Properties

Label 220.2.g.a
Level $220$
Weight $2$
Character orbit 220.g
Analytic conductor $1.757$
Analytic rank $0$
Dimension $8$
CM discriminant -55
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,2,Mod(219,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.219");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 220.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.75670884447\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2342560000.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{4} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + \beta_{2} q^{4} + ( - \beta_{4} + \beta_{2}) q^{5} + ( - \beta_{7} - \beta_{5} - \beta_{3}) q^{7} + \beta_{3} q^{8} - 3 q^{9} + (\beta_{7} + \beta_{3}) q^{10} + (\beta_{4} + \beta_{2}) q^{11}+ \cdots + ( - 3 \beta_{4} - 3 \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 24 q^{9} - 4 q^{14} - 12 q^{16} + 20 q^{20} + 40 q^{25} + 28 q^{26} - 36 q^{34} - 44 q^{44} - 56 q^{49} + 52 q^{56} + 60 q^{70} + 72 q^{81} - 68 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 3x^{4} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{6} + 3\nu^{2} ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{7} + 4\nu^{5} + 3\nu^{3} + 4\nu ) / 8 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( \nu^{4} + 1 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -\nu^{7} - 3\nu^{3} ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{6} - 1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{7} + 2\beta_{5} - \beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 4\beta_{4} - 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -4\beta_{7} - 3\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
219.1
−1.24861 0.664066i
−1.24861 + 0.664066i
−0.664066 1.24861i
−0.664066 + 1.24861i
0.664066 1.24861i
0.664066 + 1.24861i
1.24861 0.664066i
1.24861 + 0.664066i
−1.24861 0.664066i 0 1.11803 + 1.65831i 2.23607 0 4.29792i −0.294756 2.81303i −3.00000 −2.79197 1.48490i
219.2 −1.24861 + 0.664066i 0 1.11803 1.65831i 2.23607 0 4.29792i −0.294756 + 2.81303i −3.00000 −2.79197 + 1.48490i
219.3 −0.664066 1.24861i 0 −1.11803 + 1.65831i −2.23607 0 3.08672i 2.81303 + 0.294756i −3.00000 1.48490 + 2.79197i
219.4 −0.664066 + 1.24861i 0 −1.11803 1.65831i −2.23607 0 3.08672i 2.81303 0.294756i −3.00000 1.48490 2.79197i
219.5 0.664066 1.24861i 0 −1.11803 1.65831i −2.23607 0 3.08672i −2.81303 + 0.294756i −3.00000 −1.48490 + 2.79197i
219.6 0.664066 + 1.24861i 0 −1.11803 + 1.65831i −2.23607 0 3.08672i −2.81303 0.294756i −3.00000 −1.48490 2.79197i
219.7 1.24861 0.664066i 0 1.11803 1.65831i 2.23607 0 4.29792i 0.294756 2.81303i −3.00000 2.79197 1.48490i
219.8 1.24861 + 0.664066i 0 1.11803 + 1.65831i 2.23607 0 4.29792i 0.294756 + 2.81303i −3.00000 2.79197 + 1.48490i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 219.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
55.d odd 2 1 CM by \(\Q(\sqrt{-55}) \)
4.b odd 2 1 inner
5.b even 2 1 inner
11.b odd 2 1 inner
20.d odd 2 1 inner
44.c even 2 1 inner
220.g even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 220.2.g.a 8
4.b odd 2 1 inner 220.2.g.a 8
5.b even 2 1 inner 220.2.g.a 8
11.b odd 2 1 inner 220.2.g.a 8
20.d odd 2 1 inner 220.2.g.a 8
44.c even 2 1 inner 220.2.g.a 8
55.d odd 2 1 CM 220.2.g.a 8
220.g even 2 1 inner 220.2.g.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.2.g.a 8 1.a even 1 1 trivial
220.2.g.a 8 4.b odd 2 1 inner
220.2.g.a 8 5.b even 2 1 inner
220.2.g.a 8 11.b odd 2 1 inner
220.2.g.a 8 20.d odd 2 1 inner
220.2.g.a 8 44.c even 2 1 inner
220.2.g.a 8 55.d odd 2 1 CM
220.2.g.a 8 220.g even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} \) acting on \(S_{2}^{\mathrm{new}}(220, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 3T^{4} + 16 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{2} - 5)^{4} \) Copy content Toggle raw display
$7$ \( (T^{4} + 28 T^{2} + 176)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 11)^{4} \) Copy content Toggle raw display
$13$ \( (T^{4} - 52 T^{2} + 176)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} - 68 T^{2} + 176)^{2} \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( (T^{2} + 44)^{4} \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( (T^{4} + 172 T^{2} + 176)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( (T^{2} + 220)^{4} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( (T^{2} + 220)^{4} \) Copy content Toggle raw display
$73$ \( (T^{4} - 292 T^{2} + 21296)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( (T^{4} + 332 T^{2} + 176)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 180)^{4} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less