 0.503864 0.863783i 0.331911π-0.331911\pi
0.503864 + 0.863783i 0.331911π0.331911\pi
510510 0 0
511511 0.0303759 0.00134375
512512 −19.2084 −0.848899
513513 0 0
514514 −71.0220 −3.13265
515515 0 0
516516 0 0
517517 9.17916 0.403699
518518 0.371712 0.0163321
519519 0 0
520520 0 0
521521 −15.8392 −0.693926 −0.346963 0.937879i 0.612787π-0.612787\pi
−0.346963 + 0.937879i 0.612787π0.612787\pi
522522 0 0
523523 −28.1248 −1.22981 −0.614905 0.788601i 0.710806π-0.710806\pi
−0.614905 + 0.788601i 0.710806π0.710806\pi
524524 −71.8179 −3.13738
525525 0 0
526526 15.3026 0.667224
527527 −5.23463 −0.228024
528528 0 0
529529 0.308221 0.0134009
530530 0 0
531531 0 0
532532 0.523007 0.0226752
533533 −39.2896 −1.70182
534534 0 0
535535 0 0
536536 −31.9383 −1.37953
537537 0 0
538538 −51.5338 −2.22178
539539 11.9688 0.515532
540540 0 0
541541 −23.9993 −1.03181 −0.515906 0.856645i 0.672545π-0.672545\pi
−0.515906 + 0.856645i 0.672545π0.672545\pi
542542 −81.9004 −3.51792
543543 0 0
544544 −58.1457 −2.49297
545545 0 0
546546 0 0
547547 24.1285 1.03166 0.515831 0.856691i 0.327483π-0.327483\pi
0.515831 + 0.856691i 0.327483π0.327483\pi
548548 18.1886 0.776980
549549 0 0
550550 0 0
551551 6.02411 0.256636
552552 0 0
553553 0.00397997 0.000169245 0
554554 64.1217 2.72427
555555 0 0
556556 59.7255 2.53292
557557 29.8474 1.26467 0.632337 0.774693i 0.282096π-0.282096\pi
0.632337 + 0.774693i 0.282096π0.282096\pi
558558 0 0
559559 −17.4942 −0.739924
560560 0 0
561561 0 0
562562 −62.3451 −2.62987
563563 9.29980 0.391940 0.195970 0.980610i 0.437214π-0.437214\pi
0.195970 + 0.980610i 0.437214π0.437214\pi
564564 0 0
565565 0 0
566566 55.5589 2.33531
567567 0 0
568568 35.6891 1.49748
569569 10.7468 0.450529 0.225264 0.974298i 0.427675π-0.427675\pi
0.225264 + 0.974298i 0.427675π0.427675\pi
570570 0 0
571571 −22.3620 −0.935822 −0.467911 0.883776i 0.654993π-0.654993\pi
−0.467911 + 0.883776i 0.654993π0.654993\pi
572572 −40.9044 −1.71030
573573 0 0
574574 −0.379799 −0.0158525
575575 0 0
576576 0 0
577577 29.7336 1.23783 0.618913 0.785459i 0.287573π-0.287573\pi
0.618913 + 0.785459i 0.287573π0.287573\pi
578578 −4.45669 −0.185374
579579 0 0
580580 0 0
581581 −0.104891 −0.00435160
582582 0 0
583583 12.3392 0.511039
584584 14.6918 0.607949
585585 0 0
586586 −32.1563 −1.32836
587587 25.9770 1.07219 0.536093 0.844159i 0.319899π-0.319899\pi
0.536093 + 0.844159i 0.319899π0.319899\pi
588588 0 0
589589 8.05476 0.331891
590590 0 0
591591 0 0
592592 96.3454 3.95977
593593 −30.1217 −1.23695 −0.618476 0.785804i 0.712250π-0.712250\pi
−0.618476 + 0.785804i 0.712250π0.712250\pi
594594 0 0
595595 0 0
596596 3.42805 0.140419
597597 0 0
598598 60.3827 2.46923
599599 27.4666 1.12226 0.561128 0.827729i 0.310368π-0.310368\pi
0.561128 + 0.827729i 0.310368π0.310368\pi
600600 0 0
601601 −6.66716 −0.271959 −0.135980 0.990712i 0.543418π-0.543418\pi
−0.135980 + 0.990712i 0.543418π0.543418\pi
602602 −0.169110 −0.00689241
603603 0 0
604604 123.603 5.02933
605605 0 0
606606 0 0
607607 15.4510 0.627138 0.313569 0.949565i 0.398475π-0.398475\pi
0.313569 + 0.949565i 0.398475π0.398475\pi
608608 89.4714 3.62854
609609 0 0
610610 0 0
611611 −25.2075 −1.01979
612612 0 0
613613 −23.4474 −0.947031 −0.473516 0.880785i 0.657015π-0.657015\pi
−0.473516 + 0.880785i 0.657015π0.657015\pi
614614 −54.3459 −2.19322
615615 0 0
616616 −0.240180 −0.00967713
617617 36.8162 1.48216 0.741082 0.671415i 0.234313π-0.234313\pi
0.741082 + 0.671415i 0.234313π0.234313\pi
618618 0 0
619619 24.5202 0.985551 0.492776 0.870156i 0.335982π-0.335982\pi
0.492776 + 0.870156i 0.335982π0.335982\pi
620620 0 0
621621 0 0
622622 33.0704 1.32600
623623 0.211406 0.00846980
624624 0 0
625625 0 0
626626 −39.5586 −1.58108
627627 0 0
628628 71.4041 2.84933
629629 −32.0597 −1.27830
630630 0 0
631631 11.1275 0.442978 0.221489 0.975163i 0.428908π-0.428908\pi
0.221489 + 0.975163i 0.428908π0.428908\pi
632632 1.92497 0.0765712
633633 0 0
634634 −58.2740 −2.31436
635635 0 0
636636 0 0
637637 −32.8682 −1.30229
638638 −4.55440 −0.180311
639639 0 0
640640 0 0
641641 −26.2776 −1.03790 −0.518951 0.854804i 0.673677π-0.673677\pi
−0.518951 + 0.854804i 0.673677π0.673677\pi
642642 0 0
643643 6.11885 0.241304 0.120652 0.992695i 0.461502π-0.461502\pi
0.120652 + 0.992695i 0.461502π0.461502\pi
644644 0.419150 0.0165168
645645 0 0
646646 −62.8174 −2.47152
647647 26.3758 1.03694 0.518470 0.855096i 0.326502π-0.326502\pi
0.518470 + 0.855096i 0.326502π0.326502\pi
648648 0 0
649649 −14.7978 −0.580865
650650 0 0
651651 0 0
652652 −49.7766 −1.94940
653653 −47.9227 −1.87536 −0.937679 0.347502i 0.887030π-0.887030\pi
−0.937679 + 0.347502i 0.887030π0.887030\pi
654654 0 0
655655 0 0
656656 −98.4415 −3.84349
657657 0 0
658658 −0.243672 −0.00949934
659659 −33.0636 −1.28798 −0.643988 0.765036i 0.722721π-0.722721\pi
−0.643988 + 0.765036i 0.722721π0.722721\pi
660660 0 0
661661 20.6186 0.801970 0.400985 0.916085i 0.368668π-0.368668\pi
0.400985 + 0.916085i 0.368668π0.368668\pi
662662 76.2789 2.96466
663663 0 0
664664 −50.7320 −1.96878
665665 0 0
666666 0 0
667667 4.82786 0.186935
668668 30.1385 1.16609
669669 0 0
670670 0 0
671671 −9.79151 −0.377997
672672 0 0
673673 −28.1489 −1.08506 −0.542529 0.840037i 0.682533π-0.682533\pi
−0.542529 + 0.840037i 0.682533π0.682533\pi
674674 −17.9810 −0.692601
675675 0 0
676676 46.1014 1.77313
677677 4.01689 0.154382 0.0771908 0.997016i 0.475405π-0.475405\pi
0.0771908 + 0.997016i 0.475405π0.475405\pi
678678 0 0
679679 0.328764 0.0126168
680680 0 0
681681 0 0
682682 −6.08964 −0.233184
683683 −2.61163 −0.0999312 −0.0499656 0.998751i 0.515911π-0.515911\pi
−0.0499656 + 0.998751i 0.515911π0.515911\pi
684684 0 0
685685 0 0
686686 −0.635465 −0.0242622
687687 0 0
688688 −43.8322 −1.67109
689689 −33.8856 −1.29094
690690 0 0
691691 −19.9707 −0.759723 −0.379861 0.925043i 0.624028π-0.624028\pi
−0.379861 + 0.925043i 0.624028π0.624028\pi
692692 −102.759 −3.90629
693693 0 0
694694 −4.99658 −0.189668
695695 0 0
696696 0 0
697697 32.7572 1.24077
698698 65.6190 2.48372
699699 0 0
700700 0 0
701701 −17.4402 −0.658709 −0.329355 0.944206i 0.606831π-0.606831\pi
−0.329355 + 0.944206i 0.606831π0.606831\pi
702702 0 0
703703 49.3317 1.86058
704704 −27.4087 −1.03300
705705 0 0
706706 −35.5500 −1.33794
707707 0.149112 0.00560793
708708 0 0
709709 −27.8452 −1.04575 −0.522874 0.852410i 0.675140π-0.675140\pi
−0.522874 + 0.852410i 0.675140π0.675140\pi
710710 0 0
711711 0 0
712712 102.250 3.83197
713713 6.45527 0.241752
714714 0 0
715715 0 0
716716 −78.9121 −2.94908
717717 0 0
718718 −57.3364 −2.13978
719719 23.3574 0.871085 0.435542 0.900168i 0.356557π-0.356557\pi
0.435542 + 0.900168i 0.356557π0.356557\pi
720720 0 0
721721 −0.186802 −0.00695688
722722 46.0525 1.71389
723723 0 0
724724 87.8854 3.26623
725725 0 0
726726 0 0
727727 22.8360 0.846939 0.423470 0.905910i 0.360812π-0.360812\pi
0.423470 + 0.905910i 0.360812π0.360812\pi
728728 0.659574 0.0244454
729729 0 0
730730 0 0
731731 14.5855 0.539465
732732 0 0
733733 1.44837 0.0534967 0.0267484 0.999642i 0.491485π-0.491485\pi
0.0267484 + 0.999642i 0.491485π0.491485\pi
734734 −24.9451 −0.920741
735735 0 0
736736 71.7045 2.64306
737737 6.62561 0.244058
738738 0 0
739739 −21.4167 −0.787824 −0.393912 0.919148i 0.628879π-0.628879\pi
−0.393912 + 0.919148i 0.628879π0.628879\pi
740740 0 0
741741 0 0
742742 −0.327561 −0.0120251
743743 −16.7848 −0.615776 −0.307888 0.951423i 0.599622π-0.599622\pi
−0.307888 + 0.951423i 0.599622π0.599622\pi
744744 0 0
745745 0 0
746746 −51.5040 −1.88570
747747 0 0
748748 34.1035 1.24695
749749 0.269495 0.00984712
750750 0 0
751751 −13.1194 −0.478733 −0.239366 0.970929i 0.576940π-0.576940\pi
−0.239366 + 0.970929i 0.576940π0.576940\pi
752752 −63.1583 −2.30315
753753 0 0
754754 12.5071 0.455483
755755 0 0
756756 0 0
757757 −15.3278 −0.557099 −0.278549 0.960422i 0.589854π-0.589854\pi
−0.278549 + 0.960422i 0.589854π0.589854\pi
758758 −33.0715 −1.20121
759759 0 0
760760 0 0
761761 −16.7398 −0.606818 −0.303409 0.952860i 0.598125π-0.598125\pi
−0.303409 + 0.952860i 0.598125π0.598125\pi
762762 0 0
763763 −0.345549 −0.0125097
764764 −58.6531 −2.12199
765765 0 0
766766 65.4991 2.36658
767767 40.6373 1.46733
768768 0 0
769769 −19.4502 −0.701391 −0.350696 0.936489i 0.614055π-0.614055\pi
−0.350696 + 0.936489i 0.614055π0.614055\pi
770770 0 0
771771 0 0
772772 −66.3620 −2.38842
773773 34.5781 1.24369 0.621844 0.783142i 0.286384π-0.286384\pi
0.621844 + 0.783142i 0.286384π0.286384\pi
774774 0 0
775775 0 0
776776 159.012 5.70819
777777 0 0
778778 −45.6978 −1.63835
779779 −50.4050 −1.80595
780780 0 0
781781 −7.40370 −0.264925
782782 −50.3433 −1.80027
783783 0 0
784784 −82.3526 −2.94116
785785 0 0
786786 0 0
787787 39.5669 1.41041 0.705204 0.709004i 0.250855π-0.250855\pi
0.705204 + 0.709004i 0.250855π0.250855\pi
788788 72.9946 2.60033
789789 0 0
790790 0 0
791791 0.151142 0.00537400
792792 0 0
793793 26.8891 0.954860
794794 −7.73883 −0.274641
795795 0 0
796796 −82.9023 −2.93839
797797 32.0055 1.13369 0.566847 0.823823i 0.308163π-0.308163\pi
0.566847 + 0.823823i 0.308163π0.308163\pi
798798 0 0
799799 21.0164 0.743508
800800 0 0
801801 0 0
802802 −54.4504 −1.92271
803803 −3.04781 −0.107555
804804 0 0
805805 0 0
806806 16.7232 0.589048
807807 0 0
808808 72.1203 2.53718
809809 −27.5627 −0.969052 −0.484526 0.874777i 0.661008π-0.661008\pi
−0.484526 + 0.874777i 0.661008π0.661008\pi
810810 0 0
811811 −25.3316 −0.889514 −0.444757 0.895651i 0.646710π-0.646710\pi
−0.444757 + 0.895651i 0.646710π0.646710\pi
812812 0.0868190 0.00304675
813813 0 0
814814 −37.2963 −1.30723
815815 0 0
816816 0 0
817817 −22.4434 −0.785196
818818 −8.35442 −0.292106
819819 0 0
820820 0 0
821821 46.4854 1.62235 0.811177 0.584801i 0.198827π-0.198827\pi
0.811177 + 0.584801i 0.198827π0.198827\pi
822822 0 0
823823 16.9991 0.592552 0.296276 0.955102i 0.404255π-0.404255\pi
0.296276 + 0.955102i 0.404255π0.404255\pi
824824 −90.3497 −3.14748
825825 0 0
826826 0.392827 0.0136682
827827 14.1835 0.493208 0.246604 0.969116i 0.420685π-0.420685\pi
0.246604 + 0.969116i 0.420685π0.420685\pi
828828 0 0
829829 28.9652 1.00600 0.503001 0.864286i 0.332229π-0.332229\pi
0.503001 + 0.864286i 0.332229π0.332229\pi
830830 0 0
831831 0 0
832832 75.2688 2.60948
833833 27.4035 0.949474
834834 0 0
835835 0 0
836836 −52.4767 −1.81494
837837 0 0
838838 −97.5179 −3.36870
839839 −22.6082 −0.780523 −0.390262 0.920704i 0.627615π-0.627615\pi
−0.390262 + 0.920704i 0.627615π0.627615\pi
840840 0 0
841841 1.00000 0.0344828
842842 −36.9451 −1.27321
843843 0 0
844844 −124.232 −4.27625
845845 0 0
846846 0 0
847847 −0.137633 −0.00472911
848848 −84.9017 −2.91554
849849 0 0
850850 0 0
851851 39.5356 1.35526
852852 0 0
853853 −35.6577 −1.22090 −0.610448 0.792057i 0.709010π-0.709010\pi
−0.610448 + 0.792057i 0.709010π0.709010\pi
854854 0.259928 0.00889455
855855 0 0
856856 130.345 4.45510
857857 3.41032 0.116494 0.0582472 0.998302i 0.481449π-0.481449\pi
0.0582472 + 0.998302i 0.481449π0.481449\pi
858858 0 0
859859 −28.5267 −0.973318 −0.486659 0.873592i 0.661785π-0.661785\pi
−0.486659 + 0.873592i 0.661785π0.661785\pi
860860 0 0
861861 0 0
862862 79.0507 2.69248
863863 24.5873 0.836962 0.418481 0.908226i 0.362563π-0.362563\pi
0.418481 + 0.908226i 0.362563π0.362563\pi
864864 0 0
865865 0 0
866866 85.5851 2.90830
867867 0 0
868868 0.116085 0.00394017
869869 −0.399336 −0.0135465
870870 0 0
871871 −18.1950 −0.616515
872872 −167.130 −5.65974
873873 0 0
874874 77.4656 2.62031
875875 0 0
876876 0 0
877877 −58.0640 −1.96068 −0.980341 0.197310i 0.936780π-0.936780\pi
−0.980341 + 0.197310i 0.936780π0.936780\pi
878878 93.0438 3.14008
879879 0 0
880880 0 0
881881 −52.7466 −1.77708 −0.888538 0.458802i 0.848279π-0.848279\pi
−0.888538 + 0.458802i 0.848279π0.848279\pi
882882 0 0
883883 −38.1567 −1.28408 −0.642038 0.766672i 0.721911π-0.721911\pi
−0.642038 + 0.766672i 0.721911π0.721911\pi
884884 −93.6539 −3.14992
885885 0 0
886886 82.0209 2.75555
887887 22.8088 0.765845 0.382922 0.923781i 0.374918π-0.374918\pi
0.382922 + 0.923781i 0.374918π0.374918\pi
888888 0 0
889889 0.0833087 0.00279408
890890 0 0
891891 0 0
892892 −3.83900 −0.128539
893893 −32.3389 −1.08218
894894 0 0
895895 0 0
896896 0.221385 0.00739596
897897 0 0
898898 −70.9316 −2.36702
899899 1.33709 0.0445944
900900 0 0
901901 28.2517 0.941200
902902 38.1077 1.26885
903903 0 0
904904 73.1023 2.43135
905905 0 0
906906 0 0
907907 33.4371 1.11026 0.555131 0.831763i 0.312668π-0.312668\pi
0.555131 + 0.831763i 0.312668π0.312668\pi
908908 −107.857 −3.57936
909909 0 0
910910 0 0
911911 18.0752 0.598857 0.299428 0.954119i 0.403204π-0.403204\pi
0.299428 + 0.954119i 0.403204π0.403204\pi
912912 0 0
913913 10.5244 0.348305
914914 −24.0564 −0.795715
915915 0 0
916916 −40.6305 −1.34247
917917 −0.240237 −0.00793333
918918 0 0
919919 38.7798 1.27923 0.639614 0.768696i 0.279094π-0.279094\pi
0.639614 + 0.768696i 0.279094π0.279094\pi
920920 0 0
921921 0 0
922922 46.9425 1.54597
923923 20.3318 0.669229
924924 0 0
925925 0 0
926926 29.6804 0.975357
927927 0 0
928928 14.8522 0.487548
929929 −8.16319 −0.267826 −0.133913 0.990993i 0.542754π-0.542754\pi
−0.133913 + 0.990993i 0.542754π0.542754\pi
930930 0 0
931931 −42.1670 −1.38197
932932 71.7547 2.35040
933933 0 0
934934 −52.9866 −1.73378
935935 0 0
936936 0 0
937937 16.7498 0.547192 0.273596 0.961845i 0.411787π-0.411787\pi
0.273596 + 0.961845i 0.411787π0.411787\pi
938938 −0.175885 −0.00574285
939939 0 0
940940 0 0
941941 −1.27331 −0.0415088 −0.0207544 0.999785i 0.506607π-0.506607\pi
−0.0207544 + 0.999785i 0.506607π0.506607\pi
942942 0 0
943943 −40.3957 −1.31547
944944 101.818 3.31390
945945 0 0
946946 16.9679 0.551674
947947 38.5681 1.25329 0.626647 0.779303i 0.284427π-0.284427\pi
0.626647 + 0.779303i 0.284427π0.284427\pi
948948 0 0
949949 8.36978 0.271695
950950 0 0
951951 0 0
952952 −0.549911 −0.0178227
953953 −47.2051 −1.52912 −0.764561 0.644551i 0.777044π-0.777044\pi
−0.764561 + 0.644551i 0.777044π0.777044\pi
954954 0 0
955955 0 0
956956 −78.8699 −2.55084
957957 0 0
958958 57.7770 1.86669
959959 0.0608425 0.00196471
960960 0 0
961961 −29.2122 −0.942329
962962 102.422 3.30221
963963 0 0
964964 61.7936 1.99024
965965 0 0
966966 0 0
967967 −14.9495 −0.480743 −0.240371 0.970681i 0.577269π-0.577269\pi
−0.240371 + 0.970681i 0.577269π0.577269\pi
968968 −66.5680 −2.13958
969969 0 0
970970 0 0
971971 −30.4517 −0.977240 −0.488620 0.872497i 0.662500π-0.662500\pi
−0.488620 + 0.872497i 0.662500π0.662500\pi
972972 0 0
973973 0.199787 0.00640487
974974 −29.6625 −0.950447
975975 0 0
976976 67.3716 2.15651
977977 −0.336322 −0.0107599 −0.00537995 0.999986i 0.501713π-0.501713\pi
−0.00537995 + 0.999986i 0.501713π0.501713\pi
978978 0 0
979979 −21.2117 −0.677929
980980 0 0
981981 0 0
982982 −73.8264 −2.35590
983983 −1.44050 −0.0459449 −0.0229724 0.999736i 0.507313π-0.507313\pi
−0.0229724 + 0.999736i 0.507313π0.507313\pi
984984 0 0
985985 0 0
986986 −10.4277 −0.332085
987987 0 0
988988 144.110 4.58474
989989 −17.9867 −0.571943
990990 0 0
991991 40.0507 1.27225 0.636126 0.771585i 0.280536π-0.280536\pi
0.636126 + 0.771585i 0.280536π0.280536\pi
992992 19.8587 0.630516
993993 0 0
994994 0.196541 0.00623389
995995 0 0
996996 0 0
997997 24.3419 0.770916 0.385458 0.922725i 0.374043π-0.374043\pi
0.385458 + 0.922725i 0.374043π0.374043\pi
998998 −79.5488 −2.51807
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.bx.1.7 7
3.2 odd 2 2175.2.a.ba.1.1 7
5.4 even 2 6525.2.a.bu.1.1 7
15.2 even 4 2175.2.c.o.349.1 14
15.8 even 4 2175.2.c.o.349.14 14
15.14 odd 2 2175.2.a.bb.1.7 yes 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2175.2.a.ba.1.1 7 3.2 odd 2
2175.2.a.bb.1.7 yes 7 15.14 odd 2
2175.2.c.o.349.1 14 15.2 even 4
2175.2.c.o.349.14 14 15.8 even 4
6525.2.a.bu.1.1 7 5.4 even 2
6525.2.a.bx.1.7 7 1.1 even 1 trivial