Properties

Label 2420.3.f.a.241.14
Level $2420$
Weight $3$
Character 2420.241
Analytic conductor $65.940$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2420,3,Mod(241,2420)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2420, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2420.241");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2420 = 2^{2} \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2420.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(65.9402239752\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 33 x^{14} - 111 x^{13} + 735 x^{12} - 1436 x^{11} + 10633 x^{10} - 25103 x^{9} + \cdots + 75625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8}\cdot 5 \)
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 241.14
Root \(3.61325 - 2.62518i\) of defining polynomial
Character \(\chi\) \(=\) 2420.241
Dual form 2420.3.f.a.241.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.84819 q^{3} +2.23607 q^{5} +3.16455i q^{7} -0.887821 q^{9} +1.15125i q^{13} +6.36874 q^{15} +17.5203i q^{17} +20.0285i q^{19} +9.01324i q^{21} -36.9406 q^{23} +5.00000 q^{25} -28.1624 q^{27} -5.00548i q^{29} -61.1323 q^{31} +7.07615i q^{35} -26.0390 q^{37} +3.27896i q^{39} -60.2635i q^{41} -65.3933i q^{43} -1.98523 q^{45} -26.6798 q^{47} +38.9856 q^{49} +49.9012i q^{51} +3.09968 q^{53} +57.0449i q^{57} -9.31135 q^{59} -33.9251i q^{61} -2.80956i q^{63} +2.57426i q^{65} -17.1176 q^{67} -105.214 q^{69} +50.7345 q^{71} +41.3088i q^{73} +14.2409 q^{75} +42.2263i q^{79} -72.2214 q^{81} +80.7279i q^{83} +39.1767i q^{85} -14.2565i q^{87} -109.359 q^{89} -3.64317 q^{91} -174.116 q^{93} +44.7850i q^{95} -20.0382 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{3} + 46 q^{9} - 30 q^{15} - 168 q^{23} + 80 q^{25} + 30 q^{27} - 190 q^{31} + 104 q^{37} - 30 q^{45} - 268 q^{47} - 228 q^{49} - 368 q^{53} + 78 q^{59} - 68 q^{67} - 212 q^{69} + 270 q^{71}+ \cdots - 726 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2420\mathbb{Z}\right)^\times\).

\(n\) \(1211\) \(1937\) \(2301\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.84819 0.949396 0.474698 0.880149i \(-0.342557\pi\)
0.474698 + 0.880149i \(0.342557\pi\)
\(4\) 0 0
\(5\) 2.23607 0.447214
\(6\) 0 0
\(7\) 3.16455i 0.452079i 0.974118 + 0.226039i \(0.0725778\pi\)
−0.974118 + 0.226039i \(0.927422\pi\)
\(8\) 0 0
\(9\) −0.887821 −0.0986468
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 1.15125i 0.0885573i 0.999019 + 0.0442787i \(0.0140989\pi\)
−0.999019 + 0.0442787i \(0.985901\pi\)
\(14\) 0 0
\(15\) 6.36874 0.424583
\(16\) 0 0
\(17\) 17.5203i 1.03061i 0.857007 + 0.515304i \(0.172321\pi\)
−0.857007 + 0.515304i \(0.827679\pi\)
\(18\) 0 0
\(19\) 20.0285i 1.05413i 0.849825 + 0.527065i \(0.176708\pi\)
−0.849825 + 0.527065i \(0.823292\pi\)
\(20\) 0 0
\(21\) 9.01324i 0.429202i
\(22\) 0 0
\(23\) −36.9406 −1.60611 −0.803056 0.595904i \(-0.796794\pi\)
−0.803056 + 0.595904i \(0.796794\pi\)
\(24\) 0 0
\(25\) 5.00000 0.200000
\(26\) 0 0
\(27\) −28.1624 −1.04305
\(28\) 0 0
\(29\) − 5.00548i − 0.172603i −0.996269 0.0863014i \(-0.972495\pi\)
0.996269 0.0863014i \(-0.0275048\pi\)
\(30\) 0 0
\(31\) −61.1323 −1.97201 −0.986005 0.166714i \(-0.946684\pi\)
−0.986005 + 0.166714i \(0.946684\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 7.07615i 0.202176i
\(36\) 0 0
\(37\) −26.0390 −0.703757 −0.351879 0.936046i \(-0.614457\pi\)
−0.351879 + 0.936046i \(0.614457\pi\)
\(38\) 0 0
\(39\) 3.27896i 0.0840760i
\(40\) 0 0
\(41\) − 60.2635i − 1.46984i −0.678153 0.734921i \(-0.737219\pi\)
0.678153 0.734921i \(-0.262781\pi\)
\(42\) 0 0
\(43\) − 65.3933i − 1.52077i −0.649470 0.760387i \(-0.725009\pi\)
0.649470 0.760387i \(-0.274991\pi\)
\(44\) 0 0
\(45\) −1.98523 −0.0441162
\(46\) 0 0
\(47\) −26.6798 −0.567655 −0.283827 0.958875i \(-0.591604\pi\)
−0.283827 + 0.958875i \(0.591604\pi\)
\(48\) 0 0
\(49\) 38.9856 0.795625
\(50\) 0 0
\(51\) 49.9012i 0.978455i
\(52\) 0 0
\(53\) 3.09968 0.0584845 0.0292423 0.999572i \(-0.490691\pi\)
0.0292423 + 0.999572i \(0.490691\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 57.0449i 1.00079i
\(58\) 0 0
\(59\) −9.31135 −0.157820 −0.0789098 0.996882i \(-0.525144\pi\)
−0.0789098 + 0.996882i \(0.525144\pi\)
\(60\) 0 0
\(61\) − 33.9251i − 0.556149i −0.960559 0.278075i \(-0.910304\pi\)
0.960559 0.278075i \(-0.0896962\pi\)
\(62\) 0 0
\(63\) − 2.80956i − 0.0445961i
\(64\) 0 0
\(65\) 2.57426i 0.0396040i
\(66\) 0 0
\(67\) −17.1176 −0.255487 −0.127743 0.991807i \(-0.540773\pi\)
−0.127743 + 0.991807i \(0.540773\pi\)
\(68\) 0 0
\(69\) −105.214 −1.52484
\(70\) 0 0
\(71\) 50.7345 0.714571 0.357285 0.933995i \(-0.383702\pi\)
0.357285 + 0.933995i \(0.383702\pi\)
\(72\) 0 0
\(73\) 41.3088i 0.565873i 0.959139 + 0.282937i \(0.0913086\pi\)
−0.959139 + 0.282937i \(0.908691\pi\)
\(74\) 0 0
\(75\) 14.2409 0.189879
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 42.2263i 0.534510i 0.963626 + 0.267255i \(0.0861166\pi\)
−0.963626 + 0.267255i \(0.913883\pi\)
\(80\) 0 0
\(81\) −72.2214 −0.891622
\(82\) 0 0
\(83\) 80.7279i 0.972626i 0.873785 + 0.486313i \(0.161658\pi\)
−0.873785 + 0.486313i \(0.838342\pi\)
\(84\) 0 0
\(85\) 39.1767i 0.460902i
\(86\) 0 0
\(87\) − 14.2565i − 0.163868i
\(88\) 0 0
\(89\) −109.359 −1.22875 −0.614377 0.789013i \(-0.710592\pi\)
−0.614377 + 0.789013i \(0.710592\pi\)
\(90\) 0 0
\(91\) −3.64317 −0.0400349
\(92\) 0 0
\(93\) −174.116 −1.87222
\(94\) 0 0
\(95\) 44.7850i 0.471421i
\(96\) 0 0
\(97\) −20.0382 −0.206580 −0.103290 0.994651i \(-0.532937\pi\)
−0.103290 + 0.994651i \(0.532937\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 88.9047i 0.880245i 0.897938 + 0.440123i \(0.145065\pi\)
−0.897938 + 0.440123i \(0.854935\pi\)
\(102\) 0 0
\(103\) 12.4284 0.120664 0.0603318 0.998178i \(-0.480784\pi\)
0.0603318 + 0.998178i \(0.480784\pi\)
\(104\) 0 0
\(105\) 20.1542i 0.191945i
\(106\) 0 0
\(107\) − 206.960i − 1.93421i −0.254385 0.967103i \(-0.581873\pi\)
0.254385 0.967103i \(-0.418127\pi\)
\(108\) 0 0
\(109\) 36.8795i 0.338344i 0.985587 + 0.169172i \(0.0541093\pi\)
−0.985587 + 0.169172i \(0.945891\pi\)
\(110\) 0 0
\(111\) −74.1641 −0.668145
\(112\) 0 0
\(113\) −95.7678 −0.847503 −0.423751 0.905779i \(-0.639287\pi\)
−0.423751 + 0.905779i \(0.639287\pi\)
\(114\) 0 0
\(115\) −82.6016 −0.718275
\(116\) 0 0
\(117\) − 1.02210i − 0.00873590i
\(118\) 0 0
\(119\) −55.4440 −0.465916
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) − 171.642i − 1.39546i
\(124\) 0 0
\(125\) 11.1803 0.0894427
\(126\) 0 0
\(127\) 142.853i 1.12483i 0.826857 + 0.562413i \(0.190127\pi\)
−0.826857 + 0.562413i \(0.809873\pi\)
\(128\) 0 0
\(129\) − 186.252i − 1.44382i
\(130\) 0 0
\(131\) 53.7502i 0.410307i 0.978730 + 0.205153i \(0.0657693\pi\)
−0.978730 + 0.205153i \(0.934231\pi\)
\(132\) 0 0
\(133\) −63.3811 −0.476550
\(134\) 0 0
\(135\) −62.9730 −0.466467
\(136\) 0 0
\(137\) 212.127 1.54838 0.774188 0.632956i \(-0.218159\pi\)
0.774188 + 0.632956i \(0.218159\pi\)
\(138\) 0 0
\(139\) 144.697i 1.04099i 0.853866 + 0.520493i \(0.174252\pi\)
−0.853866 + 0.520493i \(0.825748\pi\)
\(140\) 0 0
\(141\) −75.9890 −0.538929
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) − 11.1926i − 0.0771903i
\(146\) 0 0
\(147\) 111.038 0.755363
\(148\) 0 0
\(149\) 205.272i 1.37766i 0.724921 + 0.688832i \(0.241876\pi\)
−0.724921 + 0.688832i \(0.758124\pi\)
\(150\) 0 0
\(151\) − 113.281i − 0.750203i −0.926984 0.375101i \(-0.877608\pi\)
0.926984 0.375101i \(-0.122392\pi\)
\(152\) 0 0
\(153\) − 15.5549i − 0.101666i
\(154\) 0 0
\(155\) −136.696 −0.881910
\(156\) 0 0
\(157\) −28.2169 −0.179726 −0.0898628 0.995954i \(-0.528643\pi\)
−0.0898628 + 0.995954i \(0.528643\pi\)
\(158\) 0 0
\(159\) 8.82847 0.0555250
\(160\) 0 0
\(161\) − 116.900i − 0.726089i
\(162\) 0 0
\(163\) −15.4153 −0.0945726 −0.0472863 0.998881i \(-0.515057\pi\)
−0.0472863 + 0.998881i \(0.515057\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 152.413i − 0.912652i −0.889813 0.456326i \(-0.849165\pi\)
0.889813 0.456326i \(-0.150835\pi\)
\(168\) 0 0
\(169\) 167.675 0.992158
\(170\) 0 0
\(171\) − 17.7817i − 0.103987i
\(172\) 0 0
\(173\) 37.6018i 0.217351i 0.994077 + 0.108676i \(0.0346610\pi\)
−0.994077 + 0.108676i \(0.965339\pi\)
\(174\) 0 0
\(175\) 15.8228i 0.0904158i
\(176\) 0 0
\(177\) −26.5205 −0.149833
\(178\) 0 0
\(179\) 75.4978 0.421775 0.210888 0.977510i \(-0.432365\pi\)
0.210888 + 0.977510i \(0.432365\pi\)
\(180\) 0 0
\(181\) −274.131 −1.51453 −0.757267 0.653105i \(-0.773466\pi\)
−0.757267 + 0.653105i \(0.773466\pi\)
\(182\) 0 0
\(183\) − 96.6251i − 0.528006i
\(184\) 0 0
\(185\) −58.2250 −0.314730
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) − 89.1213i − 0.471541i
\(190\) 0 0
\(191\) 19.4820 0.102000 0.0509999 0.998699i \(-0.483759\pi\)
0.0509999 + 0.998699i \(0.483759\pi\)
\(192\) 0 0
\(193\) 120.152i 0.622547i 0.950320 + 0.311274i \(0.100756\pi\)
−0.950320 + 0.311274i \(0.899244\pi\)
\(194\) 0 0
\(195\) 7.33199i 0.0375999i
\(196\) 0 0
\(197\) 47.0754i 0.238962i 0.992837 + 0.119481i \(0.0381230\pi\)
−0.992837 + 0.119481i \(0.961877\pi\)
\(198\) 0 0
\(199\) −17.6716 −0.0888022 −0.0444011 0.999014i \(-0.514138\pi\)
−0.0444011 + 0.999014i \(0.514138\pi\)
\(200\) 0 0
\(201\) −48.7542 −0.242558
\(202\) 0 0
\(203\) 15.8401 0.0780300
\(204\) 0 0
\(205\) − 134.753i − 0.657333i
\(206\) 0 0
\(207\) 32.7966 0.158438
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 99.9396i 0.473647i 0.971553 + 0.236824i \(0.0761064\pi\)
−0.971553 + 0.236824i \(0.923894\pi\)
\(212\) 0 0
\(213\) 144.501 0.678411
\(214\) 0 0
\(215\) − 146.224i − 0.680111i
\(216\) 0 0
\(217\) − 193.456i − 0.891504i
\(218\) 0 0
\(219\) 117.655i 0.537238i
\(220\) 0 0
\(221\) −20.1702 −0.0912679
\(222\) 0 0
\(223\) −238.035 −1.06742 −0.533711 0.845667i \(-0.679203\pi\)
−0.533711 + 0.845667i \(0.679203\pi\)
\(224\) 0 0
\(225\) −4.43911 −0.0197294
\(226\) 0 0
\(227\) 366.538i 1.61471i 0.590069 + 0.807353i \(0.299100\pi\)
−0.590069 + 0.807353i \(0.700900\pi\)
\(228\) 0 0
\(229\) 262.545 1.14649 0.573243 0.819385i \(-0.305685\pi\)
0.573243 + 0.819385i \(0.305685\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 375.852i 1.61310i 0.591168 + 0.806548i \(0.298667\pi\)
−0.591168 + 0.806548i \(0.701333\pi\)
\(234\) 0 0
\(235\) −59.6578 −0.253863
\(236\) 0 0
\(237\) 120.268i 0.507462i
\(238\) 0 0
\(239\) − 300.967i − 1.25928i −0.776888 0.629639i \(-0.783203\pi\)
0.776888 0.629639i \(-0.216797\pi\)
\(240\) 0 0
\(241\) 478.069i 1.98369i 0.127452 + 0.991845i \(0.459320\pi\)
−0.127452 + 0.991845i \(0.540680\pi\)
\(242\) 0 0
\(243\) 47.7613 0.196549
\(244\) 0 0
\(245\) 87.1745 0.355814
\(246\) 0 0
\(247\) −23.0577 −0.0933510
\(248\) 0 0
\(249\) 229.928i 0.923407i
\(250\) 0 0
\(251\) −412.053 −1.64165 −0.820824 0.571182i \(-0.806485\pi\)
−0.820824 + 0.571182i \(0.806485\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 111.583i 0.437579i
\(256\) 0 0
\(257\) 299.519 1.16544 0.582722 0.812672i \(-0.301988\pi\)
0.582722 + 0.812672i \(0.301988\pi\)
\(258\) 0 0
\(259\) − 82.4018i − 0.318154i
\(260\) 0 0
\(261\) 4.44397i 0.0170267i
\(262\) 0 0
\(263\) 283.233i 1.07693i 0.842648 + 0.538465i \(0.180996\pi\)
−0.842648 + 0.538465i \(0.819004\pi\)
\(264\) 0 0
\(265\) 6.93109 0.0261551
\(266\) 0 0
\(267\) −311.475 −1.16657
\(268\) 0 0
\(269\) −393.125 −1.46143 −0.730715 0.682682i \(-0.760813\pi\)
−0.730715 + 0.682682i \(0.760813\pi\)
\(270\) 0 0
\(271\) 539.473i 1.99068i 0.0964507 + 0.995338i \(0.469251\pi\)
−0.0964507 + 0.995338i \(0.530749\pi\)
\(272\) 0 0
\(273\) −10.3764 −0.0380090
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 279.440i − 1.00881i −0.863468 0.504404i \(-0.831712\pi\)
0.863468 0.504404i \(-0.168288\pi\)
\(278\) 0 0
\(279\) 54.2746 0.194533
\(280\) 0 0
\(281\) − 274.373i − 0.976417i −0.872727 0.488208i \(-0.837651\pi\)
0.872727 0.488208i \(-0.162349\pi\)
\(282\) 0 0
\(283\) − 523.135i − 1.84853i −0.381749 0.924266i \(-0.624678\pi\)
0.381749 0.924266i \(-0.375322\pi\)
\(284\) 0 0
\(285\) 127.556i 0.447566i
\(286\) 0 0
\(287\) 190.707 0.664484
\(288\) 0 0
\(289\) −17.9622 −0.0621531
\(290\) 0 0
\(291\) −57.0727 −0.196126
\(292\) 0 0
\(293\) − 403.706i − 1.37784i −0.724838 0.688919i \(-0.758086\pi\)
0.724838 0.688919i \(-0.241914\pi\)
\(294\) 0 0
\(295\) −20.8208 −0.0705791
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 42.5276i − 0.142233i
\(300\) 0 0
\(301\) 206.940 0.687510
\(302\) 0 0
\(303\) 253.217i 0.835701i
\(304\) 0 0
\(305\) − 75.8588i − 0.248717i
\(306\) 0 0
\(307\) − 290.845i − 0.947378i −0.880692 0.473689i \(-0.842922\pi\)
0.880692 0.473689i \(-0.157078\pi\)
\(308\) 0 0
\(309\) 35.3983 0.114558
\(310\) 0 0
\(311\) 53.4925 0.172002 0.0860008 0.996295i \(-0.472591\pi\)
0.0860008 + 0.996295i \(0.472591\pi\)
\(312\) 0 0
\(313\) −204.622 −0.653744 −0.326872 0.945069i \(-0.605995\pi\)
−0.326872 + 0.945069i \(0.605995\pi\)
\(314\) 0 0
\(315\) − 6.28236i − 0.0199440i
\(316\) 0 0
\(317\) 206.669 0.651952 0.325976 0.945378i \(-0.394307\pi\)
0.325976 + 0.945378i \(0.394307\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) − 589.461i − 1.83633i
\(322\) 0 0
\(323\) −350.906 −1.08640
\(324\) 0 0
\(325\) 5.75623i 0.0177115i
\(326\) 0 0
\(327\) 105.040i 0.321222i
\(328\) 0 0
\(329\) − 84.4295i − 0.256625i
\(330\) 0 0
\(331\) −311.605 −0.941405 −0.470702 0.882292i \(-0.655999\pi\)
−0.470702 + 0.882292i \(0.655999\pi\)
\(332\) 0 0
\(333\) 23.1180 0.0694234
\(334\) 0 0
\(335\) −38.2761 −0.114257
\(336\) 0 0
\(337\) − 491.215i − 1.45761i −0.684721 0.728805i \(-0.740076\pi\)
0.684721 0.728805i \(-0.259924\pi\)
\(338\) 0 0
\(339\) −272.765 −0.804616
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 278.435i 0.811764i
\(344\) 0 0
\(345\) −235.265 −0.681927
\(346\) 0 0
\(347\) 293.183i 0.844908i 0.906384 + 0.422454i \(0.138831\pi\)
−0.906384 + 0.422454i \(0.861169\pi\)
\(348\) 0 0
\(349\) 352.915i 1.01122i 0.862763 + 0.505609i \(0.168732\pi\)
−0.862763 + 0.505609i \(0.831268\pi\)
\(350\) 0 0
\(351\) − 32.4218i − 0.0923698i
\(352\) 0 0
\(353\) −203.115 −0.575397 −0.287698 0.957721i \(-0.592890\pi\)
−0.287698 + 0.957721i \(0.592890\pi\)
\(354\) 0 0
\(355\) 113.446 0.319566
\(356\) 0 0
\(357\) −157.915 −0.442339
\(358\) 0 0
\(359\) − 413.072i − 1.15062i −0.817936 0.575309i \(-0.804882\pi\)
0.817936 0.575309i \(-0.195118\pi\)
\(360\) 0 0
\(361\) −40.1398 −0.111191
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 92.3692i 0.253066i
\(366\) 0 0
\(367\) 209.158 0.569913 0.284957 0.958540i \(-0.408021\pi\)
0.284957 + 0.958540i \(0.408021\pi\)
\(368\) 0 0
\(369\) 53.5032i 0.144995i
\(370\) 0 0
\(371\) 9.80910i 0.0264396i
\(372\) 0 0
\(373\) 475.071i 1.27365i 0.771009 + 0.636825i \(0.219752\pi\)
−0.771009 + 0.636825i \(0.780248\pi\)
\(374\) 0 0
\(375\) 31.8437 0.0849166
\(376\) 0 0
\(377\) 5.76253 0.0152852
\(378\) 0 0
\(379\) 674.152 1.77876 0.889382 0.457164i \(-0.151135\pi\)
0.889382 + 0.457164i \(0.151135\pi\)
\(380\) 0 0
\(381\) 406.872i 1.06790i
\(382\) 0 0
\(383\) −2.60807 −0.00680958 −0.00340479 0.999994i \(-0.501084\pi\)
−0.00340479 + 0.999994i \(0.501084\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 58.0575i 0.150019i
\(388\) 0 0
\(389\) 131.846 0.338936 0.169468 0.985536i \(-0.445795\pi\)
0.169468 + 0.985536i \(0.445795\pi\)
\(390\) 0 0
\(391\) − 647.211i − 1.65527i
\(392\) 0 0
\(393\) 153.091i 0.389544i
\(394\) 0 0
\(395\) 94.4209i 0.239040i
\(396\) 0 0
\(397\) −313.373 −0.789352 −0.394676 0.918820i \(-0.629143\pi\)
−0.394676 + 0.918820i \(0.629143\pi\)
\(398\) 0 0
\(399\) −180.521 −0.452435
\(400\) 0 0
\(401\) −100.781 −0.251323 −0.125662 0.992073i \(-0.540105\pi\)
−0.125662 + 0.992073i \(0.540105\pi\)
\(402\) 0 0
\(403\) − 70.3783i − 0.174636i
\(404\) 0 0
\(405\) −161.492 −0.398745
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) − 117.329i − 0.286867i −0.989660 0.143434i \(-0.954186\pi\)
0.989660 0.143434i \(-0.0458144\pi\)
\(410\) 0 0
\(411\) 604.179 1.47002
\(412\) 0 0
\(413\) − 29.4663i − 0.0713469i
\(414\) 0 0
\(415\) 180.513i 0.434971i
\(416\) 0 0
\(417\) 412.124i 0.988307i
\(418\) 0 0
\(419\) −256.275 −0.611636 −0.305818 0.952090i \(-0.598930\pi\)
−0.305818 + 0.952090i \(0.598930\pi\)
\(420\) 0 0
\(421\) 538.682 1.27953 0.639765 0.768570i \(-0.279032\pi\)
0.639765 + 0.768570i \(0.279032\pi\)
\(422\) 0 0
\(423\) 23.6869 0.0559973
\(424\) 0 0
\(425\) 87.6017i 0.206122i
\(426\) 0 0
\(427\) 107.358 0.251423
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 139.593i 0.323881i 0.986801 + 0.161941i \(0.0517753\pi\)
−0.986801 + 0.161941i \(0.948225\pi\)
\(432\) 0 0
\(433\) −622.694 −1.43809 −0.719046 0.694962i \(-0.755421\pi\)
−0.719046 + 0.694962i \(0.755421\pi\)
\(434\) 0 0
\(435\) − 31.8786i − 0.0732842i
\(436\) 0 0
\(437\) − 739.863i − 1.69305i
\(438\) 0 0
\(439\) − 314.896i − 0.717303i −0.933471 0.358652i \(-0.883237\pi\)
0.933471 0.358652i \(-0.116763\pi\)
\(440\) 0 0
\(441\) −34.6123 −0.0784858
\(442\) 0 0
\(443\) −210.951 −0.476188 −0.238094 0.971242i \(-0.576523\pi\)
−0.238094 + 0.971242i \(0.576523\pi\)
\(444\) 0 0
\(445\) −244.534 −0.549515
\(446\) 0 0
\(447\) 584.653i 1.30795i
\(448\) 0 0
\(449\) 195.081 0.434478 0.217239 0.976118i \(-0.430295\pi\)
0.217239 + 0.976118i \(0.430295\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) − 322.645i − 0.712240i
\(454\) 0 0
\(455\) −8.14639 −0.0179041
\(456\) 0 0
\(457\) 553.264i 1.21064i 0.795981 + 0.605321i \(0.206955\pi\)
−0.795981 + 0.605321i \(0.793045\pi\)
\(458\) 0 0
\(459\) − 493.414i − 1.07498i
\(460\) 0 0
\(461\) − 632.590i − 1.37221i −0.727501 0.686106i \(-0.759319\pi\)
0.727501 0.686106i \(-0.240681\pi\)
\(462\) 0 0
\(463\) −322.161 −0.695812 −0.347906 0.937529i \(-0.613107\pi\)
−0.347906 + 0.937529i \(0.613107\pi\)
\(464\) 0 0
\(465\) −389.336 −0.837282
\(466\) 0 0
\(467\) 199.185 0.426521 0.213260 0.976995i \(-0.431592\pi\)
0.213260 + 0.976995i \(0.431592\pi\)
\(468\) 0 0
\(469\) − 54.1696i − 0.115500i
\(470\) 0 0
\(471\) −80.3671 −0.170631
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 100.142i 0.210826i
\(476\) 0 0
\(477\) −2.75196 −0.00576931
\(478\) 0 0
\(479\) 925.847i 1.93287i 0.256902 + 0.966437i \(0.417298\pi\)
−0.256902 + 0.966437i \(0.582702\pi\)
\(480\) 0 0
\(481\) − 29.9773i − 0.0623229i
\(482\) 0 0
\(483\) − 332.954i − 0.689346i
\(484\) 0 0
\(485\) −44.8068 −0.0923852
\(486\) 0 0
\(487\) 472.329 0.969874 0.484937 0.874549i \(-0.338842\pi\)
0.484937 + 0.874549i \(0.338842\pi\)
\(488\) 0 0
\(489\) −43.9058 −0.0897869
\(490\) 0 0
\(491\) 248.799i 0.506720i 0.967372 + 0.253360i \(0.0815357\pi\)
−0.967372 + 0.253360i \(0.918464\pi\)
\(492\) 0 0
\(493\) 87.6977 0.177886
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 160.552i 0.323042i
\(498\) 0 0
\(499\) −172.816 −0.346325 −0.173163 0.984893i \(-0.555399\pi\)
−0.173163 + 0.984893i \(0.555399\pi\)
\(500\) 0 0
\(501\) − 434.101i − 0.866469i
\(502\) 0 0
\(503\) 777.548i 1.54582i 0.634515 + 0.772911i \(0.281200\pi\)
−0.634515 + 0.772911i \(0.718800\pi\)
\(504\) 0 0
\(505\) 198.797i 0.393658i
\(506\) 0 0
\(507\) 477.569 0.941951
\(508\) 0 0
\(509\) −509.332 −1.00065 −0.500326 0.865837i \(-0.666786\pi\)
−0.500326 + 0.865837i \(0.666786\pi\)
\(510\) 0 0
\(511\) −130.724 −0.255819
\(512\) 0 0
\(513\) − 564.050i − 1.09951i
\(514\) 0 0
\(515\) 27.7906 0.0539624
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 107.097i 0.206353i
\(520\) 0 0
\(521\) −113.956 −0.218726 −0.109363 0.994002i \(-0.534881\pi\)
−0.109363 + 0.994002i \(0.534881\pi\)
\(522\) 0 0
\(523\) − 73.3632i − 0.140274i −0.997537 0.0701369i \(-0.977656\pi\)
0.997537 0.0701369i \(-0.0223436\pi\)
\(524\) 0 0
\(525\) 45.0662i 0.0858404i
\(526\) 0 0
\(527\) − 1071.06i − 2.03237i
\(528\) 0 0
\(529\) 835.605 1.57959
\(530\) 0 0
\(531\) 8.26682 0.0155684
\(532\) 0 0
\(533\) 69.3781 0.130165
\(534\) 0 0
\(535\) − 462.777i − 0.865003i
\(536\) 0 0
\(537\) 215.032 0.400432
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 809.615i 1.49652i 0.663408 + 0.748258i \(0.269110\pi\)
−0.663408 + 0.748258i \(0.730890\pi\)
\(542\) 0 0
\(543\) −780.776 −1.43789
\(544\) 0 0
\(545\) 82.4650i 0.151312i
\(546\) 0 0
\(547\) 516.237i 0.943761i 0.881663 + 0.471880i \(0.156425\pi\)
−0.881663 + 0.471880i \(0.843575\pi\)
\(548\) 0 0
\(549\) 30.1194i 0.0548623i
\(550\) 0 0
\(551\) 100.252 0.181946
\(552\) 0 0
\(553\) −133.627 −0.241641
\(554\) 0 0
\(555\) −165.836 −0.298803
\(556\) 0 0
\(557\) 515.448i 0.925400i 0.886515 + 0.462700i \(0.153119\pi\)
−0.886515 + 0.462700i \(0.846881\pi\)
\(558\) 0 0
\(559\) 75.2837 0.134676
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 380.772i 0.676326i 0.941088 + 0.338163i \(0.109806\pi\)
−0.941088 + 0.338163i \(0.890194\pi\)
\(564\) 0 0
\(565\) −214.143 −0.379015
\(566\) 0 0
\(567\) − 228.548i − 0.403083i
\(568\) 0 0
\(569\) 323.742i 0.568967i 0.958681 + 0.284483i \(0.0918221\pi\)
−0.958681 + 0.284483i \(0.908178\pi\)
\(570\) 0 0
\(571\) 99.2705i 0.173854i 0.996215 + 0.0869268i \(0.0277046\pi\)
−0.996215 + 0.0869268i \(0.972295\pi\)
\(572\) 0 0
\(573\) 55.4883 0.0968382
\(574\) 0 0
\(575\) −184.703 −0.321222
\(576\) 0 0
\(577\) 964.957 1.67237 0.836184 0.548449i \(-0.184781\pi\)
0.836184 + 0.548449i \(0.184781\pi\)
\(578\) 0 0
\(579\) 342.214i 0.591044i
\(580\) 0 0
\(581\) −255.468 −0.439703
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) − 2.28548i − 0.00390681i
\(586\) 0 0
\(587\) −235.369 −0.400970 −0.200485 0.979697i \(-0.564252\pi\)
−0.200485 + 0.979697i \(0.564252\pi\)
\(588\) 0 0
\(589\) − 1224.39i − 2.07876i
\(590\) 0 0
\(591\) 134.080i 0.226869i
\(592\) 0 0
\(593\) − 1004.87i − 1.69456i −0.531149 0.847279i \(-0.678239\pi\)
0.531149 0.847279i \(-0.321761\pi\)
\(594\) 0 0
\(595\) −123.977 −0.208364
\(596\) 0 0
\(597\) −50.3322 −0.0843085
\(598\) 0 0
\(599\) 605.756 1.01128 0.505640 0.862745i \(-0.331257\pi\)
0.505640 + 0.862745i \(0.331257\pi\)
\(600\) 0 0
\(601\) 298.391i 0.496491i 0.968697 + 0.248245i \(0.0798539\pi\)
−0.968697 + 0.248245i \(0.920146\pi\)
\(602\) 0 0
\(603\) 15.1974 0.0252030
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 359.345i − 0.592002i −0.955188 0.296001i \(-0.904347\pi\)
0.955188 0.296001i \(-0.0956532\pi\)
\(608\) 0 0
\(609\) 45.1156 0.0740814
\(610\) 0 0
\(611\) − 30.7150i − 0.0502700i
\(612\) 0 0
\(613\) 466.311i 0.760704i 0.924842 + 0.380352i \(0.124197\pi\)
−0.924842 + 0.380352i \(0.875803\pi\)
\(614\) 0 0
\(615\) − 383.803i − 0.624070i
\(616\) 0 0
\(617\) 1068.85 1.73233 0.866166 0.499757i \(-0.166577\pi\)
0.866166 + 0.499757i \(0.166577\pi\)
\(618\) 0 0
\(619\) 383.688 0.619851 0.309926 0.950761i \(-0.399696\pi\)
0.309926 + 0.950761i \(0.399696\pi\)
\(620\) 0 0
\(621\) 1040.33 1.67526
\(622\) 0 0
\(623\) − 346.072i − 0.555493i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 456.213i − 0.725298i
\(630\) 0 0
\(631\) −985.448 −1.56172 −0.780862 0.624704i \(-0.785220\pi\)
−0.780862 + 0.624704i \(0.785220\pi\)
\(632\) 0 0
\(633\) 284.647i 0.449679i
\(634\) 0 0
\(635\) 319.429i 0.503037i
\(636\) 0 0
\(637\) 44.8820i 0.0704584i
\(638\) 0 0
\(639\) −45.0432 −0.0704901
\(640\) 0 0
\(641\) 622.897 0.971758 0.485879 0.874026i \(-0.338500\pi\)
0.485879 + 0.874026i \(0.338500\pi\)
\(642\) 0 0
\(643\) −800.440 −1.24485 −0.622426 0.782679i \(-0.713853\pi\)
−0.622426 + 0.782679i \(0.713853\pi\)
\(644\) 0 0
\(645\) − 416.473i − 0.645695i
\(646\) 0 0
\(647\) 220.659 0.341050 0.170525 0.985353i \(-0.445454\pi\)
0.170525 + 0.985353i \(0.445454\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) − 551.000i − 0.846391i
\(652\) 0 0
\(653\) 737.192 1.12893 0.564466 0.825456i \(-0.309082\pi\)
0.564466 + 0.825456i \(0.309082\pi\)
\(654\) 0 0
\(655\) 120.189i 0.183495i
\(656\) 0 0
\(657\) − 36.6748i − 0.0558216i
\(658\) 0 0
\(659\) − 613.844i − 0.931479i −0.884922 0.465739i \(-0.845788\pi\)
0.884922 0.465739i \(-0.154212\pi\)
\(660\) 0 0
\(661\) 410.333 0.620776 0.310388 0.950610i \(-0.399541\pi\)
0.310388 + 0.950610i \(0.399541\pi\)
\(662\) 0 0
\(663\) −57.4485 −0.0866494
\(664\) 0 0
\(665\) −141.725 −0.213120
\(666\) 0 0
\(667\) 184.905i 0.277219i
\(668\) 0 0
\(669\) −677.968 −1.01341
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 913.162i 1.35685i 0.734669 + 0.678426i \(0.237338\pi\)
−0.734669 + 0.678426i \(0.762662\pi\)
\(674\) 0 0
\(675\) −140.812 −0.208610
\(676\) 0 0
\(677\) − 645.161i − 0.952970i −0.879183 0.476485i \(-0.841911\pi\)
0.879183 0.476485i \(-0.158089\pi\)
\(678\) 0 0
\(679\) − 63.4120i − 0.0933903i
\(680\) 0 0
\(681\) 1043.97i 1.53300i
\(682\) 0 0
\(683\) −918.844 −1.34531 −0.672653 0.739958i \(-0.734845\pi\)
−0.672653 + 0.739958i \(0.734845\pi\)
\(684\) 0 0
\(685\) 474.331 0.692455
\(686\) 0 0
\(687\) 747.779 1.08847
\(688\) 0 0
\(689\) 3.56849i 0.00517923i
\(690\) 0 0
\(691\) −723.035 −1.04636 −0.523180 0.852222i \(-0.675255\pi\)
−0.523180 + 0.852222i \(0.675255\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 323.552i 0.465543i
\(696\) 0 0
\(697\) 1055.84 1.51483
\(698\) 0 0
\(699\) 1070.50i 1.53147i
\(700\) 0 0
\(701\) 268.703i 0.383314i 0.981462 + 0.191657i \(0.0613860\pi\)
−0.981462 + 0.191657i \(0.938614\pi\)
\(702\) 0 0
\(703\) − 521.522i − 0.741852i
\(704\) 0 0
\(705\) −169.917 −0.241017
\(706\) 0 0
\(707\) −281.344 −0.397940
\(708\) 0 0
\(709\) −652.123 −0.919779 −0.459889 0.887976i \(-0.652111\pi\)
−0.459889 + 0.887976i \(0.652111\pi\)
\(710\) 0 0
\(711\) − 37.4894i − 0.0527277i
\(712\) 0 0
\(713\) 2258.26 3.16727
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 857.212i − 1.19555i
\(718\) 0 0
\(719\) 233.292 0.324467 0.162234 0.986752i \(-0.448130\pi\)
0.162234 + 0.986752i \(0.448130\pi\)
\(720\) 0 0
\(721\) 39.3302i 0.0545495i
\(722\) 0 0
\(723\) 1361.63i 1.88331i
\(724\) 0 0
\(725\) − 25.0274i − 0.0345205i
\(726\) 0 0
\(727\) −1255.99 −1.72764 −0.863818 0.503804i \(-0.831933\pi\)
−0.863818 + 0.503804i \(0.831933\pi\)
\(728\) 0 0
\(729\) 786.026 1.07822
\(730\) 0 0
\(731\) 1145.71 1.56732
\(732\) 0 0
\(733\) − 1341.16i − 1.82969i −0.403807 0.914844i \(-0.632313\pi\)
0.403807 0.914844i \(-0.367687\pi\)
\(734\) 0 0
\(735\) 248.289 0.337809
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 985.254i 1.33323i 0.745404 + 0.666613i \(0.232257\pi\)
−0.745404 + 0.666613i \(0.767743\pi\)
\(740\) 0 0
\(741\) −65.6726 −0.0886270
\(742\) 0 0
\(743\) 849.373i 1.14317i 0.820544 + 0.571584i \(0.193671\pi\)
−0.820544 + 0.571584i \(0.806329\pi\)
\(744\) 0 0
\(745\) 459.002i 0.616110i
\(746\) 0 0
\(747\) − 71.6720i − 0.0959464i
\(748\) 0 0
\(749\) 654.936 0.874414
\(750\) 0 0
\(751\) 148.178 0.197308 0.0986540 0.995122i \(-0.468546\pi\)
0.0986540 + 0.995122i \(0.468546\pi\)
\(752\) 0 0
\(753\) −1173.61 −1.55857
\(754\) 0 0
\(755\) − 253.303i − 0.335501i
\(756\) 0 0
\(757\) −1155.79 −1.52680 −0.763400 0.645926i \(-0.776471\pi\)
−0.763400 + 0.645926i \(0.776471\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 812.807i − 1.06808i −0.845460 0.534039i \(-0.820674\pi\)
0.845460 0.534039i \(-0.179326\pi\)
\(762\) 0 0
\(763\) −116.707 −0.152958
\(764\) 0 0
\(765\) − 34.7819i − 0.0454665i
\(766\) 0 0
\(767\) − 10.7197i − 0.0139761i
\(768\) 0 0
\(769\) 298.253i 0.387845i 0.981017 + 0.193923i \(0.0621211\pi\)
−0.981017 + 0.193923i \(0.937879\pi\)
\(770\) 0 0
\(771\) 853.087 1.10647
\(772\) 0 0
\(773\) 459.500 0.594437 0.297219 0.954809i \(-0.403941\pi\)
0.297219 + 0.954809i \(0.403941\pi\)
\(774\) 0 0
\(775\) −305.662 −0.394402
\(776\) 0 0
\(777\) − 234.696i − 0.302054i
\(778\) 0 0
\(779\) 1206.99 1.54940
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 140.966i 0.180033i
\(784\) 0 0
\(785\) −63.0950 −0.0803758
\(786\) 0 0
\(787\) − 1141.52i − 1.45047i −0.688502 0.725235i \(-0.741731\pi\)
0.688502 0.725235i \(-0.258269\pi\)
\(788\) 0 0
\(789\) 806.700i 1.02243i
\(790\) 0 0
\(791\) − 303.062i − 0.383138i
\(792\) 0 0
\(793\) 39.0561 0.0492511
\(794\) 0 0
\(795\) 19.7411 0.0248315
\(796\) 0 0
\(797\) 41.3311 0.0518584 0.0259292 0.999664i \(-0.491746\pi\)
0.0259292 + 0.999664i \(0.491746\pi\)
\(798\) 0 0
\(799\) − 467.439i − 0.585030i
\(800\) 0 0
\(801\) 97.0913 0.121213
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) − 261.397i − 0.324717i
\(806\) 0 0
\(807\) −1119.69 −1.38748
\(808\) 0 0
\(809\) − 1123.31i − 1.38852i −0.719725 0.694259i \(-0.755732\pi\)
0.719725 0.694259i \(-0.244268\pi\)
\(810\) 0 0
\(811\) − 864.705i − 1.06622i −0.846046 0.533111i \(-0.821023\pi\)
0.846046 0.533111i \(-0.178977\pi\)
\(812\) 0 0
\(813\) 1536.52i 1.88994i
\(814\) 0 0
\(815\) −34.4697 −0.0422941
\(816\) 0 0
\(817\) 1309.73 1.60309
\(818\) 0 0
\(819\) 3.23449 0.00394931
\(820\) 0 0
\(821\) 933.419i 1.13693i 0.822708 + 0.568465i \(0.192462\pi\)
−0.822708 + 0.568465i \(0.807538\pi\)
\(822\) 0 0
\(823\) −314.613 −0.382276 −0.191138 0.981563i \(-0.561218\pi\)
−0.191138 + 0.981563i \(0.561218\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 528.653i 0.639242i 0.947545 + 0.319621i \(0.103556\pi\)
−0.947545 + 0.319621i \(0.896444\pi\)
\(828\) 0 0
\(829\) −988.626 −1.19255 −0.596276 0.802779i \(-0.703354\pi\)
−0.596276 + 0.802779i \(0.703354\pi\)
\(830\) 0 0
\(831\) − 795.898i − 0.957759i
\(832\) 0 0
\(833\) 683.041i 0.819977i
\(834\) 0 0
\(835\) − 340.806i − 0.408150i
\(836\) 0 0
\(837\) 1721.63 2.05691
\(838\) 0 0
\(839\) 1232.81 1.46938 0.734692 0.678401i \(-0.237327\pi\)
0.734692 + 0.678401i \(0.237327\pi\)
\(840\) 0 0
\(841\) 815.945 0.970208
\(842\) 0 0
\(843\) − 781.466i − 0.927006i
\(844\) 0 0
\(845\) 374.932 0.443706
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) − 1489.99i − 1.75499i
\(850\) 0 0
\(851\) 961.896 1.13031
\(852\) 0 0
\(853\) − 607.063i − 0.711679i −0.934547 0.355840i \(-0.884195\pi\)
0.934547 0.355840i \(-0.115805\pi\)
\(854\) 0 0
\(855\) − 39.7611i − 0.0465042i
\(856\) 0 0
\(857\) 237.750i 0.277422i 0.990333 + 0.138711i \(0.0442959\pi\)
−0.990333 + 0.138711i \(0.955704\pi\)
\(858\) 0 0
\(859\) 792.390 0.922456 0.461228 0.887282i \(-0.347409\pi\)
0.461228 + 0.887282i \(0.347409\pi\)
\(860\) 0 0
\(861\) 543.169 0.630859
\(862\) 0 0
\(863\) −777.416 −0.900829 −0.450415 0.892819i \(-0.648724\pi\)
−0.450415 + 0.892819i \(0.648724\pi\)
\(864\) 0 0
\(865\) 84.0801i 0.0972025i
\(866\) 0 0
\(867\) −51.1599 −0.0590079
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) − 19.7066i − 0.0226252i
\(872\) 0 0
\(873\) 17.7904 0.0203784
\(874\) 0 0
\(875\) 35.3808i 0.0404352i
\(876\) 0 0
\(877\) 651.290i 0.742634i 0.928506 + 0.371317i \(0.121094\pi\)
−0.928506 + 0.371317i \(0.878906\pi\)
\(878\) 0 0
\(879\) − 1149.83i − 1.30811i
\(880\) 0 0
\(881\) 1499.78 1.70236 0.851182 0.524870i \(-0.175886\pi\)
0.851182 + 0.524870i \(0.175886\pi\)
\(882\) 0 0
\(883\) −1209.15 −1.36936 −0.684681 0.728843i \(-0.740058\pi\)
−0.684681 + 0.728843i \(0.740058\pi\)
\(884\) 0 0
\(885\) −59.3016 −0.0670075
\(886\) 0 0
\(887\) − 955.521i − 1.07725i −0.842545 0.538625i \(-0.818944\pi\)
0.842545 0.538625i \(-0.181056\pi\)
\(888\) 0 0
\(889\) −452.065 −0.508510
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 534.355i − 0.598382i
\(894\) 0 0
\(895\) 168.818 0.188624
\(896\) 0 0
\(897\) − 121.127i − 0.135035i
\(898\) 0 0
\(899\) 305.997i 0.340374i
\(900\) 0 0
\(901\) 54.3074i 0.0602746i
\(902\) 0 0
\(903\) 589.405 0.652719
\(904\) 0 0
\(905\) −612.975 −0.677320
\(906\) 0 0
\(907\) 188.645 0.207988 0.103994 0.994578i \(-0.466838\pi\)
0.103994 + 0.994578i \(0.466838\pi\)
\(908\) 0 0
\(909\) − 78.9315i − 0.0868334i
\(910\) 0 0
\(911\) 230.077 0.252554 0.126277 0.991995i \(-0.459697\pi\)
0.126277 + 0.991995i \(0.459697\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) − 216.060i − 0.236131i
\(916\) 0 0
\(917\) −170.095 −0.185491
\(918\) 0 0
\(919\) − 1645.90i − 1.79097i −0.445088 0.895487i \(-0.646828\pi\)
0.445088 0.895487i \(-0.353172\pi\)
\(920\) 0 0
\(921\) − 828.381i − 0.899437i
\(922\) 0 0
\(923\) 58.4079i 0.0632805i
\(924\) 0 0
\(925\) −130.195 −0.140751
\(926\) 0 0
\(927\) −11.0342 −0.0119031
\(928\) 0 0
\(929\) 622.194 0.669746 0.334873 0.942263i \(-0.391307\pi\)
0.334873 + 0.942263i \(0.391307\pi\)
\(930\) 0 0
\(931\) 780.822i 0.838692i
\(932\) 0 0
\(933\) 152.357 0.163298
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 43.0297i 0.0459229i 0.999736 + 0.0229614i \(0.00730950\pi\)
−0.999736 + 0.0229614i \(0.992691\pi\)
\(938\) 0 0
\(939\) −582.801 −0.620662
\(940\) 0 0
\(941\) − 1184.75i − 1.25903i −0.776988 0.629516i \(-0.783253\pi\)
0.776988 0.629516i \(-0.216747\pi\)
\(942\) 0 0
\(943\) 2226.17i 2.36073i
\(944\) 0 0
\(945\) − 199.281i − 0.210880i
\(946\) 0 0
\(947\) −486.719 −0.513959 −0.256979 0.966417i \(-0.582727\pi\)
−0.256979 + 0.966417i \(0.582727\pi\)
\(948\) 0 0
\(949\) −47.5565 −0.0501122
\(950\) 0 0
\(951\) 588.632 0.618961
\(952\) 0 0
\(953\) − 765.779i − 0.803546i −0.915739 0.401773i \(-0.868394\pi\)
0.915739 0.401773i \(-0.131606\pi\)
\(954\) 0 0
\(955\) 43.5630 0.0456157
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 671.288i 0.699988i
\(960\) 0 0
\(961\) 2776.16 2.88883
\(962\) 0 0
\(963\) 183.744i 0.190803i
\(964\) 0 0
\(965\) 268.667i 0.278412i
\(966\) 0 0
\(967\) 1843.46i 1.90637i 0.302386 + 0.953186i \(0.402217\pi\)
−0.302386 + 0.953186i \(0.597783\pi\)
\(968\) 0 0
\(969\) −999.445 −1.03142
\(970\) 0 0
\(971\) 518.715 0.534207 0.267104 0.963668i \(-0.413933\pi\)
0.267104 + 0.963668i \(0.413933\pi\)
\(972\) 0 0
\(973\) −457.901 −0.470607
\(974\) 0 0
\(975\) 16.3948i 0.0168152i
\(976\) 0 0
\(977\) 1587.15 1.62451 0.812256 0.583301i \(-0.198239\pi\)
0.812256 + 0.583301i \(0.198239\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) − 32.7424i − 0.0333765i
\(982\) 0 0
\(983\) −1923.05 −1.95631 −0.978153 0.207887i \(-0.933341\pi\)
−0.978153 + 0.207887i \(0.933341\pi\)
\(984\) 0 0
\(985\) 105.264i 0.106867i
\(986\) 0 0
\(987\) − 240.471i − 0.243638i
\(988\) 0 0
\(989\) 2415.66i 2.44253i
\(990\) 0 0
\(991\) 722.553 0.729115 0.364558 0.931181i \(-0.381220\pi\)
0.364558 + 0.931181i \(0.381220\pi\)
\(992\) 0 0
\(993\) −887.510 −0.893766
\(994\) 0 0
\(995\) −39.5150 −0.0397136
\(996\) 0 0
\(997\) 74.3117i 0.0745353i 0.999305 + 0.0372676i \(0.0118654\pi\)
−0.999305 + 0.0372676i \(0.988135\pi\)
\(998\) 0 0
\(999\) 733.321 0.734055
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2420.3.f.a.241.14 16
11.3 even 5 220.3.p.b.101.1 yes 16
11.7 odd 10 220.3.p.b.61.1 16
11.10 odd 2 inner 2420.3.f.a.241.13 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.p.b.61.1 16 11.7 odd 10
220.3.p.b.101.1 yes 16 11.3 even 5
2420.3.f.a.241.13 16 11.10 odd 2 inner
2420.3.f.a.241.14 16 1.1 even 1 trivial