L(s) = 1 | + 3.73·2-s − 3·3-s + 5.94·4-s − 11.2·6-s − 11.3·7-s − 7.67·8-s + 9·9-s − 55.6·11-s − 17.8·12-s + 20.9·13-s − 42.5·14-s − 76.2·16-s + 29.8·17-s + 33.6·18-s + 25.7·19-s + 34.1·21-s − 207.·22-s − 32.9·23-s + 23.0·24-s + 78.0·26-s − 27·27-s − 67.7·28-s − 29·29-s − 281.·31-s − 223.·32-s + 166.·33-s + 111.·34-s + ⋯ |
L(s) = 1 | + 1.32·2-s − 0.577·3-s + 0.743·4-s − 0.762·6-s − 0.615·7-s − 0.339·8-s + 0.333·9-s − 1.52·11-s − 0.429·12-s + 0.446·13-s − 0.812·14-s − 1.19·16-s + 0.425·17-s + 0.440·18-s + 0.311·19-s + 0.355·21-s − 2.01·22-s − 0.298·23-s + 0.195·24-s + 0.588·26-s − 0.192·27-s − 0.457·28-s − 0.185·29-s − 1.63·31-s − 1.23·32-s + 0.880·33-s + 0.561·34-s + ⋯ |
Λ(s)=(=(2175s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(2175s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.014660508 |
L(21) |
≈ |
2.014660508 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+3T |
| 5 | 1 |
| 29 | 1+29T |
good | 2 | 1−3.73T+8T2 |
| 7 | 1+11.3T+343T2 |
| 11 | 1+55.6T+1.33e3T2 |
| 13 | 1−20.9T+2.19e3T2 |
| 17 | 1−29.8T+4.91e3T2 |
| 19 | 1−25.7T+6.85e3T2 |
| 23 | 1+32.9T+1.21e4T2 |
| 31 | 1+281.T+2.97e4T2 |
| 37 | 1−390.T+5.06e4T2 |
| 41 | 1+29.4T+6.89e4T2 |
| 43 | 1−9.39T+7.95e4T2 |
| 47 | 1+469.T+1.03e5T2 |
| 53 | 1−607.T+1.48e5T2 |
| 59 | 1−523.T+2.05e5T2 |
| 61 | 1−854.T+2.26e5T2 |
| 67 | 1+149.T+3.00e5T2 |
| 71 | 1−462.T+3.57e5T2 |
| 73 | 1+844.T+3.89e5T2 |
| 79 | 1−91.0T+4.93e5T2 |
| 83 | 1+671.T+5.71e5T2 |
| 89 | 1+211.T+7.04e5T2 |
| 97 | 1−1.77e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.667292030565916140117161765266, −7.69531737888007766391260531705, −6.90623280519045130582474639854, −5.97359872202995393617385114455, −5.53435663559863928497869452793, −4.83931138687408654591255118549, −3.85911383208860615814155361991, −3.13881226276043767324723843213, −2.17320708254868037060966983748, −0.51305280189833957909358177687,
0.51305280189833957909358177687, 2.17320708254868037060966983748, 3.13881226276043767324723843213, 3.85911383208860615814155361991, 4.83931138687408654591255118549, 5.53435663559863928497869452793, 5.97359872202995393617385114455, 6.90623280519045130582474639854, 7.69531737888007766391260531705, 8.667292030565916140117161765266