Properties

Label 2-2175-1.1-c3-0-50
Degree $2$
Conductor $2175$
Sign $1$
Analytic cond. $128.329$
Root an. cond. $11.3282$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.73·2-s − 3·3-s + 5.94·4-s − 11.2·6-s − 11.3·7-s − 7.67·8-s + 9·9-s − 55.6·11-s − 17.8·12-s + 20.9·13-s − 42.5·14-s − 76.2·16-s + 29.8·17-s + 33.6·18-s + 25.7·19-s + 34.1·21-s − 207.·22-s − 32.9·23-s + 23.0·24-s + 78.0·26-s − 27·27-s − 67.7·28-s − 29·29-s − 281.·31-s − 223.·32-s + 166.·33-s + 111.·34-s + ⋯
L(s)  = 1  + 1.32·2-s − 0.577·3-s + 0.743·4-s − 0.762·6-s − 0.615·7-s − 0.339·8-s + 0.333·9-s − 1.52·11-s − 0.429·12-s + 0.446·13-s − 0.812·14-s − 1.19·16-s + 0.425·17-s + 0.440·18-s + 0.311·19-s + 0.355·21-s − 2.01·22-s − 0.298·23-s + 0.195·24-s + 0.588·26-s − 0.192·27-s − 0.457·28-s − 0.185·29-s − 1.63·31-s − 1.23·32-s + 0.880·33-s + 0.561·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(128.329\)
Root analytic conductor: \(11.3282\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.014660508\)
\(L(\frac12)\) \(\approx\) \(2.014660508\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 \)
29 \( 1 + 29T \)
good2 \( 1 - 3.73T + 8T^{2} \)
7 \( 1 + 11.3T + 343T^{2} \)
11 \( 1 + 55.6T + 1.33e3T^{2} \)
13 \( 1 - 20.9T + 2.19e3T^{2} \)
17 \( 1 - 29.8T + 4.91e3T^{2} \)
19 \( 1 - 25.7T + 6.85e3T^{2} \)
23 \( 1 + 32.9T + 1.21e4T^{2} \)
31 \( 1 + 281.T + 2.97e4T^{2} \)
37 \( 1 - 390.T + 5.06e4T^{2} \)
41 \( 1 + 29.4T + 6.89e4T^{2} \)
43 \( 1 - 9.39T + 7.95e4T^{2} \)
47 \( 1 + 469.T + 1.03e5T^{2} \)
53 \( 1 - 607.T + 1.48e5T^{2} \)
59 \( 1 - 523.T + 2.05e5T^{2} \)
61 \( 1 - 854.T + 2.26e5T^{2} \)
67 \( 1 + 149.T + 3.00e5T^{2} \)
71 \( 1 - 462.T + 3.57e5T^{2} \)
73 \( 1 + 844.T + 3.89e5T^{2} \)
79 \( 1 - 91.0T + 4.93e5T^{2} \)
83 \( 1 + 671.T + 5.71e5T^{2} \)
89 \( 1 + 211.T + 7.04e5T^{2} \)
97 \( 1 - 1.77e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.667292030565916140117161765266, −7.69531737888007766391260531705, −6.90623280519045130582474639854, −5.97359872202995393617385114455, −5.53435663559863928497869452793, −4.83931138687408654591255118549, −3.85911383208860615814155361991, −3.13881226276043767324723843213, −2.17320708254868037060966983748, −0.51305280189833957909358177687, 0.51305280189833957909358177687, 2.17320708254868037060966983748, 3.13881226276043767324723843213, 3.85911383208860615814155361991, 4.83931138687408654591255118549, 5.53435663559863928497869452793, 5.97359872202995393617385114455, 6.90623280519045130582474639854, 7.69531737888007766391260531705, 8.667292030565916140117161765266

Graph of the $Z$-function along the critical line