L(s) = 1 | + (−1.24 − 0.664i)2-s + (1.11 + 1.65i)4-s + 2.23·5-s + 4.29i·7-s + (−0.294 − 2.81i)8-s − 3·9-s + (−2.79 − 1.48i)10-s + 3.31i·11-s − 1.90·13-s + (2.85 − 5.36i)14-s + (−1.49 + 3.70i)16-s + 8.08·17-s + (3.74 + 1.99i)18-s + (2.50 + 3.70i)20-s + (2.20 − 4.14i)22-s + ⋯ |
L(s) = 1 | + (−0.882 − 0.469i)2-s + (0.559 + 0.829i)4-s + 0.999·5-s + 1.62i·7-s + (−0.104 − 0.994i)8-s − 9-s + (−0.882 − 0.469i)10-s + 1.00i·11-s − 0.529·13-s + (0.762 − 1.43i)14-s + (−0.374 + 0.927i)16-s + 1.95·17-s + (0.882 + 0.469i)18-s + (0.559 + 0.829i)20-s + (0.469 − 0.882i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.829 - 0.559i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.829 - 0.559i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.851941 + 0.260365i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.851941 + 0.260365i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.24 + 0.664i)T \) |
| 5 | \( 1 - 2.23T \) |
| 11 | \( 1 - 3.31iT \) |
good | 3 | \( 1 + 3T^{2} \) |
| 7 | \( 1 - 4.29iT - 7T^{2} \) |
| 13 | \( 1 + 1.90T + 13T^{2} \) |
| 17 | \( 1 - 8.08T + 17T^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 + 6.63iT - 31T^{2} \) |
| 37 | \( 1 - 37T^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + 1.01iT - 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + 14.8iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + 67T^{2} \) |
| 71 | \( 1 - 14.8iT - 71T^{2} \) |
| 73 | \( 1 + 11.8T + 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + 18.2iT - 83T^{2} \) |
| 89 | \( 1 - 13.4T + 89T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.19430123383967887211802677783, −11.51799079167151327950356157431, −10.10044111731562785260228317422, −9.538631394086754896917215038881, −8.701017760776357036292952882274, −7.65089402091915618464691992698, −6.16756336670780461942788990235, −5.29526283324559675778006604176, −2.96207303717947277189319206807, −2.02881335765112939592100144208,
1.06519132048910787268098613289, 3.10735027299641714476863282106, 5.23479218386229192692071262718, 6.12772319146569543933992595316, 7.26118771578290698805839930655, 8.193588181776631068815992469664, 9.294705740015931014339870369382, 10.28908412523735357603202407418, 10.73267943137480704734415421868, 11.96858282229378580929994036018