L(s) = 1 | + (−1.24 − 0.664i)2-s + (1.11 + 1.65i)4-s + 2.23·5-s + 4.29i·7-s + (−0.294 − 2.81i)8-s − 3·9-s + (−2.79 − 1.48i)10-s + 3.31i·11-s − 1.90·13-s + (2.85 − 5.36i)14-s + (−1.49 + 3.70i)16-s + 8.08·17-s + (3.74 + 1.99i)18-s + (2.50 + 3.70i)20-s + (2.20 − 4.14i)22-s + ⋯ |
L(s) = 1 | + (−0.882 − 0.469i)2-s + (0.559 + 0.829i)4-s + 0.999·5-s + 1.62i·7-s + (−0.104 − 0.994i)8-s − 9-s + (−0.882 − 0.469i)10-s + 1.00i·11-s − 0.529·13-s + (0.762 − 1.43i)14-s + (−0.374 + 0.927i)16-s + 1.95·17-s + (0.882 + 0.469i)18-s + (0.559 + 0.829i)20-s + (0.469 − 0.882i)22-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(0.829−0.559i)Λ(2−s)
Λ(s)=(=(220s/2ΓC(s+1/2)L(s)(0.829−0.559i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
0.829−0.559i
|
Analytic conductor: |
1.75670 |
Root analytic conductor: |
1.32540 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(219,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1/2), 0.829−0.559i)
|
Particular Values
L(1) |
≈ |
0.851941+0.260365i |
L(21) |
≈ |
0.851941+0.260365i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.24+0.664i)T |
| 5 | 1−2.23T |
| 11 | 1−3.31iT |
good | 3 | 1+3T2 |
| 7 | 1−4.29iT−7T2 |
| 13 | 1+1.90T+13T2 |
| 17 | 1−8.08T+17T2 |
| 19 | 1+19T2 |
| 23 | 1+23T2 |
| 29 | 1−29T2 |
| 31 | 1+6.63iT−31T2 |
| 37 | 1−37T2 |
| 41 | 1−41T2 |
| 43 | 1+1.01iT−43T2 |
| 47 | 1+47T2 |
| 53 | 1−53T2 |
| 59 | 1+14.8iT−59T2 |
| 61 | 1−61T2 |
| 67 | 1+67T2 |
| 71 | 1−14.8iT−71T2 |
| 73 | 1+11.8T+73T2 |
| 79 | 1+79T2 |
| 83 | 1+18.2iT−83T2 |
| 89 | 1−13.4T+89T2 |
| 97 | 1−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.19430123383967887211802677783, −11.51799079167151327950356157431, −10.10044111731562785260228317422, −9.538631394086754896917215038881, −8.701017760776357036292952882274, −7.65089402091915618464691992698, −6.16756336670780461942788990235, −5.29526283324559675778006604176, −2.96207303717947277189319206807, −2.02881335765112939592100144208,
1.06519132048910787268098613289, 3.10735027299641714476863282106, 5.23479218386229192692071262718, 6.12772319146569543933992595316, 7.26118771578290698805839930655, 8.193588181776631068815992469664, 9.294705740015931014339870369382, 10.28908412523735357603202407418, 10.73267943137480704734415421868, 11.96858282229378580929994036018