L(s) = 1 | − 0.450·2-s − 3·3-s − 7.79·4-s + 1.35·6-s − 0.788·7-s + 7.11·8-s + 9·9-s + 67.3·11-s + 23.3·12-s − 28.5·13-s + 0.355·14-s + 59.1·16-s + 10.0·17-s − 4.05·18-s + 149.·19-s + 2.36·21-s − 30.3·22-s + 2.58·23-s − 21.3·24-s + 12.8·26-s − 27·27-s + 6.15·28-s − 29·29-s + 114.·31-s − 83.6·32-s − 202.·33-s − 4.51·34-s + ⋯ |
L(s) = 1 | − 0.159·2-s − 0.577·3-s − 0.974·4-s + 0.0919·6-s − 0.0425·7-s + 0.314·8-s + 0.333·9-s + 1.84·11-s + 0.562·12-s − 0.608·13-s + 0.00678·14-s + 0.924·16-s + 0.142·17-s − 0.0531·18-s + 1.79·19-s + 0.0245·21-s − 0.294·22-s + 0.0234·23-s − 0.181·24-s + 0.0969·26-s − 0.192·27-s + 0.0415·28-s − 0.185·29-s + 0.664·31-s − 0.461·32-s − 1.06·33-s − 0.0227·34-s + ⋯ |
Λ(s)=(=(2175s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(2175s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.616363745 |
L(21) |
≈ |
1.616363745 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+3T |
| 5 | 1 |
| 29 | 1+29T |
good | 2 | 1+0.450T+8T2 |
| 7 | 1+0.788T+343T2 |
| 11 | 1−67.3T+1.33e3T2 |
| 13 | 1+28.5T+2.19e3T2 |
| 17 | 1−10.0T+4.91e3T2 |
| 19 | 1−149.T+6.85e3T2 |
| 23 | 1−2.58T+1.21e4T2 |
| 31 | 1−114.T+2.97e4T2 |
| 37 | 1−399.T+5.06e4T2 |
| 41 | 1−340.T+6.89e4T2 |
| 43 | 1−242.T+7.95e4T2 |
| 47 | 1−376.T+1.03e5T2 |
| 53 | 1+263.T+1.48e5T2 |
| 59 | 1−395.T+2.05e5T2 |
| 61 | 1+541.T+2.26e5T2 |
| 67 | 1+496.T+3.00e5T2 |
| 71 | 1+81.1T+3.57e5T2 |
| 73 | 1+1.04e3T+3.89e5T2 |
| 79 | 1−153.T+4.93e5T2 |
| 83 | 1−398.T+5.71e5T2 |
| 89 | 1+362.T+7.04e5T2 |
| 97 | 1+402.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.016131290186121865618564993472, −7.83807330737388434799698371361, −7.28102594063034339569483808982, −6.22519449546332642274677670019, −5.59197106295520307364695039111, −4.57829112296476850219372112952, −4.07258750668923793812241983742, −2.99697460317596903302210651314, −1.33978268393279870572231352633, −0.71770530559250330228077940596,
0.71770530559250330228077940596, 1.33978268393279870572231352633, 2.99697460317596903302210651314, 4.07258750668923793812241983742, 4.57829112296476850219372112952, 5.59197106295520307364695039111, 6.22519449546332642274677670019, 7.28102594063034339569483808982, 7.83807330737388434799698371361, 9.016131290186121865618564993472