L(s) = 1 | + (−2.30 − 1.67i)3-s + (0.690 − 2.12i)5-s + (1.86 + 2.56i)7-s + (−0.274 − 0.844i)9-s + (−8.20 − 7.32i)11-s + (1.09 − 0.355i)13-s + (−5.15 + 3.74i)15-s + (−16.6 − 5.41i)17-s + (−11.7 + 16.2i)19-s − 9.01i·21-s − 36.9·23-s + (−4.04 − 2.93i)25-s + (−8.70 + 26.7i)27-s + (−2.94 − 4.04i)29-s + (−18.8 − 58.1i)31-s + ⋯ |
L(s) = 1 | + (−0.768 − 0.558i)3-s + (0.138 − 0.425i)5-s + (0.265 + 0.365i)7-s + (−0.0304 − 0.0938i)9-s + (−0.746 − 0.665i)11-s + (0.0842 − 0.0273i)13-s + (−0.343 + 0.249i)15-s + (−0.980 − 0.318i)17-s + (−0.619 + 0.852i)19-s − 0.429i·21-s − 1.60·23-s + (−0.161 − 0.117i)25-s + (−0.322 + 0.992i)27-s + (−0.101 − 0.139i)29-s + (−0.609 − 1.87i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.972 + 0.233i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.972 + 0.233i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0616145 - 0.519665i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0616145 - 0.519665i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.690 + 2.12i)T \) |
| 11 | \( 1 + (8.20 + 7.32i)T \) |
good | 3 | \( 1 + (2.30 + 1.67i)T + (2.78 + 8.55i)T^{2} \) |
| 7 | \( 1 + (-1.86 - 2.56i)T + (-15.1 + 46.6i)T^{2} \) |
| 13 | \( 1 + (-1.09 + 0.355i)T + (136. - 99.3i)T^{2} \) |
| 17 | \( 1 + (16.6 + 5.41i)T + (233. + 169. i)T^{2} \) |
| 19 | \( 1 + (11.7 - 16.2i)T + (-111. - 343. i)T^{2} \) |
| 23 | \( 1 + 36.9T + 529T^{2} \) |
| 29 | \( 1 + (2.94 + 4.04i)T + (-259. + 799. i)T^{2} \) |
| 31 | \( 1 + (18.8 + 58.1i)T + (-777. + 564. i)T^{2} \) |
| 37 | \( 1 + (-21.0 + 15.3i)T + (423. - 1.30e3i)T^{2} \) |
| 41 | \( 1 + (-35.4 + 48.7i)T + (-519. - 1.59e3i)T^{2} \) |
| 43 | \( 1 - 65.3iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (-21.5 - 15.6i)T + (682. + 2.10e3i)T^{2} \) |
| 53 | \( 1 + (-0.957 - 2.94i)T + (-2.27e3 + 1.65e3i)T^{2} \) |
| 59 | \( 1 + (-7.53 + 5.47i)T + (1.07e3 - 3.31e3i)T^{2} \) |
| 61 | \( 1 + (-32.2 - 10.4i)T + (3.01e3 + 2.18e3i)T^{2} \) |
| 67 | \( 1 + 17.1T + 4.48e3T^{2} \) |
| 71 | \( 1 + (-15.6 + 48.2i)T + (-4.07e3 - 2.96e3i)T^{2} \) |
| 73 | \( 1 + (-24.2 - 33.4i)T + (-1.64e3 + 5.06e3i)T^{2} \) |
| 79 | \( 1 + (-40.1 + 13.0i)T + (5.04e3 - 3.66e3i)T^{2} \) |
| 83 | \( 1 + (76.7 + 24.9i)T + (5.57e3 + 4.04e3i)T^{2} \) |
| 89 | \( 1 + 109.T + 7.92e3T^{2} \) |
| 97 | \( 1 + (6.19 + 19.0i)T + (-7.61e3 + 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.62124275099520265952246326054, −10.93537070157766438737122491418, −9.656614806556662843234681001697, −8.540174766216934750981280464186, −7.60037417085496421990951326675, −6.12498985584016253501535750507, −5.65967798692295421345379777659, −4.13340929230807037100050949784, −2.15667818007895407230486585987, −0.29613196059318324173255410984,
2.28383000673392033381122036026, 4.17514954444824312394322263785, 5.09618773095087372106309340497, 6.28291571252557014546467197414, 7.38746790092267431604493507460, 8.573204511407609116166596817754, 9.951156059085538697223626067120, 10.65269805486922043775384452168, 11.23555019603588665187453646331, 12.40408941377872597952216023296