L(s) = 1 | + (−0.354 − 1.36i)2-s + (−1.16 + 1.16i)3-s + (−1.74 + 0.971i)4-s + (−1.42 − 1.72i)5-s + (2.00 + 1.18i)6-s + (1.60 + 1.60i)7-s + (1.94 + 2.04i)8-s + 0.282i·9-s + (−1.85 + 2.56i)10-s + i·11-s + (0.906 − 3.17i)12-s + (3.94 + 3.94i)13-s + (1.62 − 2.76i)14-s + (3.66 + 0.350i)15-s + (2.11 − 3.39i)16-s + (−4.86 + 4.86i)17-s + ⋯ |
L(s) = 1 | + (−0.250 − 0.968i)2-s + (−0.673 + 0.673i)3-s + (−0.874 + 0.485i)4-s + (−0.636 − 0.771i)5-s + (0.820 + 0.482i)6-s + (0.605 + 0.605i)7-s + (0.689 + 0.724i)8-s + 0.0940i·9-s + (−0.586 + 0.809i)10-s + 0.301i·11-s + (0.261 − 0.915i)12-s + (1.09 + 1.09i)13-s + (0.434 − 0.737i)14-s + (0.947 + 0.0903i)15-s + (0.528 − 0.848i)16-s + (−1.17 + 1.17i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.799 - 0.600i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.799 - 0.600i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.637662 + 0.212639i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.637662 + 0.212639i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.354 + 1.36i)T \) |
| 5 | \( 1 + (1.42 + 1.72i)T \) |
| 11 | \( 1 - iT \) |
good | 3 | \( 1 + (1.16 - 1.16i)T - 3iT^{2} \) |
| 7 | \( 1 + (-1.60 - 1.60i)T + 7iT^{2} \) |
| 13 | \( 1 + (-3.94 - 3.94i)T + 13iT^{2} \) |
| 17 | \( 1 + (4.86 - 4.86i)T - 17iT^{2} \) |
| 19 | \( 1 - 5.54T + 19T^{2} \) |
| 23 | \( 1 + (3.01 - 3.01i)T - 23iT^{2} \) |
| 29 | \( 1 + 6.65iT - 29T^{2} \) |
| 31 | \( 1 - 0.619iT - 31T^{2} \) |
| 37 | \( 1 + (-0.294 + 0.294i)T - 37iT^{2} \) |
| 41 | \( 1 + 2.27T + 41T^{2} \) |
| 43 | \( 1 + (2.52 - 2.52i)T - 43iT^{2} \) |
| 47 | \( 1 + (-8.42 - 8.42i)T + 47iT^{2} \) |
| 53 | \( 1 + (-2.22 - 2.22i)T + 53iT^{2} \) |
| 59 | \( 1 + 1.02T + 59T^{2} \) |
| 61 | \( 1 + 4.52T + 61T^{2} \) |
| 67 | \( 1 + (3.45 + 3.45i)T + 67iT^{2} \) |
| 71 | \( 1 - 11.6iT - 71T^{2} \) |
| 73 | \( 1 + (-3.57 - 3.57i)T + 73iT^{2} \) |
| 79 | \( 1 - 2.91T + 79T^{2} \) |
| 83 | \( 1 + (-9.90 + 9.90i)T - 83iT^{2} \) |
| 89 | \( 1 + 10.6iT - 89T^{2} \) |
| 97 | \( 1 + (0.328 - 0.328i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.82509622980105370575464985428, −11.56612355178822024037591133195, −10.71474422176355619871836919019, −9.512860809632527566546148785680, −8.696993599214977583794867206143, −7.81737852667245224351661456473, −5.78314296886247503140283202954, −4.62614042031153995175681163074, −3.96275256325090333761856762225, −1.76171195040172244662055396504,
0.72430699420033468704896578392, 3.62492579445557852930175202565, 5.13005292666990074950801979224, 6.30005004215301743199899314779, 7.11698473101565287176271336495, 7.83369952270886482603732917710, 8.937389007123087755887957409451, 10.45280750523032070525086321214, 11.12737794653577316907660306753, 12.11786042130547443126178139645