Properties

Label 2175.4.a.u
Level 21752175
Weight 44
Character orbit 2175.a
Self dual yes
Analytic conductor 128.329128.329
Analytic rank 00
Dimension 1616
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,4,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 2175=35229 2175 = 3 \cdot 5^{2} \cdot 29
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 128.329154262128.329154262
Analytic rank: 00
Dimension: 1616
Coefficient field: Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x163x1592x14+239x13+3416x127461x1165355x10+115826x9+891088 x^{16} - 3 x^{15} - 92 x^{14} + 239 x^{13} + 3416 x^{12} - 7461 x^{11} - 65355 x^{10} + 115826 x^{9} + \cdots - 891088 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q23q3+(β2+β1+4)q4+3β1q6+(β7+1)q7+(β3β24β15)q8+9q9+(β4+β2+β1+1)q11++(9β4+9β2++9)q99+O(q100) q - \beta_1 q^{2} - 3 q^{3} + (\beta_{2} + \beta_1 + 4) q^{4} + 3 \beta_1 q^{6} + (\beta_{7} + 1) q^{7} + ( - \beta_{3} - \beta_{2} - 4 \beta_1 - 5) q^{8} + 9 q^{9} + ( - \beta_{4} + \beta_{2} + \beta_1 + 1) q^{11}+ \cdots + ( - 9 \beta_{4} + 9 \beta_{2} + \cdots + 9) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q3q248q3+65q4+9q6+12q790q8+144q9+22q11195q1242q13+39q14+181q16152q1727q18+128q1936q21129q22++198q99+O(q100) 16 q - 3 q^{2} - 48 q^{3} + 65 q^{4} + 9 q^{6} + 12 q^{7} - 90 q^{8} + 144 q^{9} + 22 q^{11} - 195 q^{12} - 42 q^{13} + 39 q^{14} + 181 q^{16} - 152 q^{17} - 27 q^{18} + 128 q^{19} - 36 q^{21} - 129 q^{22}+ \cdots + 198 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x163x1592x14+239x13+3416x127461x1165355x10+115826x9+891088 x^{16} - 3 x^{15} - 92 x^{14} + 239 x^{13} + 3416 x^{12} - 7461 x^{11} - 65355 x^{10} + 115826 x^{9} + \cdots - 891088 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2ν12 \nu^{2} - \nu - 12 Copy content Toggle raw display
β3\beta_{3}== ν3ν219ν+7 \nu^{3} - \nu^{2} - 19\nu + 7 Copy content Toggle raw display
β4\beta_{4}== (75 ⁣ ⁣71ν15++10 ⁣ ⁣16)/38 ⁣ ⁣60 ( 75\!\cdots\!71 \nu^{15} + \cdots + 10\!\cdots\!16 ) / 38\!\cdots\!60 Copy content Toggle raw display
β5\beta_{5}== (49 ⁣ ⁣79ν15+95 ⁣ ⁣04)/15 ⁣ ⁣40 ( - 49\!\cdots\!79 \nu^{15} + \cdots - 95\!\cdots\!04 ) / 15\!\cdots\!40 Copy content Toggle raw display
β6\beta_{6}== (49 ⁣ ⁣79ν15+94 ⁣ ⁣24)/15 ⁣ ⁣40 ( - 49\!\cdots\!79 \nu^{15} + \cdots - 94\!\cdots\!24 ) / 15\!\cdots\!40 Copy content Toggle raw display
β7\beta_{7}== (57 ⁣ ⁣17ν15++10 ⁣ ⁣32)/15 ⁣ ⁣40 ( 57\!\cdots\!17 \nu^{15} + \cdots + 10\!\cdots\!32 ) / 15\!\cdots\!40 Copy content Toggle raw display
β8\beta_{8}== (87 ⁣ ⁣21ν15++17 ⁣ ⁣56)/15 ⁣ ⁣40 ( 87\!\cdots\!21 \nu^{15} + \cdots + 17\!\cdots\!56 ) / 15\!\cdots\!40 Copy content Toggle raw display
β9\beta_{9}== (24 ⁣ ⁣40ν15++40 ⁣ ⁣36)/38 ⁣ ⁣96 ( 24\!\cdots\!40 \nu^{15} + \cdots + 40\!\cdots\!36 ) / 38\!\cdots\!96 Copy content Toggle raw display
β10\beta_{10}== (64 ⁣ ⁣07ν15+11 ⁣ ⁣12)/77 ⁣ ⁣20 ( - 64\!\cdots\!07 \nu^{15} + \cdots - 11\!\cdots\!12 ) / 77\!\cdots\!20 Copy content Toggle raw display
β11\beta_{11}== (97 ⁣ ⁣33ν15+16 ⁣ ⁣88)/77 ⁣ ⁣20 ( - 97\!\cdots\!33 \nu^{15} + \cdots - 16\!\cdots\!88 ) / 77\!\cdots\!20 Copy content Toggle raw display
β12\beta_{12}== (11 ⁣ ⁣91ν15++19 ⁣ ⁣96)/77 ⁣ ⁣20 ( 11\!\cdots\!91 \nu^{15} + \cdots + 19\!\cdots\!96 ) / 77\!\cdots\!20 Copy content Toggle raw display
β13\beta_{13}== (11 ⁣ ⁣03ν15+20 ⁣ ⁣08)/77 ⁣ ⁣20 ( - 11\!\cdots\!03 \nu^{15} + \cdots - 20\!\cdots\!08 ) / 77\!\cdots\!20 Copy content Toggle raw display
β14\beta_{14}== (33 ⁣ ⁣91ν15++60 ⁣ ⁣96)/15 ⁣ ⁣40 ( 33\!\cdots\!91 \nu^{15} + \cdots + 60\!\cdots\!96 ) / 15\!\cdots\!40 Copy content Toggle raw display
β15\beta_{15}== (55 ⁣ ⁣81ν15++99 ⁣ ⁣56)/15 ⁣ ⁣40 ( 55\!\cdots\!81 \nu^{15} + \cdots + 99\!\cdots\!56 ) / 15\!\cdots\!40 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+β1+12 \beta_{2} + \beta _1 + 12 Copy content Toggle raw display
ν3\nu^{3}== β3+β2+20β1+5 \beta_{3} + \beta_{2} + 20\beta _1 + 5 Copy content Toggle raw display
ν4\nu^{4}== β6β5+2β3+27β2+35β1+233 \beta_{6} - \beta_{5} + 2\beta_{3} + 27\beta_{2} + 35\beta _1 + 233 Copy content Toggle raw display
ν5\nu^{5}== β15+2β14β122β11+2β10β9+β8++231 - \beta_{15} + 2 \beta_{14} - \beta_{12} - 2 \beta_{11} + 2 \beta_{10} - \beta_{9} + \beta_{8} + \cdots + 231 Copy content Toggle raw display
ν6\nu^{6}== 4β152β146β133β127β11+β10+β9++5221 - 4 \beta_{15} - 2 \beta_{14} - 6 \beta_{13} - 3 \beta_{12} - 7 \beta_{11} + \beta_{10} + \beta_{9} + \cdots + 5221 Copy content Toggle raw display
ν7\nu^{7}== 61β15+94β1412β1358β12127β11+105β10++8341 - 61 \beta_{15} + 94 \beta_{14} - 12 \beta_{13} - 58 \beta_{12} - 127 \beta_{11} + 105 \beta_{10} + \cdots + 8341 Copy content Toggle raw display
ν8\nu^{8}== 243β1582β14320β13230β12488β11+114β10++127456 - 243 \beta_{15} - 82 \beta_{14} - 320 \beta_{13} - 230 \beta_{12} - 488 \beta_{11} + 114 \beta_{10} + \cdots + 127456 Copy content Toggle raw display
ν9\nu^{9}== 2605β15+3262β14764β132455β125535β11++277339 - 2605 \beta_{15} + 3262 \beta_{14} - 764 \beta_{13} - 2455 \beta_{12} - 5535 \beta_{11} + \cdots + 277339 Copy content Toggle raw display
ν10\nu^{10}== 10575β152152β1412254β1311197β1223141β11++3296347 - 10575 \beta_{15} - 2152 \beta_{14} - 12254 \beta_{13} - 11197 \beta_{12} - 23141 \beta_{11} + \cdots + 3296347 Copy content Toggle raw display
ν11\nu^{11}== 96349β15+101188β1433842β1391445β12208426β11++8897540 - 96349 \beta_{15} + 101188 \beta_{14} - 33842 \beta_{13} - 91445 \beta_{12} - 208426 \beta_{11} + \cdots + 8897540 Copy content Toggle raw display
ν12\nu^{12}== 404233β1538158β14415796β13450371β12931600β11++88851805 - 404233 \beta_{15} - 38158 \beta_{14} - 415796 \beta_{13} - 450371 \beta_{12} - 931600 \beta_{11} + \cdots + 88851805 Copy content Toggle raw display
ν13\nu^{13}== 3314995β15+2981458β141297704β133184681β127301092β11++280930931 - 3314995 \beta_{15} + 2981458 \beta_{14} - 1297704 \beta_{13} - 3184681 \beta_{12} - 7301092 \beta_{11} + \cdots + 280930931 Copy content Toggle raw display
ν14\nu^{14}== 14448930β15103100β1413361028β1316403098β12++2470535187 - 14448930 \beta_{15} - 103100 \beta_{14} - 13361028 \beta_{13} - 16403098 \beta_{12} + \cdots + 2470535187 Copy content Toggle raw display
ν15\nu^{15}== 109564961β15+85725756β1446225438β13106614312β12++8809490893 - 109564961 \beta_{15} + 85725756 \beta_{14} - 46225438 \beta_{13} - 106614312 \beta_{12} + \cdots + 8809490893 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
5.58145
4.87062
4.67314
3.58918
3.08631
2.66029
0.515365
0.501041
0.450617
−1.18577
−1.86231
−2.99493
−3.73424
−3.83202
−4.35146
−4.96729
−5.58145 −3.00000 23.1526 0 16.7443 10.0377 −84.5733 9.00000 0
1.2 −4.87062 −3.00000 15.7230 0 14.6119 −16.1001 −37.6156 9.00000 0
1.3 −4.67314 −3.00000 13.8382 0 14.0194 −23.4063 −27.2828 9.00000 0
1.4 −3.58918 −3.00000 4.88219 0 10.7675 30.7036 11.1904 9.00000 0
1.5 −3.08631 −3.00000 1.52531 0 9.25893 25.9780 19.9829 9.00000 0
1.6 −2.66029 −3.00000 −0.922855 0 7.98087 −18.8651 23.7374 9.00000 0
1.7 −0.515365 −3.00000 −7.73440 0 1.54609 15.3973 8.10895 9.00000 0
1.8 −0.501041 −3.00000 −7.74896 0 1.50312 −17.4547 7.89087 9.00000 0
1.9 −0.450617 −3.00000 −7.79694 0 1.35185 −0.788922 7.11838 9.00000 0
1.10 1.18577 −3.00000 −6.59395 0 −3.55731 −7.22246 −17.3051 9.00000 0
1.11 1.86231 −3.00000 −4.53181 0 −5.58692 13.3897 −23.3381 9.00000 0
1.12 2.99493 −3.00000 0.969579 0 −8.98478 4.43075 −21.0556 9.00000 0
1.13 3.73424 −3.00000 5.94451 0 −11.2027 −11.3963 −7.67567 9.00000 0
1.14 3.83202 −3.00000 6.68436 0 −11.4961 −36.2405 −5.04155 9.00000 0
1.15 4.35146 −3.00000 10.9352 0 −13.0544 29.5878 12.7724 9.00000 0
1.16 4.96729 −3.00000 16.6740 0 −14.9019 13.9493 43.0864 9.00000 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.16
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
55 +1 +1
2929 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2175.4.a.u 16
5.b even 2 1 2175.4.a.v yes 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2175.4.a.u 16 1.a even 1 1 trivial
2175.4.a.v yes 16 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(2175))S_{4}^{\mathrm{new}}(\Gamma_0(2175)):

T216+3T21592T214239T213+3416T212+7461T211+891088 T_{2}^{16} + 3 T_{2}^{15} - 92 T_{2}^{14} - 239 T_{2}^{13} + 3416 T_{2}^{12} + 7461 T_{2}^{11} + \cdots - 891088 Copy content Toggle raw display
T71612T7153022T714+35587T713+3434893T712++88 ⁣ ⁣64 T_{7}^{16} - 12 T_{7}^{15} - 3022 T_{7}^{14} + 35587 T_{7}^{13} + 3434893 T_{7}^{12} + \cdots + 88\!\cdots\!64 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T16+3T15+891088 T^{16} + 3 T^{15} + \cdots - 891088 Copy content Toggle raw display
33 (T+3)16 (T + 3)^{16} Copy content Toggle raw display
55 T16 T^{16} Copy content Toggle raw display
77 T16++88 ⁣ ⁣64 T^{16} + \cdots + 88\!\cdots\!64 Copy content Toggle raw display
1111 T16++59 ⁣ ⁣88 T^{16} + \cdots + 59\!\cdots\!88 Copy content Toggle raw display
1313 T16++10 ⁣ ⁣76 T^{16} + \cdots + 10\!\cdots\!76 Copy content Toggle raw display
1717 T16++19 ⁣ ⁣16 T^{16} + \cdots + 19\!\cdots\!16 Copy content Toggle raw display
1919 T16+26 ⁣ ⁣60 T^{16} + \cdots - 26\!\cdots\!60 Copy content Toggle raw display
2323 T16++19 ⁣ ⁣76 T^{16} + \cdots + 19\!\cdots\!76 Copy content Toggle raw display
2929 (T+29)16 (T + 29)^{16} Copy content Toggle raw display
3131 T16+10 ⁣ ⁣00 T^{16} + \cdots - 10\!\cdots\!00 Copy content Toggle raw display
3737 T16++10 ⁣ ⁣28 T^{16} + \cdots + 10\!\cdots\!28 Copy content Toggle raw display
4141 T16++71 ⁣ ⁣84 T^{16} + \cdots + 71\!\cdots\!84 Copy content Toggle raw display
4343 T16+27 ⁣ ⁣16 T^{16} + \cdots - 27\!\cdots\!16 Copy content Toggle raw display
4747 T16++30 ⁣ ⁣52 T^{16} + \cdots + 30\!\cdots\!52 Copy content Toggle raw display
5353 T16++28 ⁣ ⁣00 T^{16} + \cdots + 28\!\cdots\!00 Copy content Toggle raw display
5959 T16++82 ⁣ ⁣40 T^{16} + \cdots + 82\!\cdots\!40 Copy content Toggle raw display
6161 T16+16 ⁣ ⁣00 T^{16} + \cdots - 16\!\cdots\!00 Copy content Toggle raw display
6767 T16+71 ⁣ ⁣16 T^{16} + \cdots - 71\!\cdots\!16 Copy content Toggle raw display
7171 T16++47 ⁣ ⁣92 T^{16} + \cdots + 47\!\cdots\!92 Copy content Toggle raw display
7373 T16++18 ⁣ ⁣12 T^{16} + \cdots + 18\!\cdots\!12 Copy content Toggle raw display
7979 T16+59 ⁣ ⁣40 T^{16} + \cdots - 59\!\cdots\!40 Copy content Toggle raw display
8383 T16+63 ⁣ ⁣96 T^{16} + \cdots - 63\!\cdots\!96 Copy content Toggle raw display
8989 T16++51 ⁣ ⁣00 T^{16} + \cdots + 51\!\cdots\!00 Copy content Toggle raw display
9797 T16++46 ⁣ ⁣04 T^{16} + \cdots + 46\!\cdots\!04 Copy content Toggle raw display
show more
show less