Properties

Label 2-2175-1.1-c3-0-90
Degree $2$
Conductor $2175$
Sign $1$
Analytic cond. $128.329$
Root an. cond. $11.3282$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.450·2-s − 3·3-s − 7.79·4-s + 1.35·6-s − 0.788·7-s + 7.11·8-s + 9·9-s + 67.3·11-s + 23.3·12-s − 28.5·13-s + 0.355·14-s + 59.1·16-s + 10.0·17-s − 4.05·18-s + 149.·19-s + 2.36·21-s − 30.3·22-s + 2.58·23-s − 21.3·24-s + 12.8·26-s − 27·27-s + 6.15·28-s − 29·29-s + 114.·31-s − 83.6·32-s − 202.·33-s − 4.51·34-s + ⋯
L(s)  = 1  − 0.159·2-s − 0.577·3-s − 0.974·4-s + 0.0919·6-s − 0.0425·7-s + 0.314·8-s + 0.333·9-s + 1.84·11-s + 0.562·12-s − 0.608·13-s + 0.00678·14-s + 0.924·16-s + 0.142·17-s − 0.0531·18-s + 1.79·19-s + 0.0245·21-s − 0.294·22-s + 0.0234·23-s − 0.181·24-s + 0.0969·26-s − 0.192·27-s + 0.0415·28-s − 0.185·29-s + 0.664·31-s − 0.461·32-s − 1.06·33-s − 0.0227·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(128.329\)
Root analytic conductor: \(11.3282\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.616363745\)
\(L(\frac12)\) \(\approx\) \(1.616363745\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 \)
29 \( 1 + 29T \)
good2 \( 1 + 0.450T + 8T^{2} \)
7 \( 1 + 0.788T + 343T^{2} \)
11 \( 1 - 67.3T + 1.33e3T^{2} \)
13 \( 1 + 28.5T + 2.19e3T^{2} \)
17 \( 1 - 10.0T + 4.91e3T^{2} \)
19 \( 1 - 149.T + 6.85e3T^{2} \)
23 \( 1 - 2.58T + 1.21e4T^{2} \)
31 \( 1 - 114.T + 2.97e4T^{2} \)
37 \( 1 - 399.T + 5.06e4T^{2} \)
41 \( 1 - 340.T + 6.89e4T^{2} \)
43 \( 1 - 242.T + 7.95e4T^{2} \)
47 \( 1 - 376.T + 1.03e5T^{2} \)
53 \( 1 + 263.T + 1.48e5T^{2} \)
59 \( 1 - 395.T + 2.05e5T^{2} \)
61 \( 1 + 541.T + 2.26e5T^{2} \)
67 \( 1 + 496.T + 3.00e5T^{2} \)
71 \( 1 + 81.1T + 3.57e5T^{2} \)
73 \( 1 + 1.04e3T + 3.89e5T^{2} \)
79 \( 1 - 153.T + 4.93e5T^{2} \)
83 \( 1 - 398.T + 5.71e5T^{2} \)
89 \( 1 + 362.T + 7.04e5T^{2} \)
97 \( 1 + 402.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.016131290186121865618564993472, −7.83807330737388434799698371361, −7.28102594063034339569483808982, −6.22519449546332642274677670019, −5.59197106295520307364695039111, −4.57829112296476850219372112952, −4.07258750668923793812241983742, −2.99697460317596903302210651314, −1.33978268393279870572231352633, −0.71770530559250330228077940596, 0.71770530559250330228077940596, 1.33978268393279870572231352633, 2.99697460317596903302210651314, 4.07258750668923793812241983742, 4.57829112296476850219372112952, 5.59197106295520307364695039111, 6.22519449546332642274677670019, 7.28102594063034339569483808982, 7.83807330737388434799698371361, 9.016131290186121865618564993472

Graph of the $Z$-function along the critical line