Properties

Label 2175.4.a.k.1.5
Level $2175$
Weight $4$
Character 2175.1
Self dual yes
Analytic conductor $128.329$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,4,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(128.329154262\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 49x^{4} + 27x^{3} + 692x^{2} - 82x - 2588 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-3.54861\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.54861 q^{2} -3.00000 q^{3} +4.59262 q^{4} -10.6458 q^{6} +21.2667 q^{7} -12.0915 q^{8} +9.00000 q^{9} -40.9431 q^{11} -13.7779 q^{12} +8.89857 q^{13} +75.4671 q^{14} -79.6488 q^{16} +7.68473 q^{17} +31.9375 q^{18} +40.7787 q^{19} -63.8000 q^{21} -145.291 q^{22} +80.7285 q^{23} +36.2744 q^{24} +31.5775 q^{26} -27.0000 q^{27} +97.6698 q^{28} +29.0000 q^{29} +82.1098 q^{31} -185.911 q^{32} +122.829 q^{33} +27.2701 q^{34} +41.3336 q^{36} -223.283 q^{37} +144.708 q^{38} -26.6957 q^{39} -274.422 q^{41} -226.401 q^{42} -53.7872 q^{43} -188.036 q^{44} +286.474 q^{46} -17.0236 q^{47} +238.946 q^{48} +109.272 q^{49} -23.0542 q^{51} +40.8678 q^{52} +23.0475 q^{53} -95.8124 q^{54} -257.145 q^{56} -122.336 q^{57} +102.910 q^{58} -399.574 q^{59} +388.308 q^{61} +291.376 q^{62} +191.400 q^{63} -22.5340 q^{64} +435.873 q^{66} -399.434 q^{67} +35.2930 q^{68} -242.186 q^{69} +92.2884 q^{71} -108.823 q^{72} -979.407 q^{73} -792.343 q^{74} +187.281 q^{76} -870.724 q^{77} -94.7326 q^{78} +62.2586 q^{79} +81.0000 q^{81} -973.817 q^{82} -163.597 q^{83} -293.009 q^{84} -190.870 q^{86} -87.0000 q^{87} +495.062 q^{88} +1371.94 q^{89} +189.243 q^{91} +370.755 q^{92} -246.330 q^{93} -60.4101 q^{94} +557.732 q^{96} -1263.64 q^{97} +387.763 q^{98} -368.488 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} - 18 q^{3} + 51 q^{4} + 3 q^{6} - 47 q^{7} - 51 q^{8} + 54 q^{9} + 81 q^{11} - 153 q^{12} - 169 q^{13} - 30 q^{14} + 131 q^{16} + q^{17} - 9 q^{18} + 116 q^{19} + 141 q^{21} - 90 q^{22} + 52 q^{23}+ \cdots + 729 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.54861 1.25462 0.627311 0.778769i \(-0.284155\pi\)
0.627311 + 0.778769i \(0.284155\pi\)
\(3\) −3.00000 −0.577350
\(4\) 4.59262 0.574078
\(5\) 0 0
\(6\) −10.6458 −0.724357
\(7\) 21.2667 1.14829 0.574146 0.818753i \(-0.305334\pi\)
0.574146 + 0.818753i \(0.305334\pi\)
\(8\) −12.0915 −0.534372
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −40.9431 −1.12226 −0.561128 0.827729i \(-0.689632\pi\)
−0.561128 + 0.827729i \(0.689632\pi\)
\(12\) −13.7779 −0.331444
\(13\) 8.89857 0.189848 0.0949238 0.995485i \(-0.469739\pi\)
0.0949238 + 0.995485i \(0.469739\pi\)
\(14\) 75.4671 1.44067
\(15\) 0 0
\(16\) −79.6488 −1.24451
\(17\) 7.68473 0.109636 0.0548182 0.998496i \(-0.482542\pi\)
0.0548182 + 0.998496i \(0.482542\pi\)
\(18\) 31.9375 0.418207
\(19\) 40.7787 0.492383 0.246192 0.969221i \(-0.420821\pi\)
0.246192 + 0.969221i \(0.420821\pi\)
\(20\) 0 0
\(21\) −63.8000 −0.662967
\(22\) −145.291 −1.40801
\(23\) 80.7285 0.731872 0.365936 0.930640i \(-0.380749\pi\)
0.365936 + 0.930640i \(0.380749\pi\)
\(24\) 36.2744 0.308520
\(25\) 0 0
\(26\) 31.5775 0.238187
\(27\) −27.0000 −0.192450
\(28\) 97.6698 0.659209
\(29\) 29.0000 0.185695
\(30\) 0 0
\(31\) 82.1098 0.475721 0.237861 0.971299i \(-0.423554\pi\)
0.237861 + 0.971299i \(0.423554\pi\)
\(32\) −185.911 −1.02702
\(33\) 122.829 0.647935
\(34\) 27.2701 0.137552
\(35\) 0 0
\(36\) 41.3336 0.191359
\(37\) −223.283 −0.992093 −0.496047 0.868296i \(-0.665215\pi\)
−0.496047 + 0.868296i \(0.665215\pi\)
\(38\) 144.708 0.617755
\(39\) −26.6957 −0.109609
\(40\) 0 0
\(41\) −274.422 −1.04531 −0.522653 0.852545i \(-0.675058\pi\)
−0.522653 + 0.852545i \(0.675058\pi\)
\(42\) −226.401 −0.831774
\(43\) −53.7872 −0.190755 −0.0953775 0.995441i \(-0.530406\pi\)
−0.0953775 + 0.995441i \(0.530406\pi\)
\(44\) −188.036 −0.644262
\(45\) 0 0
\(46\) 286.474 0.918223
\(47\) −17.0236 −0.0528329 −0.0264165 0.999651i \(-0.508410\pi\)
−0.0264165 + 0.999651i \(0.508410\pi\)
\(48\) 238.946 0.718520
\(49\) 109.272 0.318577
\(50\) 0 0
\(51\) −23.0542 −0.0632986
\(52\) 40.8678 0.108987
\(53\) 23.0475 0.0597325 0.0298662 0.999554i \(-0.490492\pi\)
0.0298662 + 0.999554i \(0.490492\pi\)
\(54\) −95.8124 −0.241452
\(55\) 0 0
\(56\) −257.145 −0.613615
\(57\) −122.336 −0.284278
\(58\) 102.910 0.232978
\(59\) −399.574 −0.881697 −0.440848 0.897582i \(-0.645322\pi\)
−0.440848 + 0.897582i \(0.645322\pi\)
\(60\) 0 0
\(61\) 388.308 0.815046 0.407523 0.913195i \(-0.366393\pi\)
0.407523 + 0.913195i \(0.366393\pi\)
\(62\) 291.376 0.596851
\(63\) 191.400 0.382764
\(64\) −22.5340 −0.0440118
\(65\) 0 0
\(66\) 435.873 0.812913
\(67\) −399.434 −0.728337 −0.364169 0.931333i \(-0.618647\pi\)
−0.364169 + 0.931333i \(0.618647\pi\)
\(68\) 35.2930 0.0629398
\(69\) −242.186 −0.422547
\(70\) 0 0
\(71\) 92.2884 0.154262 0.0771311 0.997021i \(-0.475424\pi\)
0.0771311 + 0.997021i \(0.475424\pi\)
\(72\) −108.823 −0.178124
\(73\) −979.407 −1.57029 −0.785144 0.619314i \(-0.787411\pi\)
−0.785144 + 0.619314i \(0.787411\pi\)
\(74\) −792.343 −1.24470
\(75\) 0 0
\(76\) 187.281 0.282666
\(77\) −870.724 −1.28868
\(78\) −94.7326 −0.137517
\(79\) 62.2586 0.0886664 0.0443332 0.999017i \(-0.485884\pi\)
0.0443332 + 0.999017i \(0.485884\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) −973.817 −1.31146
\(83\) −163.597 −0.216350 −0.108175 0.994132i \(-0.534501\pi\)
−0.108175 + 0.994132i \(0.534501\pi\)
\(84\) −293.009 −0.380595
\(85\) 0 0
\(86\) −190.870 −0.239326
\(87\) −87.0000 −0.107211
\(88\) 495.062 0.599702
\(89\) 1371.94 1.63399 0.816994 0.576646i \(-0.195639\pi\)
0.816994 + 0.576646i \(0.195639\pi\)
\(90\) 0 0
\(91\) 189.243 0.218001
\(92\) 370.755 0.420151
\(93\) −246.330 −0.274658
\(94\) −60.4101 −0.0662853
\(95\) 0 0
\(96\) 557.732 0.592951
\(97\) −1263.64 −1.32271 −0.661355 0.750073i \(-0.730018\pi\)
−0.661355 + 0.750073i \(0.730018\pi\)
\(98\) 387.763 0.399693
\(99\) −368.488 −0.374085
\(100\) 0 0
\(101\) 148.533 0.146332 0.0731661 0.997320i \(-0.476690\pi\)
0.0731661 + 0.997320i \(0.476690\pi\)
\(102\) −81.8103 −0.0794159
\(103\) −1485.59 −1.42116 −0.710580 0.703616i \(-0.751567\pi\)
−0.710580 + 0.703616i \(0.751567\pi\)
\(104\) −107.597 −0.101449
\(105\) 0 0
\(106\) 81.7866 0.0749417
\(107\) −461.476 −0.416940 −0.208470 0.978029i \(-0.566848\pi\)
−0.208470 + 0.978029i \(0.566848\pi\)
\(108\) −124.001 −0.110481
\(109\) 1516.06 1.33222 0.666112 0.745851i \(-0.267957\pi\)
0.666112 + 0.745851i \(0.267957\pi\)
\(110\) 0 0
\(111\) 669.848 0.572785
\(112\) −1693.87 −1.42906
\(113\) −160.406 −0.133537 −0.0667686 0.997768i \(-0.521269\pi\)
−0.0667686 + 0.997768i \(0.521269\pi\)
\(114\) −434.123 −0.356661
\(115\) 0 0
\(116\) 133.186 0.106604
\(117\) 80.0871 0.0632826
\(118\) −1417.93 −1.10620
\(119\) 163.429 0.125895
\(120\) 0 0
\(121\) 345.339 0.259458
\(122\) 1377.95 1.02257
\(123\) 823.267 0.603508
\(124\) 377.099 0.273101
\(125\) 0 0
\(126\) 679.204 0.480225
\(127\) −2583.64 −1.80520 −0.902601 0.430477i \(-0.858345\pi\)
−0.902601 + 0.430477i \(0.858345\pi\)
\(128\) 1407.32 0.971803
\(129\) 161.362 0.110132
\(130\) 0 0
\(131\) −151.210 −0.100850 −0.0504249 0.998728i \(-0.516058\pi\)
−0.0504249 + 0.998728i \(0.516058\pi\)
\(132\) 564.109 0.371965
\(133\) 867.228 0.565400
\(134\) −1417.43 −0.913788
\(135\) 0 0
\(136\) −92.9195 −0.0585866
\(137\) 257.407 0.160524 0.0802619 0.996774i \(-0.474424\pi\)
0.0802619 + 0.996774i \(0.474424\pi\)
\(138\) −859.422 −0.530136
\(139\) −2294.42 −1.40007 −0.700037 0.714106i \(-0.746833\pi\)
−0.700037 + 0.714106i \(0.746833\pi\)
\(140\) 0 0
\(141\) 51.0708 0.0305031
\(142\) 327.495 0.193541
\(143\) −364.335 −0.213058
\(144\) −716.839 −0.414838
\(145\) 0 0
\(146\) −3475.53 −1.97012
\(147\) −327.815 −0.183930
\(148\) −1025.45 −0.569538
\(149\) −835.743 −0.459508 −0.229754 0.973249i \(-0.573792\pi\)
−0.229754 + 0.973249i \(0.573792\pi\)
\(150\) 0 0
\(151\) −3370.60 −1.81653 −0.908263 0.418400i \(-0.862591\pi\)
−0.908263 + 0.418400i \(0.862591\pi\)
\(152\) −493.074 −0.263116
\(153\) 69.1625 0.0365455
\(154\) −3089.86 −1.61680
\(155\) 0 0
\(156\) −122.603 −0.0629238
\(157\) 137.311 0.0698002 0.0349001 0.999391i \(-0.488889\pi\)
0.0349001 + 0.999391i \(0.488889\pi\)
\(158\) 220.932 0.111243
\(159\) −69.1426 −0.0344866
\(160\) 0 0
\(161\) 1716.83 0.840404
\(162\) 287.437 0.139402
\(163\) 859.793 0.413155 0.206577 0.978430i \(-0.433767\pi\)
0.206577 + 0.978430i \(0.433767\pi\)
\(164\) −1260.32 −0.600087
\(165\) 0 0
\(166\) −580.541 −0.271438
\(167\) 900.368 0.417201 0.208601 0.978001i \(-0.433109\pi\)
0.208601 + 0.978001i \(0.433109\pi\)
\(168\) 771.435 0.354271
\(169\) −2117.82 −0.963958
\(170\) 0 0
\(171\) 367.008 0.164128
\(172\) −247.024 −0.109508
\(173\) 465.780 0.204697 0.102348 0.994749i \(-0.467364\pi\)
0.102348 + 0.994749i \(0.467364\pi\)
\(174\) −308.729 −0.134510
\(175\) 0 0
\(176\) 3261.07 1.39666
\(177\) 1198.72 0.509048
\(178\) 4868.47 2.05004
\(179\) 1143.90 0.477650 0.238825 0.971063i \(-0.423238\pi\)
0.238825 + 0.971063i \(0.423238\pi\)
\(180\) 0 0
\(181\) −345.618 −0.141931 −0.0709657 0.997479i \(-0.522608\pi\)
−0.0709657 + 0.997479i \(0.522608\pi\)
\(182\) 671.550 0.273509
\(183\) −1164.93 −0.470567
\(184\) −976.125 −0.391092
\(185\) 0 0
\(186\) −874.127 −0.344592
\(187\) −314.637 −0.123040
\(188\) −78.1829 −0.0303302
\(189\) −574.200 −0.220989
\(190\) 0 0
\(191\) 3080.33 1.16694 0.583469 0.812135i \(-0.301695\pi\)
0.583469 + 0.812135i \(0.301695\pi\)
\(192\) 67.6021 0.0254102
\(193\) −4561.76 −1.70136 −0.850680 0.525684i \(-0.823810\pi\)
−0.850680 + 0.525684i \(0.823810\pi\)
\(194\) −4484.15 −1.65950
\(195\) 0 0
\(196\) 501.844 0.182888
\(197\) −2521.13 −0.911794 −0.455897 0.890033i \(-0.650681\pi\)
−0.455897 + 0.890033i \(0.650681\pi\)
\(198\) −1307.62 −0.469336
\(199\) −3000.49 −1.06884 −0.534420 0.845219i \(-0.679470\pi\)
−0.534420 + 0.845219i \(0.679470\pi\)
\(200\) 0 0
\(201\) 1198.30 0.420506
\(202\) 527.084 0.183592
\(203\) 616.734 0.213233
\(204\) −105.879 −0.0363383
\(205\) 0 0
\(206\) −5271.78 −1.78302
\(207\) 726.557 0.243957
\(208\) −708.761 −0.236268
\(209\) −1669.61 −0.552580
\(210\) 0 0
\(211\) 843.401 0.275176 0.137588 0.990490i \(-0.456065\pi\)
0.137588 + 0.990490i \(0.456065\pi\)
\(212\) 105.849 0.0342911
\(213\) −276.865 −0.0890633
\(214\) −1637.60 −0.523103
\(215\) 0 0
\(216\) 326.469 0.102840
\(217\) 1746.20 0.546267
\(218\) 5379.91 1.67144
\(219\) 2938.22 0.906606
\(220\) 0 0
\(221\) 68.3831 0.0208142
\(222\) 2377.03 0.718629
\(223\) −1068.88 −0.320975 −0.160488 0.987038i \(-0.551307\pi\)
−0.160488 + 0.987038i \(0.551307\pi\)
\(224\) −3953.70 −1.17932
\(225\) 0 0
\(226\) −569.217 −0.167539
\(227\) −1688.90 −0.493817 −0.246909 0.969039i \(-0.579415\pi\)
−0.246909 + 0.969039i \(0.579415\pi\)
\(228\) −561.844 −0.163197
\(229\) −3085.30 −0.890317 −0.445158 0.895452i \(-0.646853\pi\)
−0.445158 + 0.895452i \(0.646853\pi\)
\(230\) 0 0
\(231\) 2612.17 0.744019
\(232\) −350.652 −0.0992304
\(233\) 4810.41 1.35254 0.676268 0.736656i \(-0.263596\pi\)
0.676268 + 0.736656i \(0.263596\pi\)
\(234\) 284.198 0.0793957
\(235\) 0 0
\(236\) −1835.09 −0.506162
\(237\) −186.776 −0.0511916
\(238\) 579.944 0.157950
\(239\) −1730.66 −0.468399 −0.234200 0.972189i \(-0.575247\pi\)
−0.234200 + 0.972189i \(0.575247\pi\)
\(240\) 0 0
\(241\) −1671.50 −0.446767 −0.223383 0.974731i \(-0.571710\pi\)
−0.223383 + 0.974731i \(0.571710\pi\)
\(242\) 1225.47 0.325522
\(243\) −243.000 −0.0641500
\(244\) 1783.35 0.467900
\(245\) 0 0
\(246\) 2921.45 0.757175
\(247\) 362.872 0.0934778
\(248\) −992.827 −0.254212
\(249\) 490.790 0.124910
\(250\) 0 0
\(251\) −5324.14 −1.33887 −0.669436 0.742870i \(-0.733464\pi\)
−0.669436 + 0.742870i \(0.733464\pi\)
\(252\) 879.028 0.219736
\(253\) −3305.28 −0.821348
\(254\) −9168.32 −2.26485
\(255\) 0 0
\(256\) 5174.31 1.26326
\(257\) −1994.20 −0.484026 −0.242013 0.970273i \(-0.577808\pi\)
−0.242013 + 0.970273i \(0.577808\pi\)
\(258\) 572.609 0.138175
\(259\) −4748.48 −1.13921
\(260\) 0 0
\(261\) 261.000 0.0618984
\(262\) −536.586 −0.126528
\(263\) 1671.01 0.391782 0.195891 0.980626i \(-0.437240\pi\)
0.195891 + 0.980626i \(0.437240\pi\)
\(264\) −1485.19 −0.346238
\(265\) 0 0
\(266\) 3077.45 0.709364
\(267\) −4115.81 −0.943384
\(268\) −1834.45 −0.418122
\(269\) 890.546 0.201850 0.100925 0.994894i \(-0.467820\pi\)
0.100925 + 0.994894i \(0.467820\pi\)
\(270\) 0 0
\(271\) 6649.82 1.49058 0.745292 0.666739i \(-0.232310\pi\)
0.745292 + 0.666739i \(0.232310\pi\)
\(272\) −612.079 −0.136444
\(273\) −567.729 −0.125863
\(274\) 913.436 0.201397
\(275\) 0 0
\(276\) −1112.27 −0.242575
\(277\) −6233.58 −1.35213 −0.676064 0.736843i \(-0.736316\pi\)
−0.676064 + 0.736843i \(0.736316\pi\)
\(278\) −8142.01 −1.75657
\(279\) 738.989 0.158574
\(280\) 0 0
\(281\) −3089.87 −0.655964 −0.327982 0.944684i \(-0.606369\pi\)
−0.327982 + 0.944684i \(0.606369\pi\)
\(282\) 181.230 0.0382699
\(283\) −1644.01 −0.345323 −0.172662 0.984981i \(-0.555237\pi\)
−0.172662 + 0.984981i \(0.555237\pi\)
\(284\) 423.845 0.0885584
\(285\) 0 0
\(286\) −1292.88 −0.267307
\(287\) −5836.05 −1.20032
\(288\) −1673.20 −0.342341
\(289\) −4853.94 −0.987980
\(290\) 0 0
\(291\) 3790.91 0.763667
\(292\) −4498.05 −0.901467
\(293\) 66.3144 0.0132223 0.00661114 0.999978i \(-0.497896\pi\)
0.00661114 + 0.999978i \(0.497896\pi\)
\(294\) −1163.29 −0.230763
\(295\) 0 0
\(296\) 2699.81 0.530147
\(297\) 1105.46 0.215978
\(298\) −2965.72 −0.576510
\(299\) 718.369 0.138944
\(300\) 0 0
\(301\) −1143.87 −0.219043
\(302\) −11960.9 −2.27905
\(303\) −445.598 −0.0844849
\(304\) −3247.98 −0.612777
\(305\) 0 0
\(306\) 245.431 0.0458508
\(307\) 6736.52 1.25236 0.626179 0.779679i \(-0.284618\pi\)
0.626179 + 0.779679i \(0.284618\pi\)
\(308\) −3998.91 −0.739801
\(309\) 4456.77 0.820507
\(310\) 0 0
\(311\) −5470.56 −0.997450 −0.498725 0.866760i \(-0.666198\pi\)
−0.498725 + 0.866760i \(0.666198\pi\)
\(312\) 322.790 0.0585718
\(313\) −903.461 −0.163152 −0.0815761 0.996667i \(-0.525995\pi\)
−0.0815761 + 0.996667i \(0.525995\pi\)
\(314\) 487.264 0.0875729
\(315\) 0 0
\(316\) 285.930 0.0509014
\(317\) 880.773 0.156054 0.0780270 0.996951i \(-0.475138\pi\)
0.0780270 + 0.996951i \(0.475138\pi\)
\(318\) −245.360 −0.0432676
\(319\) −1187.35 −0.208398
\(320\) 0 0
\(321\) 1384.43 0.240721
\(322\) 6092.35 1.05439
\(323\) 313.373 0.0539832
\(324\) 372.002 0.0637864
\(325\) 0 0
\(326\) 3051.07 0.518353
\(327\) −4548.19 −0.769160
\(328\) 3318.16 0.558582
\(329\) −362.035 −0.0606677
\(330\) 0 0
\(331\) 609.140 0.101152 0.0505761 0.998720i \(-0.483894\pi\)
0.0505761 + 0.998720i \(0.483894\pi\)
\(332\) −751.338 −0.124202
\(333\) −2009.54 −0.330698
\(334\) 3195.05 0.523430
\(335\) 0 0
\(336\) 5081.60 0.825071
\(337\) 9473.47 1.53131 0.765657 0.643250i \(-0.222414\pi\)
0.765657 + 0.643250i \(0.222414\pi\)
\(338\) −7515.30 −1.20940
\(339\) 481.217 0.0770977
\(340\) 0 0
\(341\) −3361.83 −0.533881
\(342\) 1302.37 0.205918
\(343\) −4970.62 −0.782474
\(344\) 650.365 0.101934
\(345\) 0 0
\(346\) 1652.87 0.256817
\(347\) −3436.86 −0.531702 −0.265851 0.964014i \(-0.585653\pi\)
−0.265851 + 0.964014i \(0.585653\pi\)
\(348\) −399.558 −0.0615476
\(349\) 703.930 0.107967 0.0539835 0.998542i \(-0.482808\pi\)
0.0539835 + 0.998542i \(0.482808\pi\)
\(350\) 0 0
\(351\) −240.261 −0.0365362
\(352\) 7611.77 1.15258
\(353\) −2982.17 −0.449646 −0.224823 0.974400i \(-0.572180\pi\)
−0.224823 + 0.974400i \(0.572180\pi\)
\(354\) 4253.79 0.638663
\(355\) 0 0
\(356\) 6300.78 0.938036
\(357\) −490.286 −0.0726854
\(358\) 4059.27 0.599271
\(359\) 8585.52 1.26219 0.631095 0.775705i \(-0.282606\pi\)
0.631095 + 0.775705i \(0.282606\pi\)
\(360\) 0 0
\(361\) −5196.10 −0.757559
\(362\) −1226.46 −0.178070
\(363\) −1036.02 −0.149798
\(364\) 869.122 0.125149
\(365\) 0 0
\(366\) −4133.86 −0.590384
\(367\) −6989.50 −0.994139 −0.497070 0.867711i \(-0.665591\pi\)
−0.497070 + 0.867711i \(0.665591\pi\)
\(368\) −6429.93 −0.910824
\(369\) −2469.80 −0.348435
\(370\) 0 0
\(371\) 490.144 0.0685904
\(372\) −1131.30 −0.157675
\(373\) 1100.55 0.152773 0.0763865 0.997078i \(-0.475662\pi\)
0.0763865 + 0.997078i \(0.475662\pi\)
\(374\) −1116.52 −0.154369
\(375\) 0 0
\(376\) 205.840 0.0282324
\(377\) 258.059 0.0352538
\(378\) −2037.61 −0.277258
\(379\) 7950.59 1.07756 0.538779 0.842447i \(-0.318886\pi\)
0.538779 + 0.842447i \(0.318886\pi\)
\(380\) 0 0
\(381\) 7750.91 1.04223
\(382\) 10930.9 1.46407
\(383\) −10160.2 −1.35551 −0.677755 0.735288i \(-0.737047\pi\)
−0.677755 + 0.735288i \(0.737047\pi\)
\(384\) −4221.96 −0.561071
\(385\) 0 0
\(386\) −16187.9 −2.13456
\(387\) −484.085 −0.0635850
\(388\) −5803.40 −0.759338
\(389\) 9770.47 1.27348 0.636738 0.771080i \(-0.280283\pi\)
0.636738 + 0.771080i \(0.280283\pi\)
\(390\) 0 0
\(391\) 620.377 0.0802399
\(392\) −1321.25 −0.170238
\(393\) 453.631 0.0582256
\(394\) −8946.52 −1.14396
\(395\) 0 0
\(396\) −1692.33 −0.214754
\(397\) 3191.11 0.403418 0.201709 0.979445i \(-0.435350\pi\)
0.201709 + 0.979445i \(0.435350\pi\)
\(398\) −10647.6 −1.34099
\(399\) −2601.68 −0.326434
\(400\) 0 0
\(401\) 11101.4 1.38249 0.691247 0.722619i \(-0.257062\pi\)
0.691247 + 0.722619i \(0.257062\pi\)
\(402\) 4252.30 0.527576
\(403\) 730.660 0.0903146
\(404\) 682.154 0.0840060
\(405\) 0 0
\(406\) 2188.55 0.267526
\(407\) 9141.89 1.11338
\(408\) 278.759 0.0338250
\(409\) −5263.84 −0.636382 −0.318191 0.948027i \(-0.603075\pi\)
−0.318191 + 0.948027i \(0.603075\pi\)
\(410\) 0 0
\(411\) −772.221 −0.0926784
\(412\) −6822.75 −0.815856
\(413\) −8497.61 −1.01245
\(414\) 2578.27 0.306074
\(415\) 0 0
\(416\) −1654.34 −0.194978
\(417\) 6883.27 0.808333
\(418\) −5924.78 −0.693279
\(419\) 5365.09 0.625541 0.312771 0.949829i \(-0.398743\pi\)
0.312771 + 0.949829i \(0.398743\pi\)
\(420\) 0 0
\(421\) 4453.87 0.515602 0.257801 0.966198i \(-0.417002\pi\)
0.257801 + 0.966198i \(0.417002\pi\)
\(422\) 2992.90 0.345242
\(423\) −153.212 −0.0176110
\(424\) −278.678 −0.0319193
\(425\) 0 0
\(426\) −982.486 −0.111741
\(427\) 8258.03 0.935911
\(428\) −2119.39 −0.239356
\(429\) 1093.01 0.123009
\(430\) 0 0
\(431\) −15164.6 −1.69478 −0.847392 0.530968i \(-0.821828\pi\)
−0.847392 + 0.530968i \(0.821828\pi\)
\(432\) 2150.52 0.239507
\(433\) −5748.48 −0.638001 −0.319000 0.947755i \(-0.603347\pi\)
−0.319000 + 0.947755i \(0.603347\pi\)
\(434\) 6196.59 0.685359
\(435\) 0 0
\(436\) 6962.70 0.764800
\(437\) 3292.01 0.360362
\(438\) 10426.6 1.13745
\(439\) −2413.19 −0.262358 −0.131179 0.991359i \(-0.541876\pi\)
−0.131179 + 0.991359i \(0.541876\pi\)
\(440\) 0 0
\(441\) 983.446 0.106192
\(442\) 242.665 0.0261140
\(443\) 5598.47 0.600432 0.300216 0.953871i \(-0.402941\pi\)
0.300216 + 0.953871i \(0.402941\pi\)
\(444\) 3076.36 0.328823
\(445\) 0 0
\(446\) −3793.03 −0.402703
\(447\) 2507.23 0.265297
\(448\) −479.224 −0.0505384
\(449\) 1387.50 0.145836 0.0729179 0.997338i \(-0.476769\pi\)
0.0729179 + 0.997338i \(0.476769\pi\)
\(450\) 0 0
\(451\) 11235.7 1.17310
\(452\) −736.682 −0.0766607
\(453\) 10111.8 1.04877
\(454\) −5993.26 −0.619554
\(455\) 0 0
\(456\) 1479.22 0.151910
\(457\) 1208.57 0.123707 0.0618537 0.998085i \(-0.480299\pi\)
0.0618537 + 0.998085i \(0.480299\pi\)
\(458\) −10948.5 −1.11701
\(459\) −207.488 −0.0210995
\(460\) 0 0
\(461\) −1838.27 −0.185720 −0.0928599 0.995679i \(-0.529601\pi\)
−0.0928599 + 0.995679i \(0.529601\pi\)
\(462\) 9269.58 0.933463
\(463\) 13925.4 1.39777 0.698885 0.715234i \(-0.253680\pi\)
0.698885 + 0.715234i \(0.253680\pi\)
\(464\) −2309.82 −0.231100
\(465\) 0 0
\(466\) 17070.3 1.69692
\(467\) 8692.90 0.861369 0.430685 0.902502i \(-0.358272\pi\)
0.430685 + 0.902502i \(0.358272\pi\)
\(468\) 367.810 0.0363291
\(469\) −8494.63 −0.836344
\(470\) 0 0
\(471\) −411.934 −0.0402992
\(472\) 4831.43 0.471154
\(473\) 2202.21 0.214076
\(474\) −662.795 −0.0642261
\(475\) 0 0
\(476\) 750.566 0.0722734
\(477\) 207.428 0.0199108
\(478\) −6141.45 −0.587664
\(479\) 9915.68 0.945843 0.472922 0.881105i \(-0.343199\pi\)
0.472922 + 0.881105i \(0.343199\pi\)
\(480\) 0 0
\(481\) −1986.90 −0.188347
\(482\) −5931.50 −0.560523
\(483\) −5150.48 −0.485207
\(484\) 1586.01 0.148949
\(485\) 0 0
\(486\) −862.312 −0.0804841
\(487\) −16633.8 −1.54774 −0.773871 0.633344i \(-0.781682\pi\)
−0.773871 + 0.633344i \(0.781682\pi\)
\(488\) −4695.21 −0.435538
\(489\) −2579.38 −0.238535
\(490\) 0 0
\(491\) −291.435 −0.0267867 −0.0133933 0.999910i \(-0.504263\pi\)
−0.0133933 + 0.999910i \(0.504263\pi\)
\(492\) 3780.95 0.346460
\(493\) 222.857 0.0203590
\(494\) 1287.69 0.117279
\(495\) 0 0
\(496\) −6539.95 −0.592041
\(497\) 1962.67 0.177138
\(498\) 1741.62 0.156715
\(499\) 11845.7 1.06270 0.531350 0.847152i \(-0.321685\pi\)
0.531350 + 0.847152i \(0.321685\pi\)
\(500\) 0 0
\(501\) −2701.10 −0.240871
\(502\) −18893.3 −1.67978
\(503\) 16484.6 1.46126 0.730629 0.682775i \(-0.239227\pi\)
0.730629 + 0.682775i \(0.239227\pi\)
\(504\) −2314.31 −0.204538
\(505\) 0 0
\(506\) −11729.1 −1.03048
\(507\) 6353.45 0.556541
\(508\) −11865.7 −1.03633
\(509\) 11521.1 1.00327 0.501636 0.865079i \(-0.332732\pi\)
0.501636 + 0.865079i \(0.332732\pi\)
\(510\) 0 0
\(511\) −20828.7 −1.80315
\(512\) 7103.01 0.613109
\(513\) −1101.03 −0.0947592
\(514\) −7076.63 −0.607270
\(515\) 0 0
\(516\) 741.072 0.0632246
\(517\) 696.999 0.0592920
\(518\) −16850.5 −1.42928
\(519\) −1397.34 −0.118182
\(520\) 0 0
\(521\) 6623.78 0.556993 0.278496 0.960437i \(-0.410164\pi\)
0.278496 + 0.960437i \(0.410164\pi\)
\(522\) 926.187 0.0776592
\(523\) 13552.8 1.13312 0.566559 0.824021i \(-0.308274\pi\)
0.566559 + 0.824021i \(0.308274\pi\)
\(524\) −694.452 −0.0578956
\(525\) 0 0
\(526\) 5929.75 0.491538
\(527\) 630.992 0.0521564
\(528\) −9783.21 −0.806363
\(529\) −5649.91 −0.464363
\(530\) 0 0
\(531\) −3596.17 −0.293899
\(532\) 3982.85 0.324584
\(533\) −2441.97 −0.198449
\(534\) −14605.4 −1.18359
\(535\) 0 0
\(536\) 4829.73 0.389203
\(537\) −3431.71 −0.275772
\(538\) 3160.20 0.253245
\(539\) −4473.93 −0.357524
\(540\) 0 0
\(541\) 10971.0 0.871866 0.435933 0.899979i \(-0.356418\pi\)
0.435933 + 0.899979i \(0.356418\pi\)
\(542\) 23597.6 1.87012
\(543\) 1036.85 0.0819442
\(544\) −1428.67 −0.112599
\(545\) 0 0
\(546\) −2014.65 −0.157910
\(547\) 12428.0 0.971453 0.485726 0.874111i \(-0.338555\pi\)
0.485726 + 0.874111i \(0.338555\pi\)
\(548\) 1182.17 0.0921531
\(549\) 3494.78 0.271682
\(550\) 0 0
\(551\) 1182.58 0.0914333
\(552\) 2928.38 0.225797
\(553\) 1324.03 0.101815
\(554\) −22120.5 −1.69641
\(555\) 0 0
\(556\) −10537.4 −0.803751
\(557\) −22737.5 −1.72966 −0.864828 0.502069i \(-0.832572\pi\)
−0.864828 + 0.502069i \(0.832572\pi\)
\(558\) 2622.38 0.198950
\(559\) −478.629 −0.0362144
\(560\) 0 0
\(561\) 943.910 0.0710373
\(562\) −10964.7 −0.822988
\(563\) 20051.1 1.50099 0.750493 0.660878i \(-0.229816\pi\)
0.750493 + 0.660878i \(0.229816\pi\)
\(564\) 234.549 0.0175111
\(565\) 0 0
\(566\) −5833.96 −0.433250
\(567\) 1722.60 0.127588
\(568\) −1115.90 −0.0824334
\(569\) 10035.7 0.739397 0.369699 0.929152i \(-0.379461\pi\)
0.369699 + 0.929152i \(0.379461\pi\)
\(570\) 0 0
\(571\) 22946.3 1.68174 0.840870 0.541237i \(-0.182044\pi\)
0.840870 + 0.541237i \(0.182044\pi\)
\(572\) −1673.25 −0.122312
\(573\) −9241.00 −0.673732
\(574\) −20709.9 −1.50595
\(575\) 0 0
\(576\) −202.806 −0.0146706
\(577\) −14230.3 −1.02672 −0.513358 0.858174i \(-0.671599\pi\)
−0.513358 + 0.858174i \(0.671599\pi\)
\(578\) −17224.7 −1.23954
\(579\) 13685.3 0.982281
\(580\) 0 0
\(581\) −3479.16 −0.248434
\(582\) 13452.5 0.958114
\(583\) −943.637 −0.0670351
\(584\) 11842.5 0.839117
\(585\) 0 0
\(586\) 235.324 0.0165890
\(587\) −12173.9 −0.855999 −0.428000 0.903779i \(-0.640782\pi\)
−0.428000 + 0.903779i \(0.640782\pi\)
\(588\) −1505.53 −0.105590
\(589\) 3348.33 0.234237
\(590\) 0 0
\(591\) 7563.40 0.526424
\(592\) 17784.2 1.23467
\(593\) −21548.0 −1.49219 −0.746097 0.665838i \(-0.768074\pi\)
−0.746097 + 0.665838i \(0.768074\pi\)
\(594\) 3922.86 0.270971
\(595\) 0 0
\(596\) −3838.25 −0.263793
\(597\) 9001.47 0.617095
\(598\) 2549.21 0.174323
\(599\) 22162.4 1.51174 0.755870 0.654722i \(-0.227214\pi\)
0.755870 + 0.654722i \(0.227214\pi\)
\(600\) 0 0
\(601\) 2344.90 0.159152 0.0795761 0.996829i \(-0.474643\pi\)
0.0795761 + 0.996829i \(0.474643\pi\)
\(602\) −4059.16 −0.274816
\(603\) −3594.90 −0.242779
\(604\) −15479.9 −1.04283
\(605\) 0 0
\(606\) −1581.25 −0.105997
\(607\) −4273.53 −0.285761 −0.142881 0.989740i \(-0.545637\pi\)
−0.142881 + 0.989740i \(0.545637\pi\)
\(608\) −7581.20 −0.505688
\(609\) −1850.20 −0.123110
\(610\) 0 0
\(611\) −151.486 −0.0100302
\(612\) 317.637 0.0209799
\(613\) 28945.8 1.90719 0.953597 0.301085i \(-0.0973487\pi\)
0.953597 + 0.301085i \(0.0973487\pi\)
\(614\) 23905.3 1.57124
\(615\) 0 0
\(616\) 10528.3 0.688633
\(617\) −885.511 −0.0577785 −0.0288892 0.999583i \(-0.509197\pi\)
−0.0288892 + 0.999583i \(0.509197\pi\)
\(618\) 15815.3 1.02943
\(619\) −6120.02 −0.397390 −0.198695 0.980061i \(-0.563670\pi\)
−0.198695 + 0.980061i \(0.563670\pi\)
\(620\) 0 0
\(621\) −2179.67 −0.140849
\(622\) −19412.9 −1.25142
\(623\) 29176.5 1.87630
\(624\) 2126.28 0.136409
\(625\) 0 0
\(626\) −3206.03 −0.204694
\(627\) 5008.82 0.319032
\(628\) 630.618 0.0400707
\(629\) −1715.87 −0.108770
\(630\) 0 0
\(631\) 9436.47 0.595341 0.297670 0.954669i \(-0.403790\pi\)
0.297670 + 0.954669i \(0.403790\pi\)
\(632\) −752.798 −0.0473808
\(633\) −2530.20 −0.158873
\(634\) 3125.52 0.195789
\(635\) 0 0
\(636\) −317.546 −0.0197980
\(637\) 972.363 0.0604810
\(638\) −4213.44 −0.261460
\(639\) 830.595 0.0514207
\(640\) 0 0
\(641\) −12119.8 −0.746807 −0.373403 0.927669i \(-0.621809\pi\)
−0.373403 + 0.927669i \(0.621809\pi\)
\(642\) 4912.80 0.302013
\(643\) 7693.03 0.471825 0.235912 0.971774i \(-0.424192\pi\)
0.235912 + 0.971774i \(0.424192\pi\)
\(644\) 7884.74 0.482457
\(645\) 0 0
\(646\) 1112.04 0.0677285
\(647\) −9921.81 −0.602885 −0.301443 0.953484i \(-0.597468\pi\)
−0.301443 + 0.953484i \(0.597468\pi\)
\(648\) −979.408 −0.0593747
\(649\) 16359.8 0.989489
\(650\) 0 0
\(651\) −5238.61 −0.315388
\(652\) 3948.70 0.237183
\(653\) −9973.03 −0.597665 −0.298832 0.954306i \(-0.596597\pi\)
−0.298832 + 0.954306i \(0.596597\pi\)
\(654\) −16139.7 −0.965006
\(655\) 0 0
\(656\) 21857.4 1.30090
\(657\) −8814.67 −0.523429
\(658\) −1284.72 −0.0761150
\(659\) −24918.9 −1.47299 −0.736495 0.676443i \(-0.763521\pi\)
−0.736495 + 0.676443i \(0.763521\pi\)
\(660\) 0 0
\(661\) 14562.7 0.856922 0.428461 0.903560i \(-0.359056\pi\)
0.428461 + 0.903560i \(0.359056\pi\)
\(662\) 2161.60 0.126908
\(663\) −205.149 −0.0120171
\(664\) 1978.12 0.115612
\(665\) 0 0
\(666\) −7131.08 −0.414901
\(667\) 2341.13 0.135905
\(668\) 4135.05 0.239506
\(669\) 3206.64 0.185315
\(670\) 0 0
\(671\) −15898.6 −0.914690
\(672\) 11861.1 0.680882
\(673\) −10744.1 −0.615388 −0.307694 0.951485i \(-0.599557\pi\)
−0.307694 + 0.951485i \(0.599557\pi\)
\(674\) 33617.6 1.92122
\(675\) 0 0
\(676\) −9726.32 −0.553387
\(677\) −842.278 −0.0478159 −0.0239080 0.999714i \(-0.507611\pi\)
−0.0239080 + 0.999714i \(0.507611\pi\)
\(678\) 1707.65 0.0967285
\(679\) −26873.4 −1.51886
\(680\) 0 0
\(681\) 5066.71 0.285105
\(682\) −11929.8 −0.669819
\(683\) 8313.36 0.465742 0.232871 0.972508i \(-0.425188\pi\)
0.232871 + 0.972508i \(0.425188\pi\)
\(684\) 1685.53 0.0942220
\(685\) 0 0
\(686\) −17638.8 −0.981709
\(687\) 9255.91 0.514025
\(688\) 4284.08 0.237397
\(689\) 205.090 0.0113401
\(690\) 0 0
\(691\) 16891.1 0.929909 0.464954 0.885335i \(-0.346071\pi\)
0.464954 + 0.885335i \(0.346071\pi\)
\(692\) 2139.15 0.117512
\(693\) −7836.52 −0.429559
\(694\) −12196.1 −0.667085
\(695\) 0 0
\(696\) 1051.96 0.0572907
\(697\) −2108.86 −0.114604
\(698\) 2497.97 0.135458
\(699\) −14431.2 −0.780887
\(700\) 0 0
\(701\) 26296.2 1.41682 0.708412 0.705799i \(-0.249412\pi\)
0.708412 + 0.705799i \(0.249412\pi\)
\(702\) −852.594 −0.0458391
\(703\) −9105.18 −0.488490
\(704\) 922.613 0.0493925
\(705\) 0 0
\(706\) −10582.6 −0.564136
\(707\) 3158.80 0.168032
\(708\) 5505.27 0.292233
\(709\) 26644.7 1.41137 0.705686 0.708525i \(-0.250639\pi\)
0.705686 + 0.708525i \(0.250639\pi\)
\(710\) 0 0
\(711\) 560.328 0.0295555
\(712\) −16588.7 −0.873158
\(713\) 6628.61 0.348167
\(714\) −1739.83 −0.0911927
\(715\) 0 0
\(716\) 5253.52 0.274208
\(717\) 5191.99 0.270430
\(718\) 30466.7 1.58357
\(719\) 5825.10 0.302141 0.151071 0.988523i \(-0.451728\pi\)
0.151071 + 0.988523i \(0.451728\pi\)
\(720\) 0 0
\(721\) −31593.6 −1.63191
\(722\) −18438.9 −0.950450
\(723\) 5014.50 0.257941
\(724\) −1587.29 −0.0814797
\(725\) 0 0
\(726\) −3676.42 −0.187940
\(727\) −6715.29 −0.342581 −0.171290 0.985221i \(-0.554794\pi\)
−0.171290 + 0.985221i \(0.554794\pi\)
\(728\) −2288.22 −0.116493
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −413.340 −0.0209137
\(732\) −5350.06 −0.270142
\(733\) −14206.6 −0.715870 −0.357935 0.933747i \(-0.616519\pi\)
−0.357935 + 0.933747i \(0.616519\pi\)
\(734\) −24803.0 −1.24727
\(735\) 0 0
\(736\) −15008.3 −0.751649
\(737\) 16354.1 0.817381
\(738\) −8764.36 −0.437155
\(739\) −30931.2 −1.53968 −0.769840 0.638237i \(-0.779664\pi\)
−0.769840 + 0.638237i \(0.779664\pi\)
\(740\) 0 0
\(741\) −1088.62 −0.0539694
\(742\) 1739.33 0.0860550
\(743\) 32851.1 1.62206 0.811030 0.585005i \(-0.198907\pi\)
0.811030 + 0.585005i \(0.198907\pi\)
\(744\) 2978.48 0.146769
\(745\) 0 0
\(746\) 3905.42 0.191672
\(747\) −1472.37 −0.0721168
\(748\) −1445.01 −0.0706346
\(749\) −9814.07 −0.478769
\(750\) 0 0
\(751\) 36055.8 1.75192 0.875961 0.482382i \(-0.160228\pi\)
0.875961 + 0.482382i \(0.160228\pi\)
\(752\) 1355.91 0.0657512
\(753\) 15972.4 0.772998
\(754\) 915.749 0.0442302
\(755\) 0 0
\(756\) −2637.08 −0.126865
\(757\) 7094.16 0.340610 0.170305 0.985391i \(-0.445525\pi\)
0.170305 + 0.985391i \(0.445525\pi\)
\(758\) 28213.5 1.35193
\(759\) 9915.83 0.474205
\(760\) 0 0
\(761\) 23664.3 1.12724 0.563620 0.826034i \(-0.309408\pi\)
0.563620 + 0.826034i \(0.309408\pi\)
\(762\) 27505.0 1.30761
\(763\) 32241.6 1.52978
\(764\) 14146.8 0.669913
\(765\) 0 0
\(766\) −36054.5 −1.70065
\(767\) −3555.64 −0.167388
\(768\) −15522.9 −0.729342
\(769\) 16743.8 0.785172 0.392586 0.919715i \(-0.371581\pi\)
0.392586 + 0.919715i \(0.371581\pi\)
\(770\) 0 0
\(771\) 5982.59 0.279452
\(772\) −20950.4 −0.976713
\(773\) 2198.53 0.102297 0.0511485 0.998691i \(-0.483712\pi\)
0.0511485 + 0.998691i \(0.483712\pi\)
\(774\) −1717.83 −0.0797752
\(775\) 0 0
\(776\) 15279.2 0.706819
\(777\) 14245.4 0.657725
\(778\) 34671.6 1.59773
\(779\) −11190.6 −0.514691
\(780\) 0 0
\(781\) −3778.57 −0.173122
\(782\) 2201.47 0.100671
\(783\) −783.000 −0.0357371
\(784\) −8703.37 −0.396473
\(785\) 0 0
\(786\) 1609.76 0.0730512
\(787\) 10092.7 0.457134 0.228567 0.973528i \(-0.426596\pi\)
0.228567 + 0.973528i \(0.426596\pi\)
\(788\) −11578.6 −0.523440
\(789\) −5013.02 −0.226195
\(790\) 0 0
\(791\) −3411.30 −0.153340
\(792\) 4455.56 0.199901
\(793\) 3455.39 0.154735
\(794\) 11324.0 0.506138
\(795\) 0 0
\(796\) −13780.1 −0.613597
\(797\) 35534.7 1.57930 0.789652 0.613555i \(-0.210261\pi\)
0.789652 + 0.613555i \(0.210261\pi\)
\(798\) −9232.36 −0.409551
\(799\) −130.822 −0.00579241
\(800\) 0 0
\(801\) 12347.4 0.544663
\(802\) 39394.7 1.73451
\(803\) 40100.0 1.76226
\(804\) 5503.34 0.241403
\(805\) 0 0
\(806\) 2592.83 0.113311
\(807\) −2671.64 −0.116538
\(808\) −1795.98 −0.0781958
\(809\) 27966.3 1.21538 0.607691 0.794173i \(-0.292096\pi\)
0.607691 + 0.794173i \(0.292096\pi\)
\(810\) 0 0
\(811\) −19134.4 −0.828481 −0.414241 0.910167i \(-0.635953\pi\)
−0.414241 + 0.910167i \(0.635953\pi\)
\(812\) 2832.42 0.122412
\(813\) −19949.5 −0.860589
\(814\) 32441.0 1.39687
\(815\) 0 0
\(816\) 1836.24 0.0787760
\(817\) −2193.37 −0.0939246
\(818\) −18679.3 −0.798420
\(819\) 1703.19 0.0726669
\(820\) 0 0
\(821\) −21420.6 −0.910577 −0.455288 0.890344i \(-0.650464\pi\)
−0.455288 + 0.890344i \(0.650464\pi\)
\(822\) −2740.31 −0.116276
\(823\) 16122.4 0.682855 0.341428 0.939908i \(-0.389090\pi\)
0.341428 + 0.939908i \(0.389090\pi\)
\(824\) 17962.9 0.759428
\(825\) 0 0
\(826\) −30154.7 −1.27024
\(827\) −22131.9 −0.930596 −0.465298 0.885154i \(-0.654053\pi\)
−0.465298 + 0.885154i \(0.654053\pi\)
\(828\) 3336.80 0.140050
\(829\) 135.660 0.00568355 0.00284178 0.999996i \(-0.499095\pi\)
0.00284178 + 0.999996i \(0.499095\pi\)
\(830\) 0 0
\(831\) 18700.7 0.780652
\(832\) −200.521 −0.00835553
\(833\) 839.724 0.0349276
\(834\) 24426.0 1.01415
\(835\) 0 0
\(836\) −7667.88 −0.317224
\(837\) −2216.97 −0.0915526
\(838\) 19038.6 0.784818
\(839\) −32154.4 −1.32311 −0.661557 0.749895i \(-0.730104\pi\)
−0.661557 + 0.749895i \(0.730104\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 15805.0 0.646886
\(843\) 9269.60 0.378721
\(844\) 3873.42 0.157972
\(845\) 0 0
\(846\) −543.691 −0.0220951
\(847\) 7344.21 0.297934
\(848\) −1835.71 −0.0743378
\(849\) 4932.04 0.199372
\(850\) 0 0
\(851\) −18025.3 −0.726085
\(852\) −1271.54 −0.0511292
\(853\) −2797.50 −0.112291 −0.0561457 0.998423i \(-0.517881\pi\)
−0.0561457 + 0.998423i \(0.517881\pi\)
\(854\) 29304.5 1.17422
\(855\) 0 0
\(856\) 5579.92 0.222801
\(857\) −9053.14 −0.360851 −0.180425 0.983589i \(-0.557747\pi\)
−0.180425 + 0.983589i \(0.557747\pi\)
\(858\) 3878.65 0.154330
\(859\) 23178.7 0.920660 0.460330 0.887748i \(-0.347731\pi\)
0.460330 + 0.887748i \(0.347731\pi\)
\(860\) 0 0
\(861\) 17508.2 0.693004
\(862\) −53813.1 −2.12631
\(863\) 7117.61 0.280749 0.140374 0.990098i \(-0.455169\pi\)
0.140374 + 0.990098i \(0.455169\pi\)
\(864\) 5019.59 0.197650
\(865\) 0 0
\(866\) −20399.1 −0.800450
\(867\) 14561.8 0.570410
\(868\) 8019.65 0.313600
\(869\) −2549.06 −0.0995064
\(870\) 0 0
\(871\) −3554.39 −0.138273
\(872\) −18331.4 −0.711904
\(873\) −11372.7 −0.440903
\(874\) 11682.0 0.452118
\(875\) 0 0
\(876\) 13494.1 0.520462
\(877\) −44014.6 −1.69472 −0.847359 0.531020i \(-0.821809\pi\)
−0.847359 + 0.531020i \(0.821809\pi\)
\(878\) −8563.47 −0.329161
\(879\) −198.943 −0.00763388
\(880\) 0 0
\(881\) −31970.4 −1.22260 −0.611299 0.791399i \(-0.709353\pi\)
−0.611299 + 0.791399i \(0.709353\pi\)
\(882\) 3489.86 0.133231
\(883\) −13620.9 −0.519116 −0.259558 0.965727i \(-0.583577\pi\)
−0.259558 + 0.965727i \(0.583577\pi\)
\(884\) 314.058 0.0119490
\(885\) 0 0
\(886\) 19866.8 0.753315
\(887\) −23494.2 −0.889357 −0.444678 0.895690i \(-0.646682\pi\)
−0.444678 + 0.895690i \(0.646682\pi\)
\(888\) −8099.44 −0.306080
\(889\) −54945.4 −2.07290
\(890\) 0 0
\(891\) −3316.39 −0.124695
\(892\) −4908.96 −0.184265
\(893\) −694.200 −0.0260140
\(894\) 8897.17 0.332848
\(895\) 0 0
\(896\) 29929.1 1.11591
\(897\) −2155.11 −0.0802195
\(898\) 4923.70 0.182969
\(899\) 2381.19 0.0883392
\(900\) 0 0
\(901\) 177.114 0.00654886
\(902\) 39871.1 1.47180
\(903\) 3431.62 0.126464
\(904\) 1939.54 0.0713585
\(905\) 0 0
\(906\) 35882.8 1.31581
\(907\) −11695.6 −0.428165 −0.214083 0.976816i \(-0.568676\pi\)
−0.214083 + 0.976816i \(0.568676\pi\)
\(908\) −7756.49 −0.283489
\(909\) 1336.79 0.0487774
\(910\) 0 0
\(911\) −30991.2 −1.12710 −0.563549 0.826083i \(-0.690564\pi\)
−0.563549 + 0.826083i \(0.690564\pi\)
\(912\) 9743.93 0.353787
\(913\) 6698.16 0.242800
\(914\) 4288.72 0.155206
\(915\) 0 0
\(916\) −14169.6 −0.511111
\(917\) −3215.74 −0.115805
\(918\) −736.292 −0.0264720
\(919\) −16612.6 −0.596300 −0.298150 0.954519i \(-0.596370\pi\)
−0.298150 + 0.954519i \(0.596370\pi\)
\(920\) 0 0
\(921\) −20209.6 −0.723049
\(922\) −6523.30 −0.233008
\(923\) 821.235 0.0292863
\(924\) 11996.7 0.427125
\(925\) 0 0
\(926\) 49415.8 1.75367
\(927\) −13370.3 −0.473720
\(928\) −5391.41 −0.190713
\(929\) 53475.3 1.88856 0.944278 0.329149i \(-0.106762\pi\)
0.944278 + 0.329149i \(0.106762\pi\)
\(930\) 0 0
\(931\) 4455.96 0.156862
\(932\) 22092.4 0.776460
\(933\) 16411.7 0.575878
\(934\) 30847.7 1.08069
\(935\) 0 0
\(936\) −968.370 −0.0338164
\(937\) −21279.8 −0.741923 −0.370961 0.928648i \(-0.620972\pi\)
−0.370961 + 0.928648i \(0.620972\pi\)
\(938\) −30144.1 −1.04930
\(939\) 2710.38 0.0941960
\(940\) 0 0
\(941\) 13268.0 0.459645 0.229822 0.973233i \(-0.426186\pi\)
0.229822 + 0.973233i \(0.426186\pi\)
\(942\) −1461.79 −0.0505602
\(943\) −22153.7 −0.765031
\(944\) 31825.6 1.09728
\(945\) 0 0
\(946\) 7814.80 0.268585
\(947\) −21016.6 −0.721170 −0.360585 0.932726i \(-0.617423\pi\)
−0.360585 + 0.932726i \(0.617423\pi\)
\(948\) −857.791 −0.0293879
\(949\) −8715.33 −0.298115
\(950\) 0 0
\(951\) −2642.32 −0.0900979
\(952\) −1976.09 −0.0672746
\(953\) −42402.9 −1.44131 −0.720654 0.693295i \(-0.756158\pi\)
−0.720654 + 0.693295i \(0.756158\pi\)
\(954\) 736.080 0.0249806
\(955\) 0 0
\(956\) −7948.28 −0.268897
\(957\) 3562.05 0.120318
\(958\) 35186.9 1.18668
\(959\) 5474.19 0.184328
\(960\) 0 0
\(961\) −23049.0 −0.773689
\(962\) −7050.72 −0.236304
\(963\) −4153.29 −0.138980
\(964\) −7676.56 −0.256479
\(965\) 0 0
\(966\) −18277.0 −0.608752
\(967\) −31613.7 −1.05132 −0.525661 0.850694i \(-0.676182\pi\)
−0.525661 + 0.850694i \(0.676182\pi\)
\(968\) −4175.65 −0.138647
\(969\) −940.120 −0.0311672
\(970\) 0 0
\(971\) −42637.4 −1.40916 −0.704582 0.709622i \(-0.748866\pi\)
−0.704582 + 0.709622i \(0.748866\pi\)
\(972\) −1116.01 −0.0368271
\(973\) −48794.8 −1.60770
\(974\) −59026.9 −1.94183
\(975\) 0 0
\(976\) −30928.3 −1.01433
\(977\) 7766.81 0.254332 0.127166 0.991881i \(-0.459412\pi\)
0.127166 + 0.991881i \(0.459412\pi\)
\(978\) −9153.21 −0.299271
\(979\) −56171.4 −1.83375
\(980\) 0 0
\(981\) 13644.6 0.444075
\(982\) −1034.19 −0.0336072
\(983\) 13603.8 0.441397 0.220698 0.975342i \(-0.429166\pi\)
0.220698 + 0.975342i \(0.429166\pi\)
\(984\) −9954.49 −0.322498
\(985\) 0 0
\(986\) 790.832 0.0255428
\(987\) 1086.11 0.0350265
\(988\) 1666.54 0.0536635
\(989\) −4342.16 −0.139608
\(990\) 0 0
\(991\) −13619.6 −0.436569 −0.218284 0.975885i \(-0.570046\pi\)
−0.218284 + 0.975885i \(0.570046\pi\)
\(992\) −15265.1 −0.488576
\(993\) −1827.42 −0.0584002
\(994\) 6964.74 0.222241
\(995\) 0 0
\(996\) 2254.01 0.0717080
\(997\) −27262.0 −0.865993 −0.432996 0.901396i \(-0.642544\pi\)
−0.432996 + 0.901396i \(0.642544\pi\)
\(998\) 42035.8 1.33329
\(999\) 6028.63 0.190928
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.4.a.k.1.5 6
5.4 even 2 435.4.a.h.1.2 6
15.14 odd 2 1305.4.a.h.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.h.1.2 6 5.4 even 2
1305.4.a.h.1.5 6 15.14 odd 2
2175.4.a.k.1.5 6 1.1 even 1 trivial