L(s) = 1 | + (−2.30 − 1.67i)3-s + (0.690 − 2.12i)5-s + (1.86 + 2.56i)7-s + (−0.274 − 0.844i)9-s + (−8.20 − 7.32i)11-s + (1.09 − 0.355i)13-s + (−5.15 + 3.74i)15-s + (−16.6 − 5.41i)17-s + (−11.7 + 16.2i)19-s − 9.01i·21-s − 36.9·23-s + (−4.04 − 2.93i)25-s + (−8.70 + 26.7i)27-s + (−2.94 − 4.04i)29-s + (−18.8 − 58.1i)31-s + ⋯ |
L(s) = 1 | + (−0.768 − 0.558i)3-s + (0.138 − 0.425i)5-s + (0.265 + 0.365i)7-s + (−0.0304 − 0.0938i)9-s + (−0.746 − 0.665i)11-s + (0.0842 − 0.0273i)13-s + (−0.343 + 0.249i)15-s + (−0.980 − 0.318i)17-s + (−0.619 + 0.852i)19-s − 0.429i·21-s − 1.60·23-s + (−0.161 − 0.117i)25-s + (−0.322 + 0.992i)27-s + (−0.101 − 0.139i)29-s + (−0.609 − 1.87i)31-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(−0.972+0.233i)Λ(3−s)
Λ(s)=(=(220s/2ΓC(s+1)L(s)(−0.972+0.233i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
−0.972+0.233i
|
Analytic conductor: |
5.99456 |
Root analytic conductor: |
2.44838 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(61,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1), −0.972+0.233i)
|
Particular Values
L(23) |
≈ |
0.0616145−0.519665i |
L(21) |
≈ |
0.0616145−0.519665i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.690+2.12i)T |
| 11 | 1+(8.20+7.32i)T |
good | 3 | 1+(2.30+1.67i)T+(2.78+8.55i)T2 |
| 7 | 1+(−1.86−2.56i)T+(−15.1+46.6i)T2 |
| 13 | 1+(−1.09+0.355i)T+(136.−99.3i)T2 |
| 17 | 1+(16.6+5.41i)T+(233.+169.i)T2 |
| 19 | 1+(11.7−16.2i)T+(−111.−343.i)T2 |
| 23 | 1+36.9T+529T2 |
| 29 | 1+(2.94+4.04i)T+(−259.+799.i)T2 |
| 31 | 1+(18.8+58.1i)T+(−777.+564.i)T2 |
| 37 | 1+(−21.0+15.3i)T+(423.−1.30e3i)T2 |
| 41 | 1+(−35.4+48.7i)T+(−519.−1.59e3i)T2 |
| 43 | 1−65.3iT−1.84e3T2 |
| 47 | 1+(−21.5−15.6i)T+(682.+2.10e3i)T2 |
| 53 | 1+(−0.957−2.94i)T+(−2.27e3+1.65e3i)T2 |
| 59 | 1+(−7.53+5.47i)T+(1.07e3−3.31e3i)T2 |
| 61 | 1+(−32.2−10.4i)T+(3.01e3+2.18e3i)T2 |
| 67 | 1+17.1T+4.48e3T2 |
| 71 | 1+(−15.6+48.2i)T+(−4.07e3−2.96e3i)T2 |
| 73 | 1+(−24.2−33.4i)T+(−1.64e3+5.06e3i)T2 |
| 79 | 1+(−40.1+13.0i)T+(5.04e3−3.66e3i)T2 |
| 83 | 1+(76.7+24.9i)T+(5.57e3+4.04e3i)T2 |
| 89 | 1+109.T+7.92e3T2 |
| 97 | 1+(6.19+19.0i)T+(−7.61e3+5.53e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.62124275099520265952246326054, −10.93537070157766438737122491418, −9.656614806556662843234681001697, −8.540174766216934750981280464186, −7.60037417085496421990951326675, −6.12498985584016253501535750507, −5.65967798692295421345379777659, −4.13340929230807037100050949784, −2.15667818007895407230486585987, −0.29613196059318324173255410984,
2.28383000673392033381122036026, 4.17514954444824312394322263785, 5.09618773095087372106309340497, 6.28291571252557014546467197414, 7.38746790092267431604493507460, 8.573204511407609116166596817754, 9.951156059085538697223626067120, 10.65269805486922043775384452168, 11.23555019603588665187453646331, 12.40408941377872597952216023296