Properties

Label 2-2175-1.1-c3-0-237
Degree $2$
Conductor $2175$
Sign $-1$
Analytic cond. $128.329$
Root an. cond. $11.3282$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.54·2-s − 3·3-s + 4.59·4-s − 10.6·6-s + 21.2·7-s − 12.0·8-s + 9·9-s − 40.9·11-s − 13.7·12-s + 8.89·13-s + 75.4·14-s − 79.6·16-s + 7.68·17-s + 31.9·18-s + 40.7·19-s − 63.8·21-s − 145.·22-s + 80.7·23-s + 36.2·24-s + 31.5·26-s − 27·27-s + 97.6·28-s + 29·29-s + 82.1·31-s − 185.·32-s + 122.·33-s + 27.2·34-s + ⋯
L(s)  = 1  + 1.25·2-s − 0.577·3-s + 0.574·4-s − 0.724·6-s + 1.14·7-s − 0.534·8-s + 0.333·9-s − 1.12·11-s − 0.331·12-s + 0.189·13-s + 1.44·14-s − 1.24·16-s + 0.109·17-s + 0.418·18-s + 0.492·19-s − 0.662·21-s − 1.40·22-s + 0.731·23-s + 0.308·24-s + 0.238·26-s − 0.192·27-s + 0.659·28-s + 0.185·29-s + 0.475·31-s − 1.02·32-s + 0.647·33-s + 0.137·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(128.329\)
Root analytic conductor: \(11.3282\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2175,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 \)
29 \( 1 - 29T \)
good2 \( 1 - 3.54T + 8T^{2} \)
7 \( 1 - 21.2T + 343T^{2} \)
11 \( 1 + 40.9T + 1.33e3T^{2} \)
13 \( 1 - 8.89T + 2.19e3T^{2} \)
17 \( 1 - 7.68T + 4.91e3T^{2} \)
19 \( 1 - 40.7T + 6.85e3T^{2} \)
23 \( 1 - 80.7T + 1.21e4T^{2} \)
31 \( 1 - 82.1T + 2.97e4T^{2} \)
37 \( 1 + 223.T + 5.06e4T^{2} \)
41 \( 1 + 274.T + 6.89e4T^{2} \)
43 \( 1 + 53.7T + 7.95e4T^{2} \)
47 \( 1 + 17.0T + 1.03e5T^{2} \)
53 \( 1 - 23.0T + 1.48e5T^{2} \)
59 \( 1 + 399.T + 2.05e5T^{2} \)
61 \( 1 - 388.T + 2.26e5T^{2} \)
67 \( 1 + 399.T + 3.00e5T^{2} \)
71 \( 1 - 92.2T + 3.57e5T^{2} \)
73 \( 1 + 979.T + 3.89e5T^{2} \)
79 \( 1 - 62.2T + 4.93e5T^{2} \)
83 \( 1 + 163.T + 5.71e5T^{2} \)
89 \( 1 - 1.37e3T + 7.04e5T^{2} \)
97 \( 1 + 1.26e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.215857464407133455691824508777, −7.39058772630860145599546221831, −6.52528864052710987657029857410, −5.57650305545904299353778142223, −5.07542339780777132000200655321, −4.58976933357116386980109937189, −3.51387975620622395815132305435, −2.58821909985484204324216621721, −1.39377174948631013603851612921, 0, 1.39377174948631013603851612921, 2.58821909985484204324216621721, 3.51387975620622395815132305435, 4.58976933357116386980109937189, 5.07542339780777132000200655321, 5.57650305545904299353778142223, 6.52528864052710987657029857410, 7.39058772630860145599546221831, 8.215857464407133455691824508777

Graph of the $Z$-function along the critical line