Properties

Label 2175.4.a.u
Level $2175$
Weight $4$
Character orbit 2175.a
Self dual yes
Analytic conductor $128.329$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,4,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(128.329154262\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} - 92 x^{14} + 239 x^{13} + 3416 x^{12} - 7461 x^{11} - 65355 x^{10} + 115826 x^{9} + \cdots - 891088 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - 3 q^{3} + (\beta_{2} + \beta_1 + 4) q^{4} + 3 \beta_1 q^{6} + (\beta_{7} + 1) q^{7} + ( - \beta_{3} - \beta_{2} - 4 \beta_1 - 5) q^{8} + 9 q^{9} + ( - \beta_{4} + \beta_{2} + \beta_1 + 1) q^{11}+ \cdots + ( - 9 \beta_{4} + 9 \beta_{2} + \cdots + 9) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 3 q^{2} - 48 q^{3} + 65 q^{4} + 9 q^{6} + 12 q^{7} - 90 q^{8} + 144 q^{9} + 22 q^{11} - 195 q^{12} - 42 q^{13} + 39 q^{14} + 181 q^{16} - 152 q^{17} - 27 q^{18} + 128 q^{19} - 36 q^{21} - 129 q^{22}+ \cdots + 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 3 x^{15} - 92 x^{14} + 239 x^{13} + 3416 x^{12} - 7461 x^{11} - 65355 x^{10} + 115826 x^{9} + \cdots - 891088 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 19\nu + 7 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 75\!\cdots\!71 \nu^{15} + \cdots + 10\!\cdots\!16 ) / 38\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 49\!\cdots\!79 \nu^{15} + \cdots - 95\!\cdots\!04 ) / 15\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 49\!\cdots\!79 \nu^{15} + \cdots - 94\!\cdots\!24 ) / 15\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 57\!\cdots\!17 \nu^{15} + \cdots + 10\!\cdots\!32 ) / 15\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 87\!\cdots\!21 \nu^{15} + \cdots + 17\!\cdots\!56 ) / 15\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 24\!\cdots\!40 \nu^{15} + \cdots + 40\!\cdots\!36 ) / 38\!\cdots\!96 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 64\!\cdots\!07 \nu^{15} + \cdots - 11\!\cdots\!12 ) / 77\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 97\!\cdots\!33 \nu^{15} + \cdots - 16\!\cdots\!88 ) / 77\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 11\!\cdots\!91 \nu^{15} + \cdots + 19\!\cdots\!96 ) / 77\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 11\!\cdots\!03 \nu^{15} + \cdots - 20\!\cdots\!08 ) / 77\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 33\!\cdots\!91 \nu^{15} + \cdots + 60\!\cdots\!96 ) / 15\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 55\!\cdots\!81 \nu^{15} + \cdots + 99\!\cdots\!56 ) / 15\!\cdots\!40 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 20\beta _1 + 5 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{6} - \beta_{5} + 2\beta_{3} + 27\beta_{2} + 35\beta _1 + 233 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - \beta_{15} + 2 \beta_{14} - \beta_{12} - 2 \beta_{11} + 2 \beta_{10} - \beta_{9} + \beta_{8} + \cdots + 231 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 4 \beta_{15} - 2 \beta_{14} - 6 \beta_{13} - 3 \beta_{12} - 7 \beta_{11} + \beta_{10} + \beta_{9} + \cdots + 5221 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 61 \beta_{15} + 94 \beta_{14} - 12 \beta_{13} - 58 \beta_{12} - 127 \beta_{11} + 105 \beta_{10} + \cdots + 8341 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 243 \beta_{15} - 82 \beta_{14} - 320 \beta_{13} - 230 \beta_{12} - 488 \beta_{11} + 114 \beta_{10} + \cdots + 127456 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 2605 \beta_{15} + 3262 \beta_{14} - 764 \beta_{13} - 2455 \beta_{12} - 5535 \beta_{11} + \cdots + 277339 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 10575 \beta_{15} - 2152 \beta_{14} - 12254 \beta_{13} - 11197 \beta_{12} - 23141 \beta_{11} + \cdots + 3296347 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 96349 \beta_{15} + 101188 \beta_{14} - 33842 \beta_{13} - 91445 \beta_{12} - 208426 \beta_{11} + \cdots + 8897540 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 404233 \beta_{15} - 38158 \beta_{14} - 415796 \beta_{13} - 450371 \beta_{12} - 931600 \beta_{11} + \cdots + 88851805 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 3314995 \beta_{15} + 2981458 \beta_{14} - 1297704 \beta_{13} - 3184681 \beta_{12} - 7301092 \beta_{11} + \cdots + 280930931 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 14448930 \beta_{15} - 103100 \beta_{14} - 13361028 \beta_{13} - 16403098 \beta_{12} + \cdots + 2470535187 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 109564961 \beta_{15} + 85725756 \beta_{14} - 46225438 \beta_{13} - 106614312 \beta_{12} + \cdots + 8809490893 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.58145
4.87062
4.67314
3.58918
3.08631
2.66029
0.515365
0.501041
0.450617
−1.18577
−1.86231
−2.99493
−3.73424
−3.83202
−4.35146
−4.96729
−5.58145 −3.00000 23.1526 0 16.7443 10.0377 −84.5733 9.00000 0
1.2 −4.87062 −3.00000 15.7230 0 14.6119 −16.1001 −37.6156 9.00000 0
1.3 −4.67314 −3.00000 13.8382 0 14.0194 −23.4063 −27.2828 9.00000 0
1.4 −3.58918 −3.00000 4.88219 0 10.7675 30.7036 11.1904 9.00000 0
1.5 −3.08631 −3.00000 1.52531 0 9.25893 25.9780 19.9829 9.00000 0
1.6 −2.66029 −3.00000 −0.922855 0 7.98087 −18.8651 23.7374 9.00000 0
1.7 −0.515365 −3.00000 −7.73440 0 1.54609 15.3973 8.10895 9.00000 0
1.8 −0.501041 −3.00000 −7.74896 0 1.50312 −17.4547 7.89087 9.00000 0
1.9 −0.450617 −3.00000 −7.79694 0 1.35185 −0.788922 7.11838 9.00000 0
1.10 1.18577 −3.00000 −6.59395 0 −3.55731 −7.22246 −17.3051 9.00000 0
1.11 1.86231 −3.00000 −4.53181 0 −5.58692 13.3897 −23.3381 9.00000 0
1.12 2.99493 −3.00000 0.969579 0 −8.98478 4.43075 −21.0556 9.00000 0
1.13 3.73424 −3.00000 5.94451 0 −11.2027 −11.3963 −7.67567 9.00000 0
1.14 3.83202 −3.00000 6.68436 0 −11.4961 −36.2405 −5.04155 9.00000 0
1.15 4.35146 −3.00000 10.9352 0 −13.0544 29.5878 12.7724 9.00000 0
1.16 4.96729 −3.00000 16.6740 0 −14.9019 13.9493 43.0864 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.16
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2175.4.a.u 16
5.b even 2 1 2175.4.a.v yes 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2175.4.a.u 16 1.a even 1 1 trivial
2175.4.a.v yes 16 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2175))\):

\( T_{2}^{16} + 3 T_{2}^{15} - 92 T_{2}^{14} - 239 T_{2}^{13} + 3416 T_{2}^{12} + 7461 T_{2}^{11} + \cdots - 891088 \) Copy content Toggle raw display
\( T_{7}^{16} - 12 T_{7}^{15} - 3022 T_{7}^{14} + 35587 T_{7}^{13} + 3434893 T_{7}^{12} + \cdots + 88\!\cdots\!64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} + 3 T^{15} + \cdots - 891088 \) Copy content Toggle raw display
$3$ \( (T + 3)^{16} \) Copy content Toggle raw display
$5$ \( T^{16} \) Copy content Toggle raw display
$7$ \( T^{16} + \cdots + 88\!\cdots\!64 \) Copy content Toggle raw display
$11$ \( T^{16} + \cdots + 59\!\cdots\!88 \) Copy content Toggle raw display
$13$ \( T^{16} + \cdots + 10\!\cdots\!76 \) Copy content Toggle raw display
$17$ \( T^{16} + \cdots + 19\!\cdots\!16 \) Copy content Toggle raw display
$19$ \( T^{16} + \cdots - 26\!\cdots\!60 \) Copy content Toggle raw display
$23$ \( T^{16} + \cdots + 19\!\cdots\!76 \) Copy content Toggle raw display
$29$ \( (T + 29)^{16} \) Copy content Toggle raw display
$31$ \( T^{16} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{16} + \cdots + 10\!\cdots\!28 \) Copy content Toggle raw display
$41$ \( T^{16} + \cdots + 71\!\cdots\!84 \) Copy content Toggle raw display
$43$ \( T^{16} + \cdots - 27\!\cdots\!16 \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 30\!\cdots\!52 \) Copy content Toggle raw display
$53$ \( T^{16} + \cdots + 28\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{16} + \cdots + 82\!\cdots\!40 \) Copy content Toggle raw display
$61$ \( T^{16} + \cdots - 16\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{16} + \cdots - 71\!\cdots\!16 \) Copy content Toggle raw display
$71$ \( T^{16} + \cdots + 47\!\cdots\!92 \) Copy content Toggle raw display
$73$ \( T^{16} + \cdots + 18\!\cdots\!12 \) Copy content Toggle raw display
$79$ \( T^{16} + \cdots - 59\!\cdots\!40 \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots - 63\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( T^{16} + \cdots + 51\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{16} + \cdots + 46\!\cdots\!04 \) Copy content Toggle raw display
show more
show less