Properties

Label 2420.3.f.a.241.14
Level 24202420
Weight 33
Character 2420.241
Analytic conductor 65.94065.940
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2420,3,Mod(241,2420)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2420, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2420.241");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 2420=225112 2420 = 2^{2} \cdot 5 \cdot 11^{2}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 2420.f (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 65.940223975265.9402239752
Analytic rank: 00
Dimension: 1616
Coefficient field: Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x163x15+33x14111x13+735x121436x11+10633x1025103x9++75625 x^{16} - 3 x^{15} + 33 x^{14} - 111 x^{13} + 735 x^{12} - 1436 x^{11} + 10633 x^{10} - 25103 x^{9} + \cdots + 75625 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 285 2^{8}\cdot 5
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 241.14
Root 3.613252.62518i3.61325 - 2.62518i of defining polynomial
Character χ\chi == 2420.241
Dual form 2420.3.f.a.241.13

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.84819q3+2.23607q5+3.16455iq70.887821q9+1.15125iq13+6.36874q15+17.5203iq17+20.0285iq19+9.01324iq2136.9406q23+5.00000q2528.1624q275.00548iq2961.1323q31+7.07615iq3526.0390q37+3.27896iq3960.2635iq4165.3933iq431.98523q4526.6798q47+38.9856q49+49.9012iq51+3.09968q53+57.0449iq579.31135q5933.9251iq612.80956iq63+2.57426iq6517.1176q67105.214q69+50.7345q71+41.3088iq73+14.2409q75+42.2263iq7972.2214q81+80.7279iq83+39.1767iq8514.2565iq87109.359q893.64317q91174.116q93+44.7850iq9520.0382q97+O(q100)q+2.84819 q^{3} +2.23607 q^{5} +3.16455i q^{7} -0.887821 q^{9} +1.15125i q^{13} +6.36874 q^{15} +17.5203i q^{17} +20.0285i q^{19} +9.01324i q^{21} -36.9406 q^{23} +5.00000 q^{25} -28.1624 q^{27} -5.00548i q^{29} -61.1323 q^{31} +7.07615i q^{35} -26.0390 q^{37} +3.27896i q^{39} -60.2635i q^{41} -65.3933i q^{43} -1.98523 q^{45} -26.6798 q^{47} +38.9856 q^{49} +49.9012i q^{51} +3.09968 q^{53} +57.0449i q^{57} -9.31135 q^{59} -33.9251i q^{61} -2.80956i q^{63} +2.57426i q^{65} -17.1176 q^{67} -105.214 q^{69} +50.7345 q^{71} +41.3088i q^{73} +14.2409 q^{75} +42.2263i q^{79} -72.2214 q^{81} +80.7279i q^{83} +39.1767i q^{85} -14.2565i q^{87} -109.359 q^{89} -3.64317 q^{91} -174.116 q^{93} +44.7850i q^{95} -20.0382 q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q6q3+46q930q15168q23+80q25+30q27190q31+104q3730q45268q47228q49368q53+78q5968q67212q69+270q71+726q97+O(q100) 16 q - 6 q^{3} + 46 q^{9} - 30 q^{15} - 168 q^{23} + 80 q^{25} + 30 q^{27} - 190 q^{31} + 104 q^{37} - 30 q^{45} - 268 q^{47} - 228 q^{49} - 368 q^{53} + 78 q^{59} - 68 q^{67} - 212 q^{69} + 270 q^{71}+ \cdots - 726 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2420Z)×\left(\mathbb{Z}/2420\mathbb{Z}\right)^\times.

nn 12111211 19371937 23012301
χ(n)\chi(n) 11 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 2.84819 0.949396 0.474698 0.880149i 0.342557π-0.342557\pi
0.474698 + 0.880149i 0.342557π0.342557\pi
44 0 0
55 2.23607 0.447214
66 0 0
77 3.16455i 0.452079i 0.974118 + 0.226039i 0.0725778π0.0725778\pi
−0.974118 + 0.226039i 0.927422π0.927422\pi
88 0 0
99 −0.887821 −0.0986468
1010 0 0
1111 0 0
1212 0 0
1313 1.15125i 0.0885573i 0.999019 + 0.0442787i 0.0140989π0.0140989\pi
−0.999019 + 0.0442787i 0.985901π0.985901\pi
1414 0 0
1515 6.36874 0.424583
1616 0 0
1717 17.5203i 1.03061i 0.857007 + 0.515304i 0.172321π0.172321\pi
−0.857007 + 0.515304i 0.827679π0.827679\pi
1818 0 0
1919 20.0285i 1.05413i 0.849825 + 0.527065i 0.176708π0.176708\pi
−0.849825 + 0.527065i 0.823292π0.823292\pi
2020 0 0
2121 9.01324i 0.429202i
2222 0 0
2323 −36.9406 −1.60611 −0.803056 0.595904i 0.796794π-0.796794\pi
−0.803056 + 0.595904i 0.796794π0.796794\pi
2424 0 0
2525 5.00000 0.200000
2626 0 0
2727 −28.1624 −1.04305
2828 0 0
2929 − 5.00548i − 0.172603i −0.996269 0.0863014i 0.972495π-0.972495\pi
0.996269 0.0863014i 0.0275048π-0.0275048\pi
3030 0 0
3131 −61.1323 −1.97201 −0.986005 0.166714i 0.946684π-0.946684\pi
−0.986005 + 0.166714i 0.946684π0.946684\pi
3232 0 0
3333 0 0
3434 0 0
3535 7.07615i 0.202176i
3636 0 0
3737 −26.0390 −0.703757 −0.351879 0.936046i 0.614457π-0.614457\pi
−0.351879 + 0.936046i 0.614457π0.614457\pi
3838 0 0
3939 3.27896i 0.0840760i
4040 0 0
4141 − 60.2635i − 1.46984i −0.678153 0.734921i 0.737219π-0.737219\pi
0.678153 0.734921i 0.262781π-0.262781\pi
4242 0 0
4343 − 65.3933i − 1.52077i −0.649470 0.760387i 0.725009π-0.725009\pi
0.649470 0.760387i 0.274991π-0.274991\pi
4444 0 0
4545 −1.98523 −0.0441162
4646 0 0
4747 −26.6798 −0.567655 −0.283827 0.958875i 0.591604π-0.591604\pi
−0.283827 + 0.958875i 0.591604π0.591604\pi
4848 0 0
4949 38.9856 0.795625
5050 0 0
5151 49.9012i 0.978455i
5252 0 0
5353 3.09968 0.0584845 0.0292423 0.999572i 0.490691π-0.490691\pi
0.0292423 + 0.999572i 0.490691π0.490691\pi
5454 0 0
5555 0 0
5656 0 0
5757 57.0449i 1.00079i
5858 0 0
5959 −9.31135 −0.157820 −0.0789098 0.996882i 0.525144π-0.525144\pi
−0.0789098 + 0.996882i 0.525144π0.525144\pi
6060 0 0
6161 − 33.9251i − 0.556149i −0.960559 0.278075i 0.910304π-0.910304\pi
0.960559 0.278075i 0.0896962π-0.0896962\pi
6262 0 0
6363 − 2.80956i − 0.0445961i
6464 0 0
6565 2.57426i 0.0396040i
6666 0 0
6767 −17.1176 −0.255487 −0.127743 0.991807i 0.540773π-0.540773\pi
−0.127743 + 0.991807i 0.540773π0.540773\pi
6868 0 0
6969 −105.214 −1.52484
7070 0 0
7171 50.7345 0.714571 0.357285 0.933995i 0.383702π-0.383702\pi
0.357285 + 0.933995i 0.383702π0.383702\pi
7272 0 0
7373 41.3088i 0.565873i 0.959139 + 0.282937i 0.0913086π0.0913086\pi
−0.959139 + 0.282937i 0.908691π0.908691\pi
7474 0 0
7575 14.2409 0.189879
7676 0 0
7777 0 0
7878 0 0
7979 42.2263i 0.534510i 0.963626 + 0.267255i 0.0861166π0.0861166\pi
−0.963626 + 0.267255i 0.913883π0.913883\pi
8080 0 0
8181 −72.2214 −0.891622
8282 0 0
8383 80.7279i 0.972626i 0.873785 + 0.486313i 0.161658π0.161658\pi
−0.873785 + 0.486313i 0.838342π0.838342\pi
8484 0 0
8585 39.1767i 0.460902i
8686 0 0
8787 − 14.2565i − 0.163868i
8888 0 0
8989 −109.359 −1.22875 −0.614377 0.789013i 0.710592π-0.710592\pi
−0.614377 + 0.789013i 0.710592π0.710592\pi
9090 0 0
9191 −3.64317 −0.0400349
9292 0 0
9393 −174.116 −1.87222
9494 0 0
9595 44.7850i 0.471421i
9696 0 0
9797 −20.0382 −0.206580 −0.103290 0.994651i 0.532937π-0.532937\pi
−0.103290 + 0.994651i 0.532937π0.532937\pi
9898 0 0
9999 0 0
100100 0 0
101101 88.9047i 0.880245i 0.897938 + 0.440123i 0.145065π0.145065\pi
−0.897938 + 0.440123i 0.854935π0.854935\pi
102102 0 0
103103 12.4284 0.120664 0.0603318 0.998178i 0.480784π-0.480784\pi
0.0603318 + 0.998178i 0.480784π0.480784\pi
104104 0 0
105105 20.1542i 0.191945i
106106 0 0
107107 − 206.960i − 1.93421i −0.254385 0.967103i 0.581873π-0.581873\pi
0.254385 0.967103i 0.418127π-0.418127\pi
108108 0 0
109109 36.8795i 0.338344i 0.985587 + 0.169172i 0.0541093π0.0541093\pi
−0.985587 + 0.169172i 0.945891π0.945891\pi
110110 0 0
111111 −74.1641 −0.668145
112112 0 0
113113 −95.7678 −0.847503 −0.423751 0.905779i 0.639287π-0.639287\pi
−0.423751 + 0.905779i 0.639287π0.639287\pi
114114 0 0
115115 −82.6016 −0.718275
116116 0 0
117117 − 1.02210i − 0.00873590i
118118 0 0
119119 −55.4440 −0.465916
120120 0 0
121121 0 0
122122 0 0
123123 − 171.642i − 1.39546i
124124 0 0
125125 11.1803 0.0894427
126126 0 0
127127 142.853i 1.12483i 0.826857 + 0.562413i 0.190127π0.190127\pi
−0.826857 + 0.562413i 0.809873π0.809873\pi
128128 0 0
129129 − 186.252i − 1.44382i
130130 0 0
131131 53.7502i 0.410307i 0.978730 + 0.205153i 0.0657693π0.0657693\pi
−0.978730 + 0.205153i 0.934231π0.934231\pi
132132 0 0
133133 −63.3811 −0.476550
134134 0 0
135135 −62.9730 −0.466467
136136 0 0
137137 212.127 1.54838 0.774188 0.632956i 0.218159π-0.218159\pi
0.774188 + 0.632956i 0.218159π0.218159\pi
138138 0 0
139139 144.697i 1.04099i 0.853866 + 0.520493i 0.174252π0.174252\pi
−0.853866 + 0.520493i 0.825748π0.825748\pi
140140 0 0
141141 −75.9890 −0.538929
142142 0 0
143143 0 0
144144 0 0
145145 − 11.1926i − 0.0771903i
146146 0 0
147147 111.038 0.755363
148148 0 0
149149 205.272i 1.37766i 0.724921 + 0.688832i 0.241876π0.241876\pi
−0.724921 + 0.688832i 0.758124π0.758124\pi
150150 0 0
151151 − 113.281i − 0.750203i −0.926984 0.375101i 0.877608π-0.877608\pi
0.926984 0.375101i 0.122392π-0.122392\pi
152152 0 0
153153 − 15.5549i − 0.101666i
154154 0 0
155155 −136.696 −0.881910
156156 0 0
157157 −28.2169 −0.179726 −0.0898628 0.995954i 0.528643π-0.528643\pi
−0.0898628 + 0.995954i 0.528643π0.528643\pi
158158 0 0
159159 8.82847 0.0555250
160160 0 0
161161 − 116.900i − 0.726089i
162162 0 0
163163 −15.4153 −0.0945726 −0.0472863 0.998881i 0.515057π-0.515057\pi
−0.0472863 + 0.998881i 0.515057π0.515057\pi
164164 0 0
165165 0 0
166166 0 0
167167 − 152.413i − 0.912652i −0.889813 0.456326i 0.849165π-0.849165\pi
0.889813 0.456326i 0.150835π-0.150835\pi
168168 0 0
169169 167.675 0.992158
170170 0 0
171171 − 17.7817i − 0.103987i
172172 0 0
173173 37.6018i 0.217351i 0.994077 + 0.108676i 0.0346610π0.0346610\pi
−0.994077 + 0.108676i 0.965339π0.965339\pi
174174 0 0
175175 15.8228i 0.0904158i
176176 0 0
177177 −26.5205 −0.149833
178178 0 0
179179 75.4978 0.421775 0.210888 0.977510i 0.432365π-0.432365\pi
0.210888 + 0.977510i 0.432365π0.432365\pi
180180 0 0
181181 −274.131 −1.51453 −0.757267 0.653105i 0.773466π-0.773466\pi
−0.757267 + 0.653105i 0.773466π0.773466\pi
182182 0 0
183183 − 96.6251i − 0.528006i
184184 0 0
185185 −58.2250 −0.314730
186186 0 0
187187 0 0
188188 0 0
189189 − 89.1213i − 0.471541i
190190 0 0
191191 19.4820 0.102000 0.0509999 0.998699i 0.483759π-0.483759\pi
0.0509999 + 0.998699i 0.483759π0.483759\pi
192192 0 0
193193 120.152i 0.622547i 0.950320 + 0.311274i 0.100756π0.100756\pi
−0.950320 + 0.311274i 0.899244π0.899244\pi
194194 0 0
195195 7.33199i 0.0375999i
196196 0 0
197197 47.0754i 0.238962i 0.992837 + 0.119481i 0.0381230π0.0381230\pi
−0.992837 + 0.119481i 0.961877π0.961877\pi
198198 0 0
199199 −17.6716 −0.0888022 −0.0444011 0.999014i 0.514138π-0.514138\pi
−0.0444011 + 0.999014i 0.514138π0.514138\pi
200200 0 0
201201 −48.7542 −0.242558
202202 0 0
203203 15.8401 0.0780300
204204 0 0
205205 − 134.753i − 0.657333i
206206 0 0
207207 32.7966 0.158438
208208 0 0
209209 0 0
210210 0 0
211211 99.9396i 0.473647i 0.971553 + 0.236824i 0.0761064π0.0761064\pi
−0.971553 + 0.236824i 0.923894π0.923894\pi
212212 0 0
213213 144.501 0.678411
214214 0 0
215215 − 146.224i − 0.680111i
216216 0 0
217217 − 193.456i − 0.891504i
218218 0 0
219219 117.655i 0.537238i
220220 0 0
221221 −20.1702 −0.0912679
222222 0 0
223223 −238.035 −1.06742 −0.533711 0.845667i 0.679203π-0.679203\pi
−0.533711 + 0.845667i 0.679203π0.679203\pi
224224 0 0
225225 −4.43911 −0.0197294
226226 0 0
227227 366.538i 1.61471i 0.590069 + 0.807353i 0.299100π0.299100\pi
−0.590069 + 0.807353i 0.700900π0.700900\pi
228228 0 0
229229 262.545 1.14649 0.573243 0.819385i 0.305685π-0.305685\pi
0.573243 + 0.819385i 0.305685π0.305685\pi
230230 0 0
231231 0 0
232232 0 0
233233 375.852i 1.61310i 0.591168 + 0.806548i 0.298667π0.298667\pi
−0.591168 + 0.806548i 0.701333π0.701333\pi
234234 0 0
235235 −59.6578 −0.253863
236236 0 0
237237 120.268i 0.507462i
238238 0 0
239239 − 300.967i − 1.25928i −0.776888 0.629639i 0.783203π-0.783203\pi
0.776888 0.629639i 0.216797π-0.216797\pi
240240 0 0
241241 478.069i 1.98369i 0.127452 + 0.991845i 0.459320π0.459320\pi
−0.127452 + 0.991845i 0.540680π0.540680\pi
242242 0 0
243243 47.7613 0.196549
244244 0 0
245245 87.1745 0.355814
246246 0 0
247247 −23.0577 −0.0933510
248248 0 0
249249 229.928i 0.923407i
250250 0 0
251251 −412.053 −1.64165 −0.820824 0.571182i 0.806485π-0.806485\pi
−0.820824 + 0.571182i 0.806485π0.806485\pi
252252 0 0
253253 0 0
254254 0 0
255255 111.583i 0.437579i
256256 0 0
257257 299.519 1.16544 0.582722 0.812672i 0.301988π-0.301988\pi
0.582722 + 0.812672i 0.301988π0.301988\pi
258258 0 0
259259 − 82.4018i − 0.318154i
260260 0 0
261261 4.44397i 0.0170267i
262262 0 0
263263 283.233i 1.07693i 0.842648 + 0.538465i 0.180996π0.180996\pi
−0.842648 + 0.538465i 0.819004π0.819004\pi
264264 0 0
265265 6.93109 0.0261551
266266 0 0
267267 −311.475 −1.16657
268268 0 0
269269 −393.125 −1.46143 −0.730715 0.682682i 0.760813π-0.760813\pi
−0.730715 + 0.682682i 0.760813π0.760813\pi
270270 0 0
271271 539.473i 1.99068i 0.0964507 + 0.995338i 0.469251π0.469251\pi
−0.0964507 + 0.995338i 0.530749π0.530749\pi
272272 0 0
273273 −10.3764 −0.0380090
274274 0 0
275275 0 0
276276 0 0
277277 − 279.440i − 1.00881i −0.863468 0.504404i 0.831712π-0.831712\pi
0.863468 0.504404i 0.168288π-0.168288\pi
278278 0 0
279279 54.2746 0.194533
280280 0 0
281281 − 274.373i − 0.976417i −0.872727 0.488208i 0.837651π-0.837651\pi
0.872727 0.488208i 0.162349π-0.162349\pi
282282 0 0
283283 − 523.135i − 1.84853i −0.381749 0.924266i 0.624678π-0.624678\pi
0.381749 0.924266i 0.375322π-0.375322\pi
284284 0 0
285285 127.556i 0.447566i
286286 0 0
287287 190.707 0.664484
288288 0 0
289289 −17.9622 −0.0621531
290290 0 0
291291 −57.0727 −0.196126
292292 0 0
293293 − 403.706i − 1.37784i −0.724838 0.688919i 0.758086π-0.758086\pi
0.724838 0.688919i 0.241914π-0.241914\pi
294294 0 0
295295 −20.8208 −0.0705791
296296 0 0
297297 0 0
298298 0 0
299299 − 42.5276i − 0.142233i
300300 0 0
301301 206.940 0.687510
302302 0 0
303303 253.217i 0.835701i
304304 0 0
305305 − 75.8588i − 0.248717i
306306 0 0
307307 − 290.845i − 0.947378i −0.880692 0.473689i 0.842922π-0.842922\pi
0.880692 0.473689i 0.157078π-0.157078\pi
308308 0 0
309309 35.3983 0.114558
310310 0 0
311311 53.4925 0.172002 0.0860008 0.996295i 0.472591π-0.472591\pi
0.0860008 + 0.996295i 0.472591π0.472591\pi
312312 0 0
313313 −204.622 −0.653744 −0.326872 0.945069i 0.605995π-0.605995\pi
−0.326872 + 0.945069i 0.605995π0.605995\pi
314314 0 0
315315 − 6.28236i − 0.0199440i
316316 0 0
317317 206.669 0.651952 0.325976 0.945378i 0.394307π-0.394307\pi
0.325976 + 0.945378i 0.394307π0.394307\pi
318318 0 0
319319 0 0
320320 0 0
321321 − 589.461i − 1.83633i
322322 0 0
323323 −350.906 −1.08640
324324 0 0
325325 5.75623i 0.0177115i
326326 0 0
327327 105.040i 0.321222i
328328 0 0
329329 − 84.4295i − 0.256625i
330330 0 0
331331 −311.605 −0.941405 −0.470702 0.882292i 0.655999π-0.655999\pi
−0.470702 + 0.882292i 0.655999π0.655999\pi
332332 0 0
333333 23.1180 0.0694234
334334 0 0
335335 −38.2761 −0.114257
336336 0 0
337337 − 491.215i − 1.45761i −0.684721 0.728805i 0.740076π-0.740076\pi
0.684721 0.728805i 0.259924π-0.259924\pi
338338 0 0
339339 −272.765 −0.804616
340340 0 0
341341 0 0
342342 0 0
343343 278.435i 0.811764i
344344 0 0
345345 −235.265 −0.681927
346346 0 0
347347 293.183i 0.844908i 0.906384 + 0.422454i 0.138831π0.138831\pi
−0.906384 + 0.422454i 0.861169π0.861169\pi
348348 0 0
349349 352.915i 1.01122i 0.862763 + 0.505609i 0.168732π0.168732\pi
−0.862763 + 0.505609i 0.831268π0.831268\pi
350350 0 0
351351 − 32.4218i − 0.0923698i
352352 0 0
353353 −203.115 −0.575397 −0.287698 0.957721i 0.592890π-0.592890\pi
−0.287698 + 0.957721i 0.592890π0.592890\pi
354354 0 0
355355 113.446 0.319566
356356 0 0
357357 −157.915 −0.442339
358358 0 0
359359 − 413.072i − 1.15062i −0.817936 0.575309i 0.804882π-0.804882\pi
0.817936 0.575309i 0.195118π-0.195118\pi
360360 0 0
361361 −40.1398 −0.111191
362362 0 0
363363 0 0
364364 0 0
365365 92.3692i 0.253066i
366366 0 0
367367 209.158 0.569913 0.284957 0.958540i 0.408021π-0.408021\pi
0.284957 + 0.958540i 0.408021π0.408021\pi
368368 0 0
369369 53.5032i 0.144995i
370370 0 0
371371 9.80910i 0.0264396i
372372 0 0
373373 475.071i 1.27365i 0.771009 + 0.636825i 0.219752π0.219752\pi
−0.771009 + 0.636825i 0.780248π0.780248\pi
374374 0 0
375375 31.8437 0.0849166
376376 0 0
377377 5.76253 0.0152852
378378 0 0
379379 674.152 1.77876 0.889382 0.457164i 0.151135π-0.151135\pi
0.889382 + 0.457164i 0.151135π0.151135\pi
380380 0 0
381381 406.872i 1.06790i
382382 0 0
383383 −2.60807 −0.00680958 −0.00340479 0.999994i 0.501084π-0.501084\pi
−0.00340479 + 0.999994i 0.501084π0.501084\pi
384384 0 0
385385 0 0
386386 0 0
387387 58.0575i 0.150019i
388388 0 0
389389 131.846 0.338936 0.169468 0.985536i 0.445795π-0.445795\pi
0.169468 + 0.985536i 0.445795π0.445795\pi
390390 0 0
391391 − 647.211i − 1.65527i
392392 0 0
393393 153.091i 0.389544i
394394 0 0
395395 94.4209i 0.239040i
396396 0 0
397397 −313.373 −0.789352 −0.394676 0.918820i 0.629143π-0.629143\pi
−0.394676 + 0.918820i 0.629143π0.629143\pi
398398 0 0
399399 −180.521 −0.452435
400400 0 0
401401 −100.781 −0.251323 −0.125662 0.992073i 0.540105π-0.540105\pi
−0.125662 + 0.992073i 0.540105π0.540105\pi
402402 0 0
403403 − 70.3783i − 0.174636i
404404 0 0
405405 −161.492 −0.398745
406406 0 0
407407 0 0
408408 0 0
409409 − 117.329i − 0.286867i −0.989660 0.143434i 0.954186π-0.954186\pi
0.989660 0.143434i 0.0458144π-0.0458144\pi
410410 0 0
411411 604.179 1.47002
412412 0 0
413413 − 29.4663i − 0.0713469i
414414 0 0
415415 180.513i 0.434971i
416416 0 0
417417 412.124i 0.988307i
418418 0 0
419419 −256.275 −0.611636 −0.305818 0.952090i 0.598930π-0.598930\pi
−0.305818 + 0.952090i 0.598930π0.598930\pi
420420 0 0
421421 538.682 1.27953 0.639765 0.768570i 0.279032π-0.279032\pi
0.639765 + 0.768570i 0.279032π0.279032\pi
422422 0 0
423423 23.6869 0.0559973
424424 0 0
425425 87.6017i 0.206122i
426426 0 0
427427 107.358 0.251423
428428 0 0
429429 0 0
430430 0 0
431431 139.593i 0.323881i 0.986801 + 0.161941i 0.0517753π0.0517753\pi
−0.986801 + 0.161941i 0.948225π0.948225\pi
432432 0 0
433433 −622.694 −1.43809 −0.719046 0.694962i 0.755421π-0.755421\pi
−0.719046 + 0.694962i 0.755421π0.755421\pi
434434 0 0
435435 − 31.8786i − 0.0732842i
436436 0 0
437437 − 739.863i − 1.69305i
438438 0 0
439439 − 314.896i − 0.717303i −0.933471 0.358652i 0.883237π-0.883237\pi
0.933471 0.358652i 0.116763π-0.116763\pi
440440 0 0
441441 −34.6123 −0.0784858
442442 0 0
443443 −210.951 −0.476188 −0.238094 0.971242i 0.576523π-0.576523\pi
−0.238094 + 0.971242i 0.576523π0.576523\pi
444444 0 0
445445 −244.534 −0.549515
446446 0 0
447447 584.653i 1.30795i
448448 0 0
449449 195.081 0.434478 0.217239 0.976118i 0.430295π-0.430295\pi
0.217239 + 0.976118i 0.430295π0.430295\pi
450450 0 0
451451 0 0
452452 0 0
453453 − 322.645i − 0.712240i
454454 0 0
455455 −8.14639 −0.0179041
456456 0 0
457457 553.264i 1.21064i 0.795981 + 0.605321i 0.206955π0.206955\pi
−0.795981 + 0.605321i 0.793045π0.793045\pi
458458 0 0
459459 − 493.414i − 1.07498i
460460 0 0
461461 − 632.590i − 1.37221i −0.727501 0.686106i 0.759319π-0.759319\pi
0.727501 0.686106i 0.240681π-0.240681\pi
462462 0 0
463463 −322.161 −0.695812 −0.347906 0.937529i 0.613107π-0.613107\pi
−0.347906 + 0.937529i 0.613107π0.613107\pi
464464 0 0
465465 −389.336 −0.837282
466466 0 0
467467 199.185 0.426521 0.213260 0.976995i 0.431592π-0.431592\pi
0.213260 + 0.976995i 0.431592π0.431592\pi
468468 0 0
469469 − 54.1696i − 0.115500i
470470 0 0
471471 −80.3671 −0.170631
472472 0 0
473473 0 0
474474 0 0
475475 100.142i 0.210826i
476476 0 0
477477 −2.75196 −0.00576931
478478 0 0
479479 925.847i 1.93287i 0.256902 + 0.966437i 0.417298π0.417298\pi
−0.256902 + 0.966437i 0.582702π0.582702\pi
480480 0 0
481481 − 29.9773i − 0.0623229i
482482 0 0
483483 − 332.954i − 0.689346i
484484 0 0
485485 −44.8068 −0.0923852
486486 0 0
487487 472.329 0.969874 0.484937 0.874549i 0.338842π-0.338842\pi
0.484937 + 0.874549i 0.338842π0.338842\pi
488488 0 0
489489 −43.9058 −0.0897869
490490 0 0
491491 248.799i 0.506720i 0.967372 + 0.253360i 0.0815357π0.0815357\pi
−0.967372 + 0.253360i 0.918464π0.918464\pi
492492 0 0
493493 87.6977 0.177886
494494 0 0
495495 0 0
496496 0 0
497497 160.552i 0.323042i
498498 0 0
499499 −172.816 −0.346325 −0.173163 0.984893i 0.555399π-0.555399\pi
−0.173163 + 0.984893i 0.555399π0.555399\pi
500500 0 0
501501 − 434.101i − 0.866469i
502502 0 0
503503 777.548i 1.54582i 0.634515 + 0.772911i 0.281200π0.281200\pi
−0.634515 + 0.772911i 0.718800π0.718800\pi
504504 0 0
505505 198.797i 0.393658i
506506 0 0
507507 477.569 0.941951
508508 0 0
509509 −509.332 −1.00065 −0.500326 0.865837i 0.666786π-0.666786\pi
−0.500326 + 0.865837i 0.666786π0.666786\pi
510510 0 0
511511 −130.724 −0.255819
512512 0 0
513513 − 564.050i − 1.09951i
514514 0 0
515515 27.7906 0.0539624
516516 0 0
517517 0 0
518518 0 0
519519 107.097i 0.206353i
520520 0 0
521521 −113.956 −0.218726 −0.109363 0.994002i 0.534881π-0.534881\pi
−0.109363 + 0.994002i 0.534881π0.534881\pi
522522 0 0
523523 − 73.3632i − 0.140274i −0.997537 0.0701369i 0.977656π-0.977656\pi
0.997537 0.0701369i 0.0223436π-0.0223436\pi
524524 0 0
525525 45.0662i 0.0858404i
526526 0 0
527527 − 1071.06i − 2.03237i
528528 0 0
529529 835.605 1.57959
530530 0 0
531531 8.26682 0.0155684
532532 0 0
533533 69.3781 0.130165
534534 0 0
535535 − 462.777i − 0.865003i
536536 0 0
537537 215.032 0.400432
538538 0 0
539539 0 0
540540 0 0
541541 809.615i 1.49652i 0.663408 + 0.748258i 0.269110π0.269110\pi
−0.663408 + 0.748258i 0.730890π0.730890\pi
542542 0 0
543543 −780.776 −1.43789
544544 0 0
545545 82.4650i 0.151312i
546546 0 0
547547 516.237i 0.943761i 0.881663 + 0.471880i 0.156425π0.156425\pi
−0.881663 + 0.471880i 0.843575π0.843575\pi
548548 0 0
549549 30.1194i 0.0548623i
550550 0 0
551551 100.252 0.181946
552552 0 0
553553 −133.627 −0.241641
554554 0 0
555555 −165.836 −0.298803
556556 0 0
557557 515.448i 0.925400i 0.886515 + 0.462700i 0.153119π0.153119\pi
−0.886515 + 0.462700i 0.846881π0.846881\pi
558558 0 0
559559 75.2837 0.134676
560560 0 0
561561 0 0
562562 0 0
563563 380.772i 0.676326i 0.941088 + 0.338163i 0.109806π0.109806\pi
−0.941088 + 0.338163i 0.890194π0.890194\pi
564564 0 0
565565 −214.143 −0.379015
566566 0 0
567567 − 228.548i − 0.403083i
568568 0 0
569569 323.742i 0.568967i 0.958681 + 0.284483i 0.0918221π0.0918221\pi
−0.958681 + 0.284483i 0.908178π0.908178\pi
570570 0 0
571571 99.2705i 0.173854i 0.996215 + 0.0869268i 0.0277046π0.0277046\pi
−0.996215 + 0.0869268i 0.972295π0.972295\pi
572572 0 0
573573 55.4883 0.0968382
574574 0 0
575575 −184.703 −0.321222
576576 0 0
577577 964.957 1.67237 0.836184 0.548449i 0.184781π-0.184781\pi
0.836184 + 0.548449i 0.184781π0.184781\pi
578578 0 0
579579 342.214i 0.591044i
580580 0 0
581581 −255.468 −0.439703
582582 0 0
583583 0 0
584584 0 0
585585 − 2.28548i − 0.00390681i
586586 0 0
587587 −235.369 −0.400970 −0.200485 0.979697i 0.564252π-0.564252\pi
−0.200485 + 0.979697i 0.564252π0.564252\pi
588588 0 0
589589 − 1224.39i − 2.07876i
590590 0 0
591591 134.080i 0.226869i
592592 0 0
593593 − 1004.87i − 1.69456i −0.531149 0.847279i 0.678239π-0.678239\pi
0.531149 0.847279i 0.321761π-0.321761\pi
594594 0 0
595595 −123.977 −0.208364
596596 0 0
597597 −50.3322 −0.0843085
598598 0 0
599599 605.756 1.01128 0.505640 0.862745i 0.331257π-0.331257\pi
0.505640 + 0.862745i 0.331257π0.331257\pi
600600 0 0
601601 298.391i 0.496491i 0.968697 + 0.248245i 0.0798539π0.0798539\pi
−0.968697 + 0.248245i 0.920146π0.920146\pi
602602 0 0
603603 15.1974 0.0252030
604604 0 0
605605 0 0
606606 0 0
607607 − 359.345i − 0.592002i −0.955188 0.296001i 0.904347π-0.904347\pi
0.955188 0.296001i 0.0956532π-0.0956532\pi
608608 0 0
609609 45.1156 0.0740814
610610 0 0
611611 − 30.7150i − 0.0502700i
612612 0 0
613613 466.311i 0.760704i 0.924842 + 0.380352i 0.124197π0.124197\pi
−0.924842 + 0.380352i 0.875803π0.875803\pi
614614 0 0
615615 − 383.803i − 0.624070i
616616 0 0
617617 1068.85 1.73233 0.866166 0.499757i 0.166577π-0.166577\pi
0.866166 + 0.499757i 0.166577π0.166577\pi
618618 0 0
619619 383.688 0.619851 0.309926 0.950761i 0.399696π-0.399696\pi
0.309926 + 0.950761i 0.399696π0.399696\pi
620620 0 0
621621 1040.33 1.67526
622622 0 0
623623 − 346.072i − 0.555493i
624624 0 0
625625 25.0000 0.0400000
626626 0 0
627627 0 0
628628 0 0
629629 − 456.213i − 0.725298i
630630 0 0
631631 −985.448 −1.56172 −0.780862 0.624704i 0.785220π-0.785220\pi
−0.780862 + 0.624704i 0.785220π0.785220\pi
632632 0 0
633633 284.647i 0.449679i
634634 0 0
635635 319.429i 0.503037i
636636 0 0
637637 44.8820i 0.0704584i
638638 0 0
639639 −45.0432 −0.0704901
640640 0 0
641641 622.897 0.971758 0.485879 0.874026i 0.338500π-0.338500\pi
0.485879 + 0.874026i 0.338500π0.338500\pi
642642 0 0
643643 −800.440 −1.24485 −0.622426 0.782679i 0.713853π-0.713853\pi
−0.622426 + 0.782679i 0.713853π0.713853\pi
644644 0 0
645645 − 416.473i − 0.645695i
646646 0 0
647647 220.659 0.341050 0.170525 0.985353i 0.445454π-0.445454\pi
0.170525 + 0.985353i 0.445454π0.445454\pi
648648 0 0
649649 0 0
650650 0 0
651651 − 551.000i − 0.846391i
652652 0 0
653653 737.192 1.12893 0.564466 0.825456i 0.309082π-0.309082\pi
0.564466 + 0.825456i 0.309082π0.309082\pi
654654 0 0
655655 120.189i 0.183495i
656656 0 0
657657 − 36.6748i − 0.0558216i
658658 0 0
659659 − 613.844i − 0.931479i −0.884922 0.465739i 0.845788π-0.845788\pi
0.884922 0.465739i 0.154212π-0.154212\pi
660660 0 0
661661 410.333 0.620776 0.310388 0.950610i 0.399541π-0.399541\pi
0.310388 + 0.950610i 0.399541π0.399541\pi
662662 0 0
663663 −57.4485 −0.0866494
664664 0 0
665665 −141.725 −0.213120
666666 0 0
667667 184.905i 0.277219i
668668 0 0
669669 −677.968 −1.01341
670670 0 0
671671 0 0
672672 0 0
673673 913.162i 1.35685i 0.734669 + 0.678426i 0.237338π0.237338\pi
−0.734669 + 0.678426i 0.762662π0.762662\pi
674674 0 0
675675 −140.812 −0.208610
676676 0 0
677677 − 645.161i − 0.952970i −0.879183 0.476485i 0.841911π-0.841911\pi
0.879183 0.476485i 0.158089π-0.158089\pi
678678 0 0
679679 − 63.4120i − 0.0933903i
680680 0 0
681681 1043.97i 1.53300i
682682 0 0
683683 −918.844 −1.34531 −0.672653 0.739958i 0.734845π-0.734845\pi
−0.672653 + 0.739958i 0.734845π0.734845\pi
684684 0 0
685685 474.331 0.692455
686686 0 0
687687 747.779 1.08847
688688 0 0
689689 3.56849i 0.00517923i
690690 0 0
691691 −723.035 −1.04636 −0.523180 0.852222i 0.675255π-0.675255\pi
−0.523180 + 0.852222i 0.675255π0.675255\pi
692692 0 0
693693 0 0
694694 0 0
695695 323.552i 0.465543i
696696 0 0
697697 1055.84 1.51483
698698 0 0
699699 1070.50i 1.53147i
700700 0 0
701701 268.703i 0.383314i 0.981462 + 0.191657i 0.0613860π0.0613860\pi
−0.981462 + 0.191657i 0.938614π0.938614\pi
702702 0 0
703703 − 521.522i − 0.741852i
704704 0 0
705705 −169.917 −0.241017
706706 0 0
707707 −281.344 −0.397940
708708 0 0
709709 −652.123 −0.919779 −0.459889 0.887976i 0.652111π-0.652111\pi
−0.459889 + 0.887976i 0.652111π0.652111\pi
710710 0 0
711711 − 37.4894i − 0.0527277i
712712 0 0
713713 2258.26 3.16727
714714 0 0
715715 0 0
716716 0 0
717717 − 857.212i − 1.19555i
718718 0 0
719719 233.292 0.324467 0.162234 0.986752i 0.448130π-0.448130\pi
0.162234 + 0.986752i 0.448130π0.448130\pi
720720 0 0
721721 39.3302i 0.0545495i
722722 0 0
723723 1361.63i 1.88331i
724724 0 0
725725 − 25.0274i − 0.0345205i
726726 0 0
727727 −1255.99 −1.72764 −0.863818 0.503804i 0.831933π-0.831933\pi
−0.863818 + 0.503804i 0.831933π0.831933\pi
728728 0 0
729729 786.026 1.07822
730730 0 0
731731 1145.71 1.56732
732732 0 0
733733 − 1341.16i − 1.82969i −0.403807 0.914844i 0.632313π-0.632313\pi
0.403807 0.914844i 0.367687π-0.367687\pi
734734 0 0
735735 248.289 0.337809
736736 0 0
737737 0 0
738738 0 0
739739 985.254i 1.33323i 0.745404 + 0.666613i 0.232257π0.232257\pi
−0.745404 + 0.666613i 0.767743π0.767743\pi
740740 0 0
741741 −65.6726 −0.0886270
742742 0 0
743743 849.373i 1.14317i 0.820544 + 0.571584i 0.193671π0.193671\pi
−0.820544 + 0.571584i 0.806329π0.806329\pi
744744 0 0
745745 459.002i 0.616110i
746746 0 0
747747 − 71.6720i − 0.0959464i
748748 0 0
749749 654.936 0.874414
750750 0 0
751751 148.178 0.197308 0.0986540 0.995122i 0.468546π-0.468546\pi
0.0986540 + 0.995122i 0.468546π0.468546\pi
752752 0 0
753753 −1173.61 −1.55857
754754 0 0
755755 − 253.303i − 0.335501i
756756 0 0
757757 −1155.79 −1.52680 −0.763400 0.645926i 0.776471π-0.776471\pi
−0.763400 + 0.645926i 0.776471π0.776471\pi
758758 0 0
759759 0 0
760760 0 0
761761 − 812.807i − 1.06808i −0.845460 0.534039i 0.820674π-0.820674\pi
0.845460 0.534039i 0.179326π-0.179326\pi
762762 0 0
763763 −116.707 −0.152958
764764 0 0
765765 − 34.7819i − 0.0454665i
766766 0 0
767767 − 10.7197i − 0.0139761i
768768 0 0
769769 298.253i 0.387845i 0.981017 + 0.193923i 0.0621211π0.0621211\pi
−0.981017 + 0.193923i 0.937879π0.937879\pi
770770 0 0
771771 853.087 1.10647
772772 0 0
773773 459.500 0.594437 0.297219 0.954809i 0.403941π-0.403941\pi
0.297219 + 0.954809i 0.403941π0.403941\pi
774774 0 0
775775 −305.662 −0.394402
776776 0 0
777777 − 234.696i − 0.302054i
778778 0 0
779779 1206.99 1.54940
780780 0 0
781781 0 0
782782 0 0
783783 140.966i 0.180033i
784784 0 0
785785 −63.0950 −0.0803758
786786 0 0
787787 − 1141.52i − 1.45047i −0.688502 0.725235i 0.741731π-0.741731\pi
0.688502 0.725235i 0.258269π-0.258269\pi
788788 0 0
789789 806.700i 1.02243i
790790 0 0
791791 − 303.062i − 0.383138i
792792 0 0
793793 39.0561 0.0492511
794794 0 0
795795 19.7411 0.0248315
796796 0 0
797797 41.3311 0.0518584 0.0259292 0.999664i 0.491746π-0.491746\pi
0.0259292 + 0.999664i 0.491746π0.491746\pi
798798 0 0
799799 − 467.439i − 0.585030i
800800 0 0
801801 97.0913 0.121213
802802 0 0
803803 0 0
804804 0 0
805805 − 261.397i − 0.324717i
806806 0 0
807807 −1119.69 −1.38748
808808 0 0
809809 − 1123.31i − 1.38852i −0.719725 0.694259i 0.755732π-0.755732\pi
0.719725 0.694259i 0.244268π-0.244268\pi
810810 0 0
811811 − 864.705i − 1.06622i −0.846046 0.533111i 0.821023π-0.821023\pi
0.846046 0.533111i 0.178977π-0.178977\pi
812812 0 0
813813 1536.52i 1.88994i
814814 0 0
815815 −34.4697 −0.0422941
816816 0 0
817817 1309.73 1.60309
818818 0 0
819819 3.23449 0.00394931
820820 0 0
821821 933.419i 1.13693i 0.822708 + 0.568465i 0.192462π0.192462\pi
−0.822708 + 0.568465i 0.807538π0.807538\pi
822822 0 0
823823 −314.613 −0.382276 −0.191138 0.981563i 0.561218π-0.561218\pi
−0.191138 + 0.981563i 0.561218π0.561218\pi
824824 0 0
825825 0 0
826826 0 0
827827 528.653i 0.639242i 0.947545 + 0.319621i 0.103556π0.103556\pi
−0.947545 + 0.319621i 0.896444π0.896444\pi
828828 0 0
829829 −988.626 −1.19255 −0.596276 0.802779i 0.703354π-0.703354\pi
−0.596276 + 0.802779i 0.703354π0.703354\pi
830830 0 0
831831 − 795.898i − 0.957759i
832832 0 0
833833 683.041i 0.819977i
834834 0 0
835835 − 340.806i − 0.408150i
836836 0 0
837837 1721.63 2.05691
838838 0 0
839839 1232.81 1.46938 0.734692 0.678401i 0.237327π-0.237327\pi
0.734692 + 0.678401i 0.237327π0.237327\pi
840840 0 0
841841 815.945 0.970208
842842 0 0
843843 − 781.466i − 0.927006i
844844 0 0
845845 374.932 0.443706
846846 0 0
847847 0 0
848848 0 0
849849 − 1489.99i − 1.75499i
850850 0 0
851851 961.896 1.13031
852852 0 0
853853 − 607.063i − 0.711679i −0.934547 0.355840i 0.884195π-0.884195\pi
0.934547 0.355840i 0.115805π-0.115805\pi
854854 0 0
855855 − 39.7611i − 0.0465042i
856856 0 0
857857 237.750i 0.277422i 0.990333 + 0.138711i 0.0442959π0.0442959\pi
−0.990333 + 0.138711i 0.955704π0.955704\pi
858858 0 0
859859 792.390 0.922456 0.461228 0.887282i 0.347409π-0.347409\pi
0.461228 + 0.887282i 0.347409π0.347409\pi
860860 0 0
861861 543.169 0.630859
862862 0 0
863863 −777.416 −0.900829 −0.450415 0.892819i 0.648724π-0.648724\pi
−0.450415 + 0.892819i 0.648724π0.648724\pi
864864 0 0
865865 84.0801i 0.0972025i
866866 0 0
867867 −51.1599 −0.0590079
868868 0 0
869869 0 0
870870 0 0
871871 − 19.7066i − 0.0226252i
872872 0 0
873873 17.7904 0.0203784
874874 0 0
875875 35.3808i 0.0404352i
876876 0 0
877877 651.290i 0.742634i 0.928506 + 0.371317i 0.121094π0.121094\pi
−0.928506 + 0.371317i 0.878906π0.878906\pi
878878 0 0
879879 − 1149.83i − 1.30811i
880880 0 0
881881 1499.78 1.70236 0.851182 0.524870i 0.175886π-0.175886\pi
0.851182 + 0.524870i 0.175886π0.175886\pi
882882 0 0
883883 −1209.15 −1.36936 −0.684681 0.728843i 0.740058π-0.740058\pi
−0.684681 + 0.728843i 0.740058π0.740058\pi
884884 0 0
885885 −59.3016 −0.0670075
886886 0 0
887887 − 955.521i − 1.07725i −0.842545 0.538625i 0.818944π-0.818944\pi
0.842545 0.538625i 0.181056π-0.181056\pi
888888 0 0
889889 −452.065 −0.508510
890890 0 0
891891 0 0
892892 0 0
893893 − 534.355i − 0.598382i
894894 0 0
895895 168.818 0.188624
896896 0 0
897897 − 121.127i − 0.135035i
898898 0 0
899899 305.997i 0.340374i
900900 0 0
901901 54.3074i 0.0602746i
902902 0 0
903903 589.405 0.652719
904904 0 0
905905 −612.975 −0.677320
906906 0 0
907907 188.645 0.207988 0.103994 0.994578i 0.466838π-0.466838\pi
0.103994 + 0.994578i 0.466838π0.466838\pi
908908 0 0
909909 − 78.9315i − 0.0868334i
910910 0 0
911911 230.077 0.252554 0.126277 0.991995i 0.459697π-0.459697\pi
0.126277 + 0.991995i 0.459697π0.459697\pi
912912 0 0
913913 0 0
914914 0 0
915915 − 216.060i − 0.236131i
916916 0 0
917917 −170.095 −0.185491
918918 0 0
919919 − 1645.90i − 1.79097i −0.445088 0.895487i 0.646828π-0.646828\pi
0.445088 0.895487i 0.353172π-0.353172\pi
920920 0 0
921921 − 828.381i − 0.899437i
922922 0 0
923923 58.4079i 0.0632805i
924924 0 0
925925 −130.195 −0.140751
926926 0 0
927927 −11.0342 −0.0119031
928928 0 0
929929 622.194 0.669746 0.334873 0.942263i 0.391307π-0.391307\pi
0.334873 + 0.942263i 0.391307π0.391307\pi
930930 0 0
931931 780.822i 0.838692i
932932 0 0
933933 152.357 0.163298
934934 0 0
935935 0 0
936936 0 0
937937 43.0297i 0.0459229i 0.999736 + 0.0229614i 0.00730950π0.00730950\pi
−0.999736 + 0.0229614i 0.992691π0.992691\pi
938938 0 0
939939 −582.801 −0.620662
940940 0 0
941941 − 1184.75i − 1.25903i −0.776988 0.629516i 0.783253π-0.783253\pi
0.776988 0.629516i 0.216747π-0.216747\pi
942942 0 0
943943 2226.17i 2.36073i
944944 0 0
945945 − 199.281i − 0.210880i
946946 0 0
947947 −486.719 −0.513959 −0.256979 0.966417i 0.582727π-0.582727\pi
−0.256979 + 0.966417i 0.582727π0.582727\pi
948948 0 0
949949 −47.5565 −0.0501122
950950 0 0
951951 588.632 0.618961
952952 0 0
953953 − 765.779i − 0.803546i −0.915739 0.401773i 0.868394π-0.868394\pi
0.915739 0.401773i 0.131606π-0.131606\pi
954954 0 0
955955 43.5630 0.0456157
956956 0 0
957957 0 0
958958 0 0
959959 671.288i 0.699988i
960960 0 0
961961 2776.16 2.88883
962962 0 0
963963 183.744i 0.190803i
964964 0 0
965965 268.667i 0.278412i
966966 0 0
967967 1843.46i 1.90637i 0.302386 + 0.953186i 0.402217π0.402217\pi
−0.302386 + 0.953186i 0.597783π0.597783\pi
968968 0 0
969969 −999.445 −1.03142
970970 0 0
971971 518.715 0.534207 0.267104 0.963668i 0.413933π-0.413933\pi
0.267104 + 0.963668i 0.413933π0.413933\pi
972972 0 0
973973 −457.901 −0.470607
974974 0 0
975975 16.3948i 0.0168152i
976976 0 0
977977 1587.15 1.62451 0.812256 0.583301i 0.198239π-0.198239\pi
0.812256 + 0.583301i 0.198239π0.198239\pi
978978 0 0
979979 0 0
980980 0 0
981981 − 32.7424i − 0.0333765i
982982 0 0
983983 −1923.05 −1.95631 −0.978153 0.207887i 0.933341π-0.933341\pi
−0.978153 + 0.207887i 0.933341π0.933341\pi
984984 0 0
985985 105.264i 0.106867i
986986 0 0
987987 − 240.471i − 0.243638i
988988 0 0
989989 2415.66i 2.44253i
990990 0 0
991991 722.553 0.729115 0.364558 0.931181i 0.381220π-0.381220\pi
0.364558 + 0.931181i 0.381220π0.381220\pi
992992 0 0
993993 −887.510 −0.893766
994994 0 0
995995 −39.5150 −0.0397136
996996 0 0
997997 74.3117i 0.0745353i 0.999305 + 0.0372676i 0.0118654π0.0118654\pi
−0.999305 + 0.0372676i 0.988135π0.988135\pi
998998 0 0
999999 733.321 0.734055
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2420.3.f.a.241.14 16
11.3 even 5 220.3.p.b.101.1 yes 16
11.7 odd 10 220.3.p.b.61.1 16
11.10 odd 2 inner 2420.3.f.a.241.13 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.p.b.61.1 16 11.7 odd 10
220.3.p.b.101.1 yes 16 11.3 even 5
2420.3.f.a.241.13 16 11.10 odd 2 inner
2420.3.f.a.241.14 16 1.1 even 1 trivial