Properties

Label 220.3.p.b.61.1
Level $220$
Weight $3$
Character 220.61
Analytic conductor $5.995$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(41,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.41");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.p (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 33 x^{14} - 111 x^{13} + 735 x^{12} - 1436 x^{11} + 10633 x^{10} - 25103 x^{9} + \cdots + 75625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 61.1
Root \(3.61325 - 2.62518i\) of defining polynomial
Character \(\chi\) \(=\) 220.61
Dual form 220.3.p.b.101.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.30423 - 1.67412i) q^{3} +(0.690983 - 2.12663i) q^{5} +(1.86008 + 2.56018i) q^{7} +(-0.274352 - 0.844368i) q^{9} +(-8.20839 - 7.32272i) q^{11} +(1.09490 - 0.355754i) q^{13} +(-5.15242 + 3.74345i) q^{15} +(-16.6628 - 5.41408i) q^{17} +(-11.7724 + 16.2034i) q^{19} -9.01324i q^{21} -36.9406 q^{23} +(-4.04508 - 2.93893i) q^{25} +(-8.70265 + 26.7840i) q^{27} +(-2.94215 - 4.04952i) q^{29} +(-18.8909 - 58.1403i) q^{31} +(6.65491 + 30.6151i) q^{33} +(6.72982 - 2.18665i) q^{35} +(21.0660 - 15.3054i) q^{37} +(-3.11848 - 1.01326i) q^{39} +(35.4220 - 48.7542i) q^{41} +65.3933i q^{43} -1.98523 q^{45} +(21.5844 + 15.6820i) q^{47} +(12.0472 - 37.0775i) q^{49} +(29.3312 + 40.3709i) q^{51} +(0.957854 + 2.94797i) q^{53} +(-21.2446 + 12.3963i) q^{55} +(54.2529 - 17.6278i) q^{57} +(7.53304 - 5.47308i) q^{59} +(32.2647 + 10.4834i) q^{61} +(1.65142 - 2.27298i) q^{63} -2.57426i q^{65} -17.1176 q^{67} +(85.1197 + 61.8431i) q^{69} +(15.6778 - 48.2514i) q^{71} +(24.2807 + 33.4195i) q^{73} +(4.40069 + 13.5439i) q^{75} +(3.47921 - 34.6358i) q^{77} +(40.1596 - 13.0486i) q^{79} +(58.4283 - 42.4507i) q^{81} +(-76.7768 - 24.9463i) q^{83} +(-23.0275 + 31.6946i) q^{85} +14.2565i q^{87} -109.359 q^{89} +(2.94739 + 2.14140i) q^{91} +(-53.8049 + 165.595i) q^{93} +(26.3240 + 36.2319i) q^{95} +(-6.19215 - 19.0575i) q^{97} +(-3.93109 + 8.93991i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 9 q^{3} + 20 q^{5} + 10 q^{7} - 19 q^{9} + 23 q^{11} - 5 q^{13} + 15 q^{15} + 25 q^{17} + 30 q^{19} - 168 q^{23} - 20 q^{25} - 225 q^{27} - 105 q^{29} + 40 q^{31} + 106 q^{33} - 16 q^{37} + 115 q^{39}+ \cdots + 150 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.30423 1.67412i −0.768078 0.558041i 0.133300 0.991076i \(-0.457443\pi\)
−0.901377 + 0.433035i \(0.857443\pi\)
\(4\) 0 0
\(5\) 0.690983 2.12663i 0.138197 0.425325i
\(6\) 0 0
\(7\) 1.86008 + 2.56018i 0.265725 + 0.365739i 0.920941 0.389703i \(-0.127422\pi\)
−0.655216 + 0.755442i \(0.727422\pi\)
\(8\) 0 0
\(9\) −0.274352 0.844368i −0.0304835 0.0938187i
\(10\) 0 0
\(11\) −8.20839 7.32272i −0.746218 0.665702i
\(12\) 0 0
\(13\) 1.09490 0.355754i 0.0842230 0.0273657i −0.266602 0.963807i \(-0.585901\pi\)
0.350825 + 0.936441i \(0.385901\pi\)
\(14\) 0 0
\(15\) −5.15242 + 3.74345i −0.343495 + 0.249564i
\(16\) 0 0
\(17\) −16.6628 5.41408i −0.980167 0.318475i −0.225253 0.974300i \(-0.572321\pi\)
−0.754913 + 0.655825i \(0.772321\pi\)
\(18\) 0 0
\(19\) −11.7724 + 16.2034i −0.619602 + 0.852809i −0.997324 0.0731099i \(-0.976708\pi\)
0.377722 + 0.925919i \(0.376708\pi\)
\(20\) 0 0
\(21\) 9.01324i 0.429202i
\(22\) 0 0
\(23\) −36.9406 −1.60611 −0.803056 0.595904i \(-0.796794\pi\)
−0.803056 + 0.595904i \(0.796794\pi\)
\(24\) 0 0
\(25\) −4.04508 2.93893i −0.161803 0.117557i
\(26\) 0 0
\(27\) −8.70265 + 26.7840i −0.322321 + 0.992001i
\(28\) 0 0
\(29\) −2.94215 4.04952i −0.101453 0.139639i 0.755272 0.655412i \(-0.227505\pi\)
−0.856725 + 0.515773i \(0.827505\pi\)
\(30\) 0 0
\(31\) −18.8909 58.1403i −0.609385 1.87549i −0.463247 0.886229i \(-0.653316\pi\)
−0.146138 0.989264i \(-0.546684\pi\)
\(32\) 0 0
\(33\) 6.65491 + 30.6151i 0.201664 + 0.927731i
\(34\) 0 0
\(35\) 6.72982 2.18665i 0.192281 0.0624757i
\(36\) 0 0
\(37\) 21.0660 15.3054i 0.569352 0.413658i −0.265518 0.964106i \(-0.585543\pi\)
0.834870 + 0.550448i \(0.185543\pi\)
\(38\) 0 0
\(39\) −3.11848 1.01326i −0.0799610 0.0259809i
\(40\) 0 0
\(41\) 35.4220 48.7542i 0.863951 1.18913i −0.116662 0.993172i \(-0.537219\pi\)
0.980613 0.195955i \(-0.0627807\pi\)
\(42\) 0 0
\(43\) 65.3933i 1.52077i 0.649470 + 0.760387i \(0.274991\pi\)
−0.649470 + 0.760387i \(0.725009\pi\)
\(44\) 0 0
\(45\) −1.98523 −0.0441162
\(46\) 0 0
\(47\) 21.5844 + 15.6820i 0.459242 + 0.333659i 0.793234 0.608917i \(-0.208396\pi\)
−0.333992 + 0.942576i \(0.608396\pi\)
\(48\) 0 0
\(49\) 12.0472 37.0775i 0.245862 0.756684i
\(50\) 0 0
\(51\) 29.3312 + 40.3709i 0.575122 + 0.791587i
\(52\) 0 0
\(53\) 0.957854 + 2.94797i 0.0180727 + 0.0556221i 0.959686 0.281074i \(-0.0906906\pi\)
−0.941613 + 0.336696i \(0.890691\pi\)
\(54\) 0 0
\(55\) −21.2446 + 12.3963i −0.386265 + 0.225388i
\(56\) 0 0
\(57\) 54.2529 17.6278i 0.951805 0.309260i
\(58\) 0 0
\(59\) 7.53304 5.47308i 0.127679 0.0927640i −0.522113 0.852876i \(-0.674856\pi\)
0.649792 + 0.760112i \(0.274856\pi\)
\(60\) 0 0
\(61\) 32.2647 + 10.4834i 0.528929 + 0.171860i 0.561294 0.827617i \(-0.310304\pi\)
−0.0323646 + 0.999476i \(0.510304\pi\)
\(62\) 0 0
\(63\) 1.65142 2.27298i 0.0262129 0.0360790i
\(64\) 0 0
\(65\) 2.57426i 0.0396040i
\(66\) 0 0
\(67\) −17.1176 −0.255487 −0.127743 0.991807i \(-0.540773\pi\)
−0.127743 + 0.991807i \(0.540773\pi\)
\(68\) 0 0
\(69\) 85.1197 + 61.8431i 1.23362 + 0.896276i
\(70\) 0 0
\(71\) 15.6778 48.2514i 0.220814 0.679597i −0.777875 0.628419i \(-0.783702\pi\)
0.998690 0.0511781i \(-0.0162976\pi\)
\(72\) 0 0
\(73\) 24.2807 + 33.4195i 0.332612 + 0.457801i 0.942265 0.334867i \(-0.108691\pi\)
−0.609653 + 0.792668i \(0.708691\pi\)
\(74\) 0 0
\(75\) 4.40069 + 13.5439i 0.0586759 + 0.180586i
\(76\) 0 0
\(77\) 3.47921 34.6358i 0.0451846 0.449815i
\(78\) 0 0
\(79\) 40.1596 13.0486i 0.508349 0.165173i −0.0436020 0.999049i \(-0.513883\pi\)
0.551951 + 0.833876i \(0.313883\pi\)
\(80\) 0 0
\(81\) 58.4283 42.4507i 0.721337 0.524082i
\(82\) 0 0
\(83\) −76.7768 24.9463i −0.925022 0.300558i −0.192497 0.981298i \(-0.561658\pi\)
−0.732525 + 0.680740i \(0.761658\pi\)
\(84\) 0 0
\(85\) −23.0275 + 31.6946i −0.270911 + 0.372878i
\(86\) 0 0
\(87\) 14.2565i 0.163868i
\(88\) 0 0
\(89\) −109.359 −1.22875 −0.614377 0.789013i \(-0.710592\pi\)
−0.614377 + 0.789013i \(0.710592\pi\)
\(90\) 0 0
\(91\) 2.94739 + 2.14140i 0.0323889 + 0.0235319i
\(92\) 0 0
\(93\) −53.8049 + 165.595i −0.578548 + 1.78059i
\(94\) 0 0
\(95\) 26.3240 + 36.2319i 0.277095 + 0.381388i
\(96\) 0 0
\(97\) −6.19215 19.0575i −0.0638366 0.196469i 0.914051 0.405599i \(-0.132937\pi\)
−0.977888 + 0.209130i \(0.932937\pi\)
\(98\) 0 0
\(99\) −3.93109 + 8.93991i −0.0397079 + 0.0903021i
\(100\) 0 0
\(101\) 84.5534 27.4731i 0.837163 0.272011i 0.141103 0.989995i \(-0.454935\pi\)
0.696059 + 0.717984i \(0.254935\pi\)
\(102\) 0 0
\(103\) −10.0547 + 7.30520i −0.0976189 + 0.0709243i −0.635524 0.772081i \(-0.719216\pi\)
0.537905 + 0.843005i \(0.319216\pi\)
\(104\) 0 0
\(105\) −19.1678 6.22800i −0.182550 0.0593142i
\(106\) 0 0
\(107\) 121.648 167.434i 1.13690 1.56481i 0.362648 0.931926i \(-0.381873\pi\)
0.774250 0.632879i \(-0.218127\pi\)
\(108\) 0 0
\(109\) 36.8795i 0.338344i −0.985587 0.169172i \(-0.945891\pi\)
0.985587 0.169172i \(-0.0541093\pi\)
\(110\) 0 0
\(111\) −74.1641 −0.668145
\(112\) 0 0
\(113\) 77.4778 + 56.2909i 0.685644 + 0.498150i 0.875225 0.483715i \(-0.160713\pi\)
−0.189581 + 0.981865i \(0.560713\pi\)
\(114\) 0 0
\(115\) −25.5253 + 78.5588i −0.221959 + 0.683120i
\(116\) 0 0
\(117\) −0.600775 0.826896i −0.00513483 0.00706749i
\(118\) 0 0
\(119\) −17.1331 52.7304i −0.143976 0.443112i
\(120\) 0 0
\(121\) 13.7555 + 120.216i 0.113682 + 0.993517i
\(122\) 0 0
\(123\) −163.241 + 53.0402i −1.32716 + 0.431221i
\(124\) 0 0
\(125\) −9.04508 + 6.57164i −0.0723607 + 0.0525731i
\(126\) 0 0
\(127\) −135.861 44.1439i −1.06977 0.347590i −0.279373 0.960183i \(-0.590127\pi\)
−0.790399 + 0.612592i \(0.790127\pi\)
\(128\) 0 0
\(129\) 109.476 150.681i 0.848654 1.16807i
\(130\) 0 0
\(131\) 53.7502i 0.410307i −0.978730 0.205153i \(-0.934231\pi\)
0.978730 0.205153i \(-0.0657693\pi\)
\(132\) 0 0
\(133\) −63.3811 −0.476550
\(134\) 0 0
\(135\) 50.9462 + 37.0146i 0.377379 + 0.274182i
\(136\) 0 0
\(137\) 65.5510 201.745i 0.478474 1.47259i −0.362740 0.931890i \(-0.618159\pi\)
0.841214 0.540702i \(-0.181841\pi\)
\(138\) 0 0
\(139\) 85.0507 + 117.062i 0.611876 + 0.842175i 0.996730 0.0808026i \(-0.0257483\pi\)
−0.384854 + 0.922977i \(0.625748\pi\)
\(140\) 0 0
\(141\) −23.4819 72.2699i −0.166538 0.512552i
\(142\) 0 0
\(143\) −11.5925 5.09747i −0.0810661 0.0356467i
\(144\) 0 0
\(145\) −10.6448 + 3.45870i −0.0734123 + 0.0238531i
\(146\) 0 0
\(147\) −89.8319 + 65.2667i −0.611102 + 0.443991i
\(148\) 0 0
\(149\) −195.225 63.4325i −1.31024 0.425721i −0.431105 0.902302i \(-0.641876\pi\)
−0.879131 + 0.476580i \(0.841876\pi\)
\(150\) 0 0
\(151\) 66.5847 91.6459i 0.440958 0.606927i −0.529467 0.848331i \(-0.677608\pi\)
0.970425 + 0.241404i \(0.0776079\pi\)
\(152\) 0 0
\(153\) 15.5549i 0.101666i
\(154\) 0 0
\(155\) −136.696 −0.881910
\(156\) 0 0
\(157\) 22.8280 + 16.5855i 0.145401 + 0.105640i 0.658108 0.752924i \(-0.271357\pi\)
−0.512707 + 0.858564i \(0.671357\pi\)
\(158\) 0 0
\(159\) 2.72815 8.39638i 0.0171582 0.0528074i
\(160\) 0 0
\(161\) −68.7123 94.5743i −0.426784 0.587418i
\(162\) 0 0
\(163\) −4.76360 14.6609i −0.0292245 0.0899439i 0.935380 0.353643i \(-0.115057\pi\)
−0.964605 + 0.263699i \(0.915057\pi\)
\(164\) 0 0
\(165\) 69.7054 + 7.00201i 0.422457 + 0.0424364i
\(166\) 0 0
\(167\) −144.953 + 47.0982i −0.867984 + 0.282025i −0.708959 0.705250i \(-0.750835\pi\)
−0.159025 + 0.987275i \(0.550835\pi\)
\(168\) 0 0
\(169\) −135.652 + 98.5567i −0.802672 + 0.583176i
\(170\) 0 0
\(171\) 16.9114 + 5.49485i 0.0988971 + 0.0321336i
\(172\) 0 0
\(173\) −22.1018 + 30.4205i −0.127756 + 0.175841i −0.868103 0.496384i \(-0.834661\pi\)
0.740347 + 0.672224i \(0.234661\pi\)
\(174\) 0 0
\(175\) 15.8228i 0.0904158i
\(176\) 0 0
\(177\) −26.5205 −0.149833
\(178\) 0 0
\(179\) −61.0790 44.3765i −0.341223 0.247913i 0.403954 0.914779i \(-0.367635\pi\)
−0.745178 + 0.666866i \(0.767635\pi\)
\(180\) 0 0
\(181\) −84.7110 + 260.714i −0.468017 + 1.44041i 0.387132 + 0.922024i \(0.373466\pi\)
−0.855149 + 0.518383i \(0.826534\pi\)
\(182\) 0 0
\(183\) −56.7948 78.1713i −0.310354 0.427166i
\(184\) 0 0
\(185\) −17.9925 55.3753i −0.0972569 0.299326i
\(186\) 0 0
\(187\) 97.1293 + 166.458i 0.519408 + 0.890151i
\(188\) 0 0
\(189\) −84.7594 + 27.5400i −0.448462 + 0.145714i
\(190\) 0 0
\(191\) −15.7612 + 11.4512i −0.0825195 + 0.0599539i −0.628280 0.777987i \(-0.716241\pi\)
0.545761 + 0.837941i \(0.316241\pi\)
\(192\) 0 0
\(193\) −114.271 37.1289i −0.592077 0.192378i −0.00237359 0.999997i \(-0.500756\pi\)
−0.589704 + 0.807620i \(0.700756\pi\)
\(194\) 0 0
\(195\) −4.30963 + 5.93170i −0.0221007 + 0.0304190i
\(196\) 0 0
\(197\) 47.0754i 0.238962i −0.992837 0.119481i \(-0.961877\pi\)
0.992837 0.119481i \(-0.0381230\pi\)
\(198\) 0 0
\(199\) −17.6716 −0.0888022 −0.0444011 0.999014i \(-0.514138\pi\)
−0.0444011 + 0.999014i \(0.514138\pi\)
\(200\) 0 0
\(201\) 39.4430 + 28.6570i 0.196234 + 0.142572i
\(202\) 0 0
\(203\) 4.89486 15.0648i 0.0241126 0.0742110i
\(204\) 0 0
\(205\) −79.2060 109.018i −0.386371 0.531794i
\(206\) 0 0
\(207\) 10.1347 + 31.1914i 0.0489600 + 0.150683i
\(208\) 0 0
\(209\) 215.286 46.7974i 1.03007 0.223911i
\(210\) 0 0
\(211\) 95.0482 30.8830i 0.450465 0.146365i −0.0749935 0.997184i \(-0.523894\pi\)
0.525459 + 0.850819i \(0.323894\pi\)
\(212\) 0 0
\(213\) −116.904 + 84.9358i −0.548846 + 0.398760i
\(214\) 0 0
\(215\) 139.067 + 45.1856i 0.646824 + 0.210166i
\(216\) 0 0
\(217\) 113.711 156.510i 0.524013 0.721242i
\(218\) 0 0
\(219\) 117.655i 0.537238i
\(220\) 0 0
\(221\) −20.1702 −0.0912679
\(222\) 0 0
\(223\) 192.574 + 139.913i 0.863562 + 0.627414i 0.928852 0.370452i \(-0.120797\pi\)
−0.0652897 + 0.997866i \(0.520797\pi\)
\(224\) 0 0
\(225\) −1.37176 + 4.22184i −0.00609671 + 0.0187637i
\(226\) 0 0
\(227\) 215.446 + 296.536i 0.949100 + 1.30632i 0.951926 + 0.306328i \(0.0991005\pi\)
−0.00282596 + 0.999996i \(0.500900\pi\)
\(228\) 0 0
\(229\) 81.1310 + 249.696i 0.354284 + 1.09037i 0.956424 + 0.291983i \(0.0943150\pi\)
−0.602140 + 0.798391i \(0.705685\pi\)
\(230\) 0 0
\(231\) −66.0014 + 73.9842i −0.285721 + 0.320278i
\(232\) 0 0
\(233\) 357.456 116.145i 1.53415 0.498474i 0.584392 0.811471i \(-0.301333\pi\)
0.949754 + 0.312997i \(0.101333\pi\)
\(234\) 0 0
\(235\) 48.2642 35.0660i 0.205379 0.149217i
\(236\) 0 0
\(237\) −114.382 37.1650i −0.482625 0.156814i
\(238\) 0 0
\(239\) 176.904 243.488i 0.740185 1.01878i −0.258423 0.966032i \(-0.583203\pi\)
0.998608 0.0527452i \(-0.0167971\pi\)
\(240\) 0 0
\(241\) 478.069i 1.98369i −0.127452 0.991845i \(-0.540680\pi\)
0.127452 0.991845i \(-0.459320\pi\)
\(242\) 0 0
\(243\) 47.7613 0.196549
\(244\) 0 0
\(245\) −70.5256 51.2399i −0.287860 0.209142i
\(246\) 0 0
\(247\) −7.12522 + 21.9292i −0.0288470 + 0.0887820i
\(248\) 0 0
\(249\) 135.149 + 186.016i 0.542765 + 0.747052i
\(250\) 0 0
\(251\) −127.332 391.886i −0.507297 1.56130i −0.796875 0.604145i \(-0.793515\pi\)
0.289578 0.957155i \(-0.406485\pi\)
\(252\) 0 0
\(253\) 303.223 + 270.505i 1.19851 + 1.06919i
\(254\) 0 0
\(255\) 106.121 34.4809i 0.416162 0.135219i
\(256\) 0 0
\(257\) −242.316 + 176.053i −0.942864 + 0.685030i −0.949108 0.314950i \(-0.898012\pi\)
0.00624471 + 0.999981i \(0.498012\pi\)
\(258\) 0 0
\(259\) 78.3688 + 25.4636i 0.302582 + 0.0983149i
\(260\) 0 0
\(261\) −2.61210 + 3.59525i −0.0100080 + 0.0137749i
\(262\) 0 0
\(263\) 283.233i 1.07693i −0.842648 0.538465i \(-0.819004\pi\)
0.842648 0.538465i \(-0.180996\pi\)
\(264\) 0 0
\(265\) 6.93109 0.0261551
\(266\) 0 0
\(267\) 251.989 + 183.081i 0.943778 + 0.685695i
\(268\) 0 0
\(269\) −121.482 + 373.884i −0.451607 + 1.38990i 0.423466 + 0.905912i \(0.360813\pi\)
−0.875073 + 0.483991i \(0.839187\pi\)
\(270\) 0 0
\(271\) 317.094 + 436.443i 1.17009 + 1.61049i 0.663075 + 0.748553i \(0.269251\pi\)
0.507015 + 0.861937i \(0.330749\pi\)
\(272\) 0 0
\(273\) −3.20650 9.86859i −0.0117454 0.0361487i
\(274\) 0 0
\(275\) 11.6827 + 53.7449i 0.0424826 + 0.195436i
\(276\) 0 0
\(277\) −265.763 + 86.3517i −0.959434 + 0.311739i −0.746543 0.665337i \(-0.768288\pi\)
−0.212891 + 0.977076i \(0.568288\pi\)
\(278\) 0 0
\(279\) −43.9091 + 31.9018i −0.157380 + 0.114343i
\(280\) 0 0
\(281\) 260.944 + 84.7859i 0.928627 + 0.301729i 0.734001 0.679148i \(-0.237651\pi\)
0.194626 + 0.980878i \(0.437651\pi\)
\(282\) 0 0
\(283\) 307.491 423.225i 1.08654 1.49549i 0.234428 0.972133i \(-0.424678\pi\)
0.852111 0.523360i \(-0.175322\pi\)
\(284\) 0 0
\(285\) 127.556i 0.447566i
\(286\) 0 0
\(287\) 190.707 0.664484
\(288\) 0 0
\(289\) 14.5318 + 10.5579i 0.0502829 + 0.0365327i
\(290\) 0 0
\(291\) −17.6364 + 54.2793i −0.0606063 + 0.186527i
\(292\) 0 0
\(293\) −237.293 326.605i −0.809873 1.11469i −0.991343 0.131298i \(-0.958086\pi\)
0.181470 0.983396i \(-0.441914\pi\)
\(294\) 0 0
\(295\) −6.43399 19.8018i −0.0218101 0.0671247i
\(296\) 0 0
\(297\) 267.567 156.127i 0.900898 0.525679i
\(298\) 0 0
\(299\) −40.4462 + 13.1418i −0.135272 + 0.0439524i
\(300\) 0 0
\(301\) −167.418 + 121.637i −0.556207 + 0.404108i
\(302\) 0 0
\(303\) −240.824 78.2485i −0.794799 0.258246i
\(304\) 0 0
\(305\) 44.5887 61.3711i 0.146192 0.201217i
\(306\) 0 0
\(307\) 290.845i 0.947378i 0.880692 + 0.473689i \(0.157078\pi\)
−0.880692 + 0.473689i \(0.842922\pi\)
\(308\) 0 0
\(309\) 35.3983 0.114558
\(310\) 0 0
\(311\) −43.2763 31.4421i −0.139152 0.101100i 0.516031 0.856570i \(-0.327409\pi\)
−0.655184 + 0.755470i \(0.727409\pi\)
\(312\) 0 0
\(313\) −63.2316 + 194.607i −0.202018 + 0.621747i 0.797805 + 0.602916i \(0.205995\pi\)
−0.999823 + 0.0188313i \(0.994005\pi\)
\(314\) 0 0
\(315\) −3.69268 5.08253i −0.0117228 0.0161350i
\(316\) 0 0
\(317\) 63.8642 + 196.554i 0.201464 + 0.620043i 0.999840 + 0.0178837i \(0.00569287\pi\)
−0.798376 + 0.602159i \(0.794307\pi\)
\(318\) 0 0
\(319\) −5.50319 + 54.7846i −0.0172514 + 0.171738i
\(320\) 0 0
\(321\) −560.611 + 182.154i −1.74645 + 0.567457i
\(322\) 0 0
\(323\) 283.889 206.257i 0.878912 0.638567i
\(324\) 0 0
\(325\) −5.47450 1.77877i −0.0168446 0.00547314i
\(326\) 0 0
\(327\) −61.7408 + 84.9789i −0.188810 + 0.259874i
\(328\) 0 0
\(329\) 84.4295i 0.256625i
\(330\) 0 0
\(331\) −311.605 −0.941405 −0.470702 0.882292i \(-0.655999\pi\)
−0.470702 + 0.882292i \(0.655999\pi\)
\(332\) 0 0
\(333\) −18.7029 13.5884i −0.0561647 0.0408061i
\(334\) 0 0
\(335\) −11.8280 + 36.4028i −0.0353074 + 0.108665i
\(336\) 0 0
\(337\) −288.729 397.401i −0.856762 1.17923i −0.982332 0.187147i \(-0.940076\pi\)
0.125570 0.992085i \(-0.459924\pi\)
\(338\) 0 0
\(339\) −84.2889 259.415i −0.248640 0.765235i
\(340\) 0 0
\(341\) −270.681 + 615.572i −0.793786 + 1.80520i
\(342\) 0 0
\(343\) 264.807 86.0411i 0.772033 0.250849i
\(344\) 0 0
\(345\) 190.333 138.285i 0.551691 0.400827i
\(346\) 0 0
\(347\) −278.834 90.5985i −0.803555 0.261091i −0.121689 0.992568i \(-0.538831\pi\)
−0.681866 + 0.731477i \(0.738831\pi\)
\(348\) 0 0
\(349\) −207.438 + 285.514i −0.594379 + 0.818093i −0.995179 0.0980726i \(-0.968732\pi\)
0.400800 + 0.916166i \(0.368732\pi\)
\(350\) 0 0
\(351\) 32.4218i 0.0923698i
\(352\) 0 0
\(353\) −203.115 −0.575397 −0.287698 0.957721i \(-0.592890\pi\)
−0.287698 + 0.957721i \(0.592890\pi\)
\(354\) 0 0
\(355\) −91.7796 66.6818i −0.258534 0.187836i
\(356\) 0 0
\(357\) −48.7984 + 150.186i −0.136690 + 0.420689i
\(358\) 0 0
\(359\) −242.797 334.182i −0.676316 0.930869i 0.323567 0.946205i \(-0.395118\pi\)
−0.999882 + 0.0153365i \(0.995118\pi\)
\(360\) 0 0
\(361\) −12.4039 38.1752i −0.0343598 0.105749i
\(362\) 0 0
\(363\) 169.560 300.033i 0.467107 0.826537i
\(364\) 0 0
\(365\) 87.8483 28.5437i 0.240680 0.0782018i
\(366\) 0 0
\(367\) −169.213 + 122.940i −0.461070 + 0.334987i −0.793951 0.607982i \(-0.791979\pi\)
0.332881 + 0.942969i \(0.391979\pi\)
\(368\) 0 0
\(369\) −50.8846 16.5334i −0.137899 0.0448060i
\(370\) 0 0
\(371\) −5.76564 + 7.93572i −0.0155408 + 0.0213901i
\(372\) 0 0
\(373\) 475.071i 1.27365i −0.771009 0.636825i \(-0.780248\pi\)
0.771009 0.636825i \(-0.219752\pi\)
\(374\) 0 0
\(375\) 31.8437 0.0849166
\(376\) 0 0
\(377\) −4.66199 3.38713i −0.0123660 0.00898444i
\(378\) 0 0
\(379\) 208.324 641.156i 0.549669 1.69171i −0.159955 0.987124i \(-0.551135\pi\)
0.709623 0.704581i \(-0.248865\pi\)
\(380\) 0 0
\(381\) 239.153 + 329.166i 0.627699 + 0.863953i
\(382\) 0 0
\(383\) −0.805937 2.48042i −0.00210428 0.00647629i 0.949999 0.312253i \(-0.101084\pi\)
−0.952103 + 0.305777i \(0.901084\pi\)
\(384\) 0 0
\(385\) −71.2533 31.3317i −0.185073 0.0813811i
\(386\) 0 0
\(387\) 55.2160 17.9408i 0.142677 0.0463586i
\(388\) 0 0
\(389\) −106.666 + 77.4972i −0.274205 + 0.199221i −0.716386 0.697704i \(-0.754205\pi\)
0.442181 + 0.896926i \(0.354205\pi\)
\(390\) 0 0
\(391\) 615.534 + 199.999i 1.57426 + 0.511507i
\(392\) 0 0
\(393\) −89.9845 + 123.853i −0.228968 + 0.315148i
\(394\) 0 0
\(395\) 94.4209i 0.239040i
\(396\) 0 0
\(397\) −313.373 −0.789352 −0.394676 0.918820i \(-0.629143\pi\)
−0.394676 + 0.918820i \(0.629143\pi\)
\(398\) 0 0
\(399\) 146.045 + 106.108i 0.366027 + 0.265934i
\(400\) 0 0
\(401\) −31.1430 + 95.8482i −0.0776632 + 0.239023i −0.982349 0.187056i \(-0.940105\pi\)
0.904686 + 0.426079i \(0.140105\pi\)
\(402\) 0 0
\(403\) −41.3673 56.9372i −0.102648 0.141283i
\(404\) 0 0
\(405\) −49.9037 153.588i −0.123219 0.379229i
\(406\) 0 0
\(407\) −284.995 28.6282i −0.700234 0.0703395i
\(408\) 0 0
\(409\) −111.586 + 36.2566i −0.272827 + 0.0886469i −0.442235 0.896899i \(-0.645814\pi\)
0.169408 + 0.985546i \(0.445814\pi\)
\(410\) 0 0
\(411\) −488.791 + 355.127i −1.18927 + 0.864057i
\(412\) 0 0
\(413\) 28.0241 + 9.10557i 0.0678549 + 0.0220474i
\(414\) 0 0
\(415\) −106.103 + 146.038i −0.255670 + 0.351899i
\(416\) 0 0
\(417\) 412.124i 0.988307i
\(418\) 0 0
\(419\) −256.275 −0.611636 −0.305818 0.952090i \(-0.598930\pi\)
−0.305818 + 0.952090i \(0.598930\pi\)
\(420\) 0 0
\(421\) −435.803 316.630i −1.03516 0.752089i −0.0658267 0.997831i \(-0.520968\pi\)
−0.969335 + 0.245742i \(0.920968\pi\)
\(422\) 0 0
\(423\) 7.31965 22.5276i 0.0173041 0.0532566i
\(424\) 0 0
\(425\) 51.4910 + 70.8713i 0.121155 + 0.166756i
\(426\) 0 0
\(427\) 33.1754 + 102.103i 0.0776940 + 0.239118i
\(428\) 0 0
\(429\) 18.1779 + 31.1530i 0.0423728 + 0.0726176i
\(430\) 0 0
\(431\) 132.761 43.1365i 0.308029 0.100085i −0.150923 0.988545i \(-0.548225\pi\)
0.458953 + 0.888461i \(0.348225\pi\)
\(432\) 0 0
\(433\) 503.770 366.010i 1.16344 0.845289i 0.173232 0.984881i \(-0.444579\pi\)
0.990209 + 0.139592i \(0.0445790\pi\)
\(434\) 0 0
\(435\) 30.3184 + 9.85103i 0.0696974 + 0.0226461i
\(436\) 0 0
\(437\) 434.881 598.562i 0.995150 1.36971i
\(438\) 0 0
\(439\) 314.896i 0.717303i 0.933471 + 0.358652i \(0.116763\pi\)
−0.933471 + 0.358652i \(0.883237\pi\)
\(440\) 0 0
\(441\) −34.6123 −0.0784858
\(442\) 0 0
\(443\) 170.663 + 123.994i 0.385244 + 0.279896i 0.763504 0.645803i \(-0.223477\pi\)
−0.378260 + 0.925700i \(0.623477\pi\)
\(444\) 0 0
\(445\) −75.5653 + 232.566i −0.169810 + 0.522620i
\(446\) 0 0
\(447\) 343.650 + 472.994i 0.768793 + 1.05815i
\(448\) 0 0
\(449\) 60.2833 + 185.533i 0.134261 + 0.413214i 0.995474 0.0950304i \(-0.0302948\pi\)
−0.861213 + 0.508244i \(0.830295\pi\)
\(450\) 0 0
\(451\) −647.771 + 140.808i −1.43630 + 0.312213i
\(452\) 0 0
\(453\) −306.853 + 99.7027i −0.677380 + 0.220094i
\(454\) 0 0
\(455\) 6.59056 4.78833i 0.0144848 0.0105238i
\(456\) 0 0
\(457\) −526.185 170.968i −1.15139 0.374109i −0.329723 0.944078i \(-0.606955\pi\)
−0.821667 + 0.569968i \(0.806955\pi\)
\(458\) 0 0
\(459\) 290.022 399.181i 0.631856 0.869675i
\(460\) 0 0
\(461\) 632.590i 1.37221i 0.727501 + 0.686106i \(0.240681\pi\)
−0.727501 + 0.686106i \(0.759319\pi\)
\(462\) 0 0
\(463\) −322.161 −0.695812 −0.347906 0.937529i \(-0.613107\pi\)
−0.347906 + 0.937529i \(0.613107\pi\)
\(464\) 0 0
\(465\) 314.980 + 228.846i 0.677375 + 0.492142i
\(466\) 0 0
\(467\) 61.5516 189.436i 0.131802 0.405645i −0.863277 0.504731i \(-0.831592\pi\)
0.995079 + 0.0990856i \(0.0315918\pi\)
\(468\) 0 0
\(469\) −31.8401 43.8241i −0.0678893 0.0934416i
\(470\) 0 0
\(471\) −24.8348 76.4337i −0.0527278 0.162280i
\(472\) 0 0
\(473\) 478.857 536.774i 1.01238 1.13483i
\(474\) 0 0
\(475\) 95.2411 30.9457i 0.200507 0.0651488i
\(476\) 0 0
\(477\) 2.22638 1.61756i 0.00466747 0.00339112i
\(478\) 0 0
\(479\) −880.533 286.102i −1.83827 0.597291i −0.998524 0.0543170i \(-0.982702\pi\)
−0.839749 0.542974i \(-0.817298\pi\)
\(480\) 0 0
\(481\) 17.6202 24.2521i 0.0366325 0.0504203i
\(482\) 0 0
\(483\) 332.954i 0.689346i
\(484\) 0 0
\(485\) −44.8068 −0.0923852
\(486\) 0 0
\(487\) −382.122 277.628i −0.784645 0.570078i 0.121725 0.992564i \(-0.461158\pi\)
−0.906369 + 0.422486i \(0.861158\pi\)
\(488\) 0 0
\(489\) −13.5676 + 41.7569i −0.0277457 + 0.0853924i
\(490\) 0 0
\(491\) 146.241 + 201.283i 0.297842 + 0.409945i 0.931542 0.363635i \(-0.118464\pi\)
−0.633699 + 0.773580i \(0.718464\pi\)
\(492\) 0 0
\(493\) 27.1001 + 83.4054i 0.0549697 + 0.169179i
\(494\) 0 0
\(495\) 16.2955 + 14.5373i 0.0329203 + 0.0293682i
\(496\) 0 0
\(497\) 152.694 49.6133i 0.307231 0.0998255i
\(498\) 0 0
\(499\) 139.811 101.579i 0.280183 0.203565i −0.438814 0.898578i \(-0.644601\pi\)
0.718997 + 0.695013i \(0.244601\pi\)
\(500\) 0 0
\(501\) 412.854 + 134.145i 0.824061 + 0.267754i
\(502\) 0 0
\(503\) −457.031 + 629.050i −0.908611 + 1.25060i 0.0590276 + 0.998256i \(0.481200\pi\)
−0.967639 + 0.252340i \(0.918800\pi\)
\(504\) 0 0
\(505\) 198.797i 0.393658i
\(506\) 0 0
\(507\) 477.569 0.941951
\(508\) 0 0
\(509\) 412.058 + 299.378i 0.809544 + 0.588168i 0.913698 0.406393i \(-0.133214\pi\)
−0.104154 + 0.994561i \(0.533214\pi\)
\(510\) 0 0
\(511\) −40.3958 + 124.326i −0.0790525 + 0.243299i
\(512\) 0 0
\(513\) −331.540 456.326i −0.646277 0.889524i
\(514\) 0 0
\(515\) 8.58778 + 26.4305i 0.0166753 + 0.0513213i
\(516\) 0 0
\(517\) −62.3384 286.780i −0.120577 0.554701i
\(518\) 0 0
\(519\) 101.855 33.0948i 0.196253 0.0637664i
\(520\) 0 0
\(521\) 92.1924 66.9817i 0.176953 0.128564i −0.495783 0.868446i \(-0.665119\pi\)
0.672736 + 0.739883i \(0.265119\pi\)
\(522\) 0 0
\(523\) 69.7725 + 22.6705i 0.133408 + 0.0433470i 0.374960 0.927041i \(-0.377656\pi\)
−0.241552 + 0.970388i \(0.577656\pi\)
\(524\) 0 0
\(525\) −26.4892 + 36.4593i −0.0504557 + 0.0694463i
\(526\) 0 0
\(527\) 1071.06i 2.03237i
\(528\) 0 0
\(529\) 835.605 1.57959
\(530\) 0 0
\(531\) −6.68800 4.85911i −0.0125951 0.00915087i
\(532\) 0 0
\(533\) 21.4390 65.9825i 0.0402233 0.123794i
\(534\) 0 0
\(535\) −272.013 374.394i −0.508436 0.699802i
\(536\) 0 0
\(537\) 66.4485 + 204.507i 0.123740 + 0.380833i
\(538\) 0 0
\(539\) −370.397 + 216.128i −0.687192 + 0.400981i
\(540\) 0 0
\(541\) 769.990 250.185i 1.42327 0.462449i 0.506632 0.862163i \(-0.330890\pi\)
0.916640 + 0.399714i \(0.130890\pi\)
\(542\) 0 0
\(543\) 631.661 458.928i 1.16328 0.845172i
\(544\) 0 0
\(545\) −78.4289 25.4831i −0.143906 0.0467580i
\(546\) 0 0
\(547\) −303.437 + 417.645i −0.554729 + 0.763519i −0.990644 0.136469i \(-0.956425\pi\)
0.435916 + 0.899988i \(0.356425\pi\)
\(548\) 0 0
\(549\) 30.1194i 0.0548623i
\(550\) 0 0
\(551\) 100.252 0.181946
\(552\) 0 0
\(553\) 108.107 + 78.5442i 0.195491 + 0.142033i
\(554\) 0 0
\(555\) −51.2461 + 157.719i −0.0923353 + 0.284179i
\(556\) 0 0
\(557\) 302.973 + 417.006i 0.543937 + 0.748665i 0.989174 0.146748i \(-0.0468807\pi\)
−0.445237 + 0.895413i \(0.646881\pi\)
\(558\) 0 0
\(559\) 23.2639 + 71.5990i 0.0416171 + 0.128084i
\(560\) 0 0
\(561\) 54.8631 546.165i 0.0977952 0.973556i
\(562\) 0 0
\(563\) 362.135 117.665i 0.643224 0.208996i 0.0308001 0.999526i \(-0.490194\pi\)
0.612424 + 0.790529i \(0.290194\pi\)
\(564\) 0 0
\(565\) 173.246 125.870i 0.306629 0.222779i
\(566\) 0 0
\(567\) 217.362 + 70.6253i 0.383355 + 0.124560i
\(568\) 0 0
\(569\) −190.291 + 261.913i −0.334430 + 0.460304i −0.942804 0.333347i \(-0.891822\pi\)
0.608374 + 0.793650i \(0.291822\pi\)
\(570\) 0 0
\(571\) 99.2705i 0.173854i −0.996215 0.0869268i \(-0.972295\pi\)
0.996215 0.0869268i \(-0.0277046\pi\)
\(572\) 0 0
\(573\) 55.4883 0.0968382
\(574\) 0 0
\(575\) 149.428 + 108.566i 0.259874 + 0.188810i
\(576\) 0 0
\(577\) 298.188 917.728i 0.516790 1.59052i −0.263210 0.964738i \(-0.584781\pi\)
0.780001 0.625779i \(-0.215219\pi\)
\(578\) 0 0
\(579\) 201.149 + 276.857i 0.347407 + 0.478165i
\(580\) 0 0
\(581\) −78.9439 242.964i −0.135876 0.418183i
\(582\) 0 0
\(583\) 13.7247 31.2122i 0.0235416 0.0535372i
\(584\) 0 0
\(585\) −2.17363 + 0.706254i −0.00371560 + 0.00120727i
\(586\) 0 0
\(587\) 190.418 138.347i 0.324392 0.235684i −0.413656 0.910433i \(-0.635748\pi\)
0.738047 + 0.674749i \(0.235748\pi\)
\(588\) 0 0
\(589\) 1164.46 + 378.356i 1.97701 + 0.642371i
\(590\) 0 0
\(591\) −78.8101 + 108.473i −0.133350 + 0.183541i
\(592\) 0 0
\(593\) 1004.87i 1.69456i 0.531149 + 0.847279i \(0.321761\pi\)
−0.531149 + 0.847279i \(0.678239\pi\)
\(594\) 0 0
\(595\) −123.977 −0.208364
\(596\) 0 0
\(597\) 40.7196 + 29.5845i 0.0682070 + 0.0495553i
\(598\) 0 0
\(599\) 187.189 576.109i 0.312503 0.961784i −0.664268 0.747495i \(-0.731257\pi\)
0.976770 0.214289i \(-0.0687435\pi\)
\(600\) 0 0
\(601\) 175.390 + 241.403i 0.291830 + 0.401670i 0.929607 0.368551i \(-0.120146\pi\)
−0.637777 + 0.770221i \(0.720146\pi\)
\(602\) 0 0
\(603\) 4.69625 + 14.4536i 0.00778814 + 0.0239694i
\(604\) 0 0
\(605\) 265.159 + 53.8142i 0.438279 + 0.0889490i
\(606\) 0 0
\(607\) −341.758 + 111.044i −0.563028 + 0.182939i −0.576683 0.816968i \(-0.695653\pi\)
0.0136553 + 0.999907i \(0.495653\pi\)
\(608\) 0 0
\(609\) −36.4993 + 26.5183i −0.0599331 + 0.0435440i
\(610\) 0 0
\(611\) 29.2117 + 9.49144i 0.0478096 + 0.0155343i
\(612\) 0 0
\(613\) −274.091 + 377.254i −0.447131 + 0.615422i −0.971778 0.235897i \(-0.924197\pi\)
0.524647 + 0.851320i \(0.324197\pi\)
\(614\) 0 0
\(615\) 383.803i 0.624070i
\(616\) 0 0
\(617\) 1068.85 1.73233 0.866166 0.499757i \(-0.166577\pi\)
0.866166 + 0.499757i \(0.166577\pi\)
\(618\) 0 0
\(619\) −310.410 225.526i −0.501470 0.364339i 0.308108 0.951351i \(-0.400304\pi\)
−0.809578 + 0.587012i \(0.800304\pi\)
\(620\) 0 0
\(621\) 321.481 989.417i 0.517683 1.59326i
\(622\) 0 0
\(623\) −203.416 279.978i −0.326511 0.449404i
\(624\) 0 0
\(625\) 7.72542 + 23.7764i 0.0123607 + 0.0380423i
\(626\) 0 0
\(627\) −574.413 252.583i −0.916129 0.402843i
\(628\) 0 0
\(629\) −433.884 + 140.977i −0.689800 + 0.224129i
\(630\) 0 0
\(631\) 797.244 579.232i 1.26346 0.917958i 0.264539 0.964375i \(-0.414780\pi\)
0.998922 + 0.0464169i \(0.0147803\pi\)
\(632\) 0 0
\(633\) −270.715 87.9607i −0.427670 0.138958i
\(634\) 0 0
\(635\) −187.755 + 258.423i −0.295678 + 0.406966i
\(636\) 0 0
\(637\) 44.8820i 0.0704584i
\(638\) 0 0
\(639\) −45.0432 −0.0704901
\(640\) 0 0
\(641\) −503.934 366.130i −0.786169 0.571185i 0.120655 0.992694i \(-0.461500\pi\)
−0.906824 + 0.421510i \(0.861500\pi\)
\(642\) 0 0
\(643\) −247.350 + 761.264i −0.384681 + 1.18392i 0.552031 + 0.833823i \(0.313853\pi\)
−0.936712 + 0.350102i \(0.886147\pi\)
\(644\) 0 0
\(645\) −244.797 336.934i −0.379530 0.522378i
\(646\) 0 0
\(647\) 68.1874 + 209.859i 0.105390 + 0.324358i 0.989822 0.142312i \(-0.0454537\pi\)
−0.884432 + 0.466670i \(0.845454\pi\)
\(648\) 0 0
\(649\) −101.912 10.2372i −0.157029 0.0157738i
\(650\) 0 0
\(651\) −524.032 + 170.268i −0.804965 + 0.261549i
\(652\) 0 0
\(653\) −596.401 + 433.311i −0.913325 + 0.663569i −0.941854 0.336024i \(-0.890918\pi\)
0.0285287 + 0.999593i \(0.490918\pi\)
\(654\) 0 0
\(655\) −114.307 37.1405i −0.174514 0.0567030i
\(656\) 0 0
\(657\) 21.5569 29.6705i 0.0328111 0.0451606i
\(658\) 0 0
\(659\) 613.844i 0.931479i 0.884922 + 0.465739i \(0.154212\pi\)
−0.884922 + 0.465739i \(0.845788\pi\)
\(660\) 0 0
\(661\) 410.333 0.620776 0.310388 0.950610i \(-0.399541\pi\)
0.310388 + 0.950610i \(0.399541\pi\)
\(662\) 0 0
\(663\) 46.4769 + 33.7674i 0.0701008 + 0.0509312i
\(664\) 0 0
\(665\) −43.7953 + 134.788i −0.0658576 + 0.202689i
\(666\) 0 0
\(667\) 108.685 + 149.591i 0.162945 + 0.224275i
\(668\) 0 0
\(669\) −209.504 644.786i −0.313160 0.963806i
\(670\) 0 0
\(671\) −188.074 322.317i −0.280289 0.480354i
\(672\) 0 0
\(673\) 868.468 282.182i 1.29044 0.419290i 0.418197 0.908357i \(-0.362662\pi\)
0.872247 + 0.489066i \(0.162662\pi\)
\(674\) 0 0
\(675\) 113.919 82.7672i 0.168769 0.122618i
\(676\) 0 0
\(677\) 613.584 + 199.366i 0.906328 + 0.294484i 0.724846 0.688910i \(-0.241911\pi\)
0.181482 + 0.983394i \(0.441911\pi\)
\(678\) 0 0
\(679\) 37.2726 51.3014i 0.0548934 0.0755543i
\(680\) 0 0
\(681\) 1043.97i 1.53300i
\(682\) 0 0
\(683\) −918.844 −1.34531 −0.672653 0.739958i \(-0.734845\pi\)
−0.672653 + 0.739958i \(0.734845\pi\)
\(684\) 0 0
\(685\) −383.742 278.805i −0.560207 0.407015i
\(686\) 0 0
\(687\) 231.076 711.180i 0.336356 1.03520i
\(688\) 0 0
\(689\) 2.09751 + 2.88697i 0.00304428 + 0.00419009i
\(690\) 0 0
\(691\) −223.430 687.647i −0.323343 0.995148i −0.972183 0.234223i \(-0.924745\pi\)
0.648840 0.760925i \(-0.275255\pi\)
\(692\) 0 0
\(693\) −30.1999 + 6.56465i −0.0435784 + 0.00947279i
\(694\) 0 0
\(695\) 307.716 99.9831i 0.442757 0.143861i
\(696\) 0 0
\(697\) −854.190 + 620.605i −1.22552 + 0.890395i
\(698\) 0 0
\(699\) −1018.10 330.802i −1.45651 0.473250i
\(700\) 0 0
\(701\) −157.940 + 217.385i −0.225306 + 0.310107i −0.906672 0.421835i \(-0.861386\pi\)
0.681366 + 0.731942i \(0.261386\pi\)
\(702\) 0 0
\(703\) 521.522i 0.741852i
\(704\) 0 0
\(705\) −169.917 −0.241017
\(706\) 0 0
\(707\) 227.612 + 165.370i 0.321940 + 0.233903i
\(708\) 0 0
\(709\) −201.517 + 620.206i −0.284227 + 0.874761i 0.702402 + 0.711780i \(0.252111\pi\)
−0.986629 + 0.162981i \(0.947889\pi\)
\(710\) 0 0
\(711\) −22.0357 30.3296i −0.0309926 0.0426576i
\(712\) 0 0
\(713\) 697.842 + 2147.74i 0.978740 + 3.01225i
\(714\) 0 0
\(715\) −18.8506 + 21.1306i −0.0263645 + 0.0295532i
\(716\) 0 0
\(717\) −815.257 + 264.893i −1.13704 + 0.369446i
\(718\) 0 0
\(719\) −188.737 + 137.126i −0.262500 + 0.190717i −0.711248 0.702941i \(-0.751870\pi\)
0.448749 + 0.893658i \(0.351870\pi\)
\(720\) 0 0
\(721\) −37.4052 12.1537i −0.0518796 0.0168567i
\(722\) 0 0
\(723\) −800.347 + 1101.58i −1.10698 + 1.52363i
\(724\) 0 0
\(725\) 25.0274i 0.0345205i
\(726\) 0 0
\(727\) −1255.99 −1.72764 −0.863818 0.503804i \(-0.831933\pi\)
−0.863818 + 0.503804i \(0.831933\pi\)
\(728\) 0 0
\(729\) −635.908 462.014i −0.872302 0.633764i
\(730\) 0 0
\(731\) 354.045 1089.64i 0.484329 1.49061i
\(732\) 0 0
\(733\) −788.315 1085.02i −1.07546 1.48025i −0.864419 0.502773i \(-0.832313\pi\)
−0.211045 0.977476i \(-0.567687\pi\)
\(734\) 0 0
\(735\) 76.7256 + 236.137i 0.104389 + 0.321275i
\(736\) 0 0
\(737\) 140.508 + 125.348i 0.190649 + 0.170078i
\(738\) 0 0
\(739\) 937.033 304.460i 1.26797 0.411990i 0.403644 0.914916i \(-0.367743\pi\)
0.864329 + 0.502926i \(0.167743\pi\)
\(740\) 0 0
\(741\) 53.1303 38.6014i 0.0717008 0.0520937i
\(742\) 0 0
\(743\) −807.802 262.471i −1.08722 0.353258i −0.290046 0.957013i \(-0.593671\pi\)
−0.797170 + 0.603755i \(0.793671\pi\)
\(744\) 0 0
\(745\) −269.795 + 371.340i −0.362140 + 0.498443i
\(746\) 0 0
\(747\) 71.6720i 0.0959464i
\(748\) 0 0
\(749\) 654.936 0.874414
\(750\) 0 0
\(751\) −119.879 87.0970i −0.159625 0.115975i 0.505105 0.863058i \(-0.331454\pi\)
−0.664731 + 0.747083i \(0.731454\pi\)
\(752\) 0 0
\(753\) −362.664 + 1116.17i −0.481626 + 1.48229i
\(754\) 0 0
\(755\) −148.888 204.927i −0.197202 0.271426i
\(756\) 0 0
\(757\) −357.158 1099.22i −0.471807 1.45207i −0.850216 0.526434i \(-0.823529\pi\)
0.378409 0.925638i \(-0.376471\pi\)
\(758\) 0 0
\(759\) −245.836 1130.94i −0.323895 1.49004i
\(760\) 0 0
\(761\) −773.026 + 251.171i −1.01580 + 0.330054i −0.769163 0.639053i \(-0.779326\pi\)
−0.246640 + 0.969107i \(0.579326\pi\)
\(762\) 0 0
\(763\) 94.4179 68.5987i 0.123746 0.0899065i
\(764\) 0 0
\(765\) 33.0795 + 10.7482i 0.0432412 + 0.0140499i
\(766\) 0 0
\(767\) 6.30085 8.67238i 0.00821493 0.0113069i
\(768\) 0 0
\(769\) 298.253i 0.387845i −0.981017 0.193923i \(-0.937879\pi\)
0.981017 0.193923i \(-0.0621211\pi\)
\(770\) 0 0
\(771\) 853.087 1.10647
\(772\) 0 0
\(773\) −371.743 270.087i −0.480910 0.349401i 0.320768 0.947158i \(-0.396059\pi\)
−0.801678 + 0.597756i \(0.796059\pi\)
\(774\) 0 0
\(775\) −94.4546 + 290.702i −0.121877 + 0.375099i
\(776\) 0 0
\(777\) −137.951 189.873i −0.177543 0.244367i
\(778\) 0 0
\(779\) 372.979 + 1147.91i 0.478792 + 1.47357i
\(780\) 0 0
\(781\) −482.021 + 281.262i −0.617185 + 0.360131i
\(782\) 0 0
\(783\) 134.067 43.5610i 0.171222 0.0556334i
\(784\) 0 0
\(785\) 51.0449 37.0863i 0.0650254 0.0472437i
\(786\) 0 0
\(787\) 1085.65 + 352.749i 1.37948 + 0.448220i 0.902498 0.430694i \(-0.141731\pi\)
0.476980 + 0.878914i \(0.341731\pi\)
\(788\) 0 0
\(789\) −474.167 + 652.634i −0.600972 + 0.827166i
\(790\) 0 0
\(791\) 303.062i 0.383138i
\(792\) 0 0
\(793\) 39.0561 0.0492511
\(794\) 0 0
\(795\) −15.9709 11.6035i −0.0200891 0.0145956i
\(796\) 0 0
\(797\) 12.7720 39.3082i 0.0160251 0.0493202i −0.942724 0.333573i \(-0.891746\pi\)
0.958749 + 0.284253i \(0.0917456\pi\)
\(798\) 0 0
\(799\) −274.754 378.166i −0.343872 0.473299i
\(800\) 0 0
\(801\) 30.0029 + 92.3393i 0.0374568 + 0.115280i
\(802\) 0 0
\(803\) 45.4162 452.121i 0.0565582 0.563040i
\(804\) 0 0
\(805\) −248.603 + 80.7761i −0.308824 + 0.100343i
\(806\) 0 0
\(807\) 905.851 658.139i 1.12249 0.815538i
\(808\) 0 0
\(809\) 1068.33 + 347.122i 1.32056 + 0.429076i 0.882687 0.469961i \(-0.155732\pi\)
0.437872 + 0.899037i \(0.355732\pi\)
\(810\) 0 0
\(811\) 508.261 699.561i 0.626709 0.862591i −0.371111 0.928589i \(-0.621023\pi\)
0.997820 + 0.0659976i \(0.0210230\pi\)
\(812\) 0 0
\(813\) 1536.52i 1.88994i
\(814\) 0 0
\(815\) −34.4697 −0.0422941
\(816\) 0 0
\(817\) −1059.59 769.839i −1.29693 0.942275i
\(818\) 0 0
\(819\) 0.999512 3.07618i 0.00122041 0.00375602i
\(820\) 0 0
\(821\) 548.650 + 755.152i 0.668271 + 0.919795i 0.999720 0.0236776i \(-0.00753753\pi\)
−0.331449 + 0.943473i \(0.607538\pi\)
\(822\) 0 0
\(823\) −97.2207 299.215i −0.118130 0.363566i 0.874457 0.485103i \(-0.161218\pi\)
−0.992587 + 0.121537i \(0.961218\pi\)
\(824\) 0 0
\(825\) 63.0559 143.399i 0.0764314 0.173817i
\(826\) 0 0
\(827\) 502.779 163.363i 0.607955 0.197537i 0.0111699 0.999938i \(-0.496444\pi\)
0.596785 + 0.802401i \(0.296444\pi\)
\(828\) 0 0
\(829\) 799.815 581.100i 0.964795 0.700965i 0.0105359 0.999944i \(-0.496646\pi\)
0.954260 + 0.298980i \(0.0966463\pi\)
\(830\) 0 0
\(831\) 756.944 + 245.946i 0.910883 + 0.295964i
\(832\) 0 0
\(833\) −401.482 + 552.592i −0.481971 + 0.663376i
\(834\) 0 0
\(835\) 340.806i 0.408150i
\(836\) 0 0
\(837\) 1721.63 2.05691
\(838\) 0 0
\(839\) −997.366 724.629i −1.18876 0.863682i −0.195624 0.980679i \(-0.562673\pi\)
−0.993132 + 0.116997i \(0.962673\pi\)
\(840\) 0 0
\(841\) 252.141 776.010i 0.299811 0.922723i
\(842\) 0 0
\(843\) −459.334 632.219i −0.544881 0.749964i
\(844\) 0 0
\(845\) 115.860 + 356.581i 0.137113 + 0.421990i
\(846\) 0 0
\(847\) −282.187 + 258.827i −0.333160 + 0.305580i
\(848\) 0 0
\(849\) −1417.06 + 460.431i −1.66909 + 0.542322i
\(850\) 0 0
\(851\) −778.190 + 565.388i −0.914442 + 0.664381i
\(852\) 0 0
\(853\) 577.351 + 187.593i 0.676847 + 0.219921i 0.627215 0.778846i \(-0.284195\pi\)
0.0496328 + 0.998768i \(0.484195\pi\)
\(854\) 0 0
\(855\) 23.3710 32.1674i 0.0273345 0.0376227i
\(856\) 0 0
\(857\) 237.750i 0.277422i −0.990333 0.138711i \(-0.955704\pi\)
0.990333 0.138711i \(-0.0442959\pi\)
\(858\) 0 0
\(859\) 792.390 0.922456 0.461228 0.887282i \(-0.347409\pi\)
0.461228 + 0.887282i \(0.347409\pi\)
\(860\) 0 0
\(861\) −439.433 319.267i −0.510375 0.370809i
\(862\) 0 0
\(863\) −240.235 + 739.366i −0.278372 + 0.856740i 0.709936 + 0.704266i \(0.248724\pi\)
−0.988308 + 0.152473i \(0.951276\pi\)
\(864\) 0 0
\(865\) 49.4211 + 68.0223i 0.0571342 + 0.0786384i
\(866\) 0 0
\(867\) −15.8093 48.6559i −0.0182344 0.0561199i
\(868\) 0 0
\(869\) −425.197 186.969i −0.489295 0.215154i
\(870\) 0 0
\(871\) −18.7421 + 6.08966i −0.0215179 + 0.00699158i
\(872\) 0 0
\(873\) −14.3927 + 10.4569i −0.0164865 + 0.0119781i
\(874\) 0 0
\(875\) −33.6491 10.9333i −0.0384561 0.0124951i
\(876\) 0 0
\(877\) −382.819 + 526.905i −0.436509 + 0.600804i −0.969432 0.245360i \(-0.921094\pi\)
0.532922 + 0.846164i \(0.321094\pi\)
\(878\) 0 0
\(879\) 1149.83i 1.30811i
\(880\) 0 0
\(881\) 1499.78 1.70236 0.851182 0.524870i \(-0.175886\pi\)
0.851182 + 0.524870i \(0.175886\pi\)
\(882\) 0 0
\(883\) 978.220 + 710.718i 1.10784 + 0.804890i 0.982322 0.187201i \(-0.0599417\pi\)
0.125515 + 0.992092i \(0.459942\pi\)
\(884\) 0 0
\(885\) −18.3252 + 56.3992i −0.0207065 + 0.0637279i
\(886\) 0 0
\(887\) −561.641 773.033i −0.633192 0.871514i 0.365038 0.930993i \(-0.381056\pi\)
−0.998230 + 0.0594787i \(0.981056\pi\)
\(888\) 0 0
\(889\) −139.696 429.939i −0.157138 0.483621i
\(890\) 0 0
\(891\) −790.457 79.4026i −0.887157 0.0891163i
\(892\) 0 0
\(893\) −508.202 + 165.125i −0.569095 + 0.184910i
\(894\) 0 0
\(895\) −136.577 + 99.2288i −0.152600 + 0.110870i
\(896\) 0 0
\(897\) 115.198 + 37.4302i 0.128426 + 0.0417282i
\(898\) 0 0
\(899\) −179.860 + 247.556i −0.200067 + 0.275369i
\(900\) 0 0
\(901\) 54.3074i 0.0602746i
\(902\) 0 0
\(903\) 589.405 0.652719
\(904\) 0 0
\(905\) 495.907 + 360.298i 0.547964 + 0.398119i
\(906\) 0 0
\(907\) 58.2947 179.413i 0.0642720 0.197809i −0.913764 0.406246i \(-0.866838\pi\)
0.978036 + 0.208437i \(0.0668377\pi\)
\(908\) 0 0
\(909\) −46.3948 63.8569i −0.0510394 0.0702497i
\(910\) 0 0
\(911\) 71.0976 + 218.816i 0.0780434 + 0.240193i 0.982465 0.186447i \(-0.0596972\pi\)
−0.904422 + 0.426640i \(0.859697\pi\)
\(912\) 0 0
\(913\) 447.540 + 766.984i 0.490186 + 0.840071i
\(914\) 0 0
\(915\) −205.486 + 66.7663i −0.224574 + 0.0729686i
\(916\) 0 0
\(917\) 137.610 99.9795i 0.150065 0.109029i
\(918\) 0 0
\(919\) 1565.35 + 508.613i 1.70332 + 0.553441i 0.989198 0.146583i \(-0.0468276\pi\)
0.714119 + 0.700025i \(0.246828\pi\)
\(920\) 0 0
\(921\) 486.910 670.175i 0.528676 0.727660i
\(922\) 0 0
\(923\) 58.4079i 0.0632805i
\(924\) 0 0
\(925\) −130.195 −0.140751
\(926\) 0 0
\(927\) 8.92682 + 6.48571i 0.00962979 + 0.00699645i
\(928\) 0 0
\(929\) 192.268 591.741i 0.206963 0.636966i −0.792664 0.609658i \(-0.791307\pi\)
0.999627 0.0273076i \(-0.00869335\pi\)
\(930\) 0 0
\(931\) 458.956 + 631.699i 0.492971 + 0.678516i
\(932\) 0 0
\(933\) 47.0808 + 144.900i 0.0504618 + 0.155305i
\(934\) 0 0
\(935\) 421.109 91.5379i 0.450384 0.0979015i
\(936\) 0 0
\(937\) 40.9237 13.2969i 0.0436753 0.0141910i −0.287098 0.957901i \(-0.592691\pi\)
0.330773 + 0.943710i \(0.392691\pi\)
\(938\) 0 0
\(939\) 471.496 342.562i 0.502126 0.364816i
\(940\) 0 0
\(941\) 1126.76 + 366.107i 1.19741 + 0.389062i 0.838807 0.544428i \(-0.183253\pi\)
0.358603 + 0.933490i \(0.383253\pi\)
\(942\) 0 0
\(943\) −1308.51 + 1801.01i −1.38760 + 1.90987i
\(944\) 0 0
\(945\) 199.281i 0.210880i
\(946\) 0 0
\(947\) −486.719 −0.513959 −0.256979 0.966417i \(-0.582727\pi\)
−0.256979 + 0.966417i \(0.582727\pi\)
\(948\) 0 0
\(949\) 38.4740 + 27.9530i 0.0405416 + 0.0294552i
\(950\) 0 0
\(951\) 181.897 559.822i 0.191269 0.588667i
\(952\) 0 0
\(953\) −450.114 619.528i −0.472312 0.650082i 0.504693 0.863299i \(-0.331606\pi\)
−0.977005 + 0.213217i \(0.931606\pi\)
\(954\) 0 0
\(955\) 13.4617 + 41.4308i 0.0140960 + 0.0433831i
\(956\) 0 0
\(957\) 104.397 117.023i 0.109088 0.122281i
\(958\) 0 0
\(959\) 638.433 207.439i 0.665728 0.216308i
\(960\) 0 0
\(961\) −2245.96 + 1631.79i −2.33711 + 1.69801i
\(962\) 0 0
\(963\) −174.751 56.7799i −0.181465 0.0589615i
\(964\) 0 0
\(965\) −157.919 + 217.356i −0.163646 + 0.225240i
\(966\) 0 0
\(967\) 1843.46i 1.90637i −0.302386 0.953186i \(-0.597783\pi\)
0.302386 0.953186i \(-0.402217\pi\)
\(968\) 0 0
\(969\) −999.445 −1.03142
\(970\) 0 0
\(971\) −419.650 304.893i −0.432183 0.313999i 0.350338 0.936623i \(-0.386067\pi\)
−0.782521 + 0.622624i \(0.786067\pi\)
\(972\) 0 0
\(973\) −141.499 + 435.490i −0.145426 + 0.447574i
\(974\) 0 0
\(975\) 9.63663 + 13.2637i 0.00988373 + 0.0136038i
\(976\) 0 0
\(977\) 490.456 + 1509.47i 0.502002 + 1.54500i 0.805753 + 0.592252i \(0.201761\pi\)
−0.303751 + 0.952751i \(0.598239\pi\)
\(978\) 0 0
\(979\) 897.662 + 800.806i 0.916918 + 0.817984i
\(980\) 0 0
\(981\) −31.1399 + 10.1180i −0.0317430 + 0.0103139i
\(982\) 0 0
\(983\) 1555.78 1130.34i 1.58268 1.14989i 0.669149 0.743128i \(-0.266659\pi\)
0.913535 0.406759i \(-0.133341\pi\)
\(984\) 0 0
\(985\) −100.112 32.5283i −0.101636 0.0330237i
\(986\) 0 0
\(987\) 141.345 194.545i 0.143207 0.197108i
\(988\) 0 0
\(989\) 2415.66i 2.44253i
\(990\) 0 0
\(991\) 722.553 0.729115 0.364558 0.931181i \(-0.381220\pi\)
0.364558 + 0.931181i \(0.381220\pi\)
\(992\) 0 0
\(993\) 718.010 + 521.665i 0.723072 + 0.525343i
\(994\) 0 0
\(995\) −12.2108 + 37.5810i −0.0122722 + 0.0377698i
\(996\) 0 0
\(997\) 43.6793 + 60.1194i 0.0438107 + 0.0603003i 0.830360 0.557227i \(-0.188135\pi\)
−0.786550 + 0.617527i \(0.788135\pi\)
\(998\) 0 0
\(999\) 226.609 + 697.430i 0.226835 + 0.698128i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.3.p.b.61.1 16
11.2 odd 10 inner 220.3.p.b.101.1 yes 16
11.3 even 5 2420.3.f.a.241.13 16
11.8 odd 10 2420.3.f.a.241.14 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.p.b.61.1 16 1.1 even 1 trivial
220.3.p.b.101.1 yes 16 11.2 odd 10 inner
2420.3.f.a.241.13 16 11.3 even 5
2420.3.f.a.241.14 16 11.8 odd 10