Properties

Label 2-2420-11.10-c2-0-5
Degree $2$
Conductor $2420$
Sign $-0.975 - 0.219i$
Analytic cond. $65.9402$
Root an. cond. $8.12035$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.84·3-s + 2.23·5-s + 3.16i·7-s − 0.887·9-s + 1.15i·13-s + 6.36·15-s + 17.5i·17-s + 20.0i·19-s + 9.01i·21-s − 36.9·23-s + 5.00·25-s − 28.1·27-s − 5.00i·29-s − 61.1·31-s + 7.07i·35-s + ⋯
L(s)  = 1  + 0.949·3-s + 0.447·5-s + 0.452i·7-s − 0.0986·9-s + 0.0885i·13-s + 0.424·15-s + 1.03i·17-s + 1.05i·19-s + 0.429i·21-s − 1.60·23-s + 0.200·25-s − 1.04·27-s − 0.172i·29-s − 1.97·31-s + 0.202i·35-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.975 - 0.219i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2420 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.975 - 0.219i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2420\)    =    \(2^{2} \cdot 5 \cdot 11^{2}\)
Sign: $-0.975 - 0.219i$
Analytic conductor: \(65.9402\)
Root analytic conductor: \(8.12035\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{2420} (241, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2420,\ (\ :1),\ -0.975 - 0.219i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.7795657989\)
\(L(\frac12)\) \(\approx\) \(0.7795657989\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 2.23T \)
11 \( 1 \)
good3 \( 1 - 2.84T + 9T^{2} \)
7 \( 1 - 3.16iT - 49T^{2} \)
13 \( 1 - 1.15iT - 169T^{2} \)
17 \( 1 - 17.5iT - 289T^{2} \)
19 \( 1 - 20.0iT - 361T^{2} \)
23 \( 1 + 36.9T + 529T^{2} \)
29 \( 1 + 5.00iT - 841T^{2} \)
31 \( 1 + 61.1T + 961T^{2} \)
37 \( 1 + 26.0T + 1.36e3T^{2} \)
41 \( 1 + 60.2iT - 1.68e3T^{2} \)
43 \( 1 + 65.3iT - 1.84e3T^{2} \)
47 \( 1 + 26.6T + 2.20e3T^{2} \)
53 \( 1 - 3.09T + 2.80e3T^{2} \)
59 \( 1 + 9.31T + 3.48e3T^{2} \)
61 \( 1 + 33.9iT - 3.72e3T^{2} \)
67 \( 1 + 17.1T + 4.48e3T^{2} \)
71 \( 1 - 50.7T + 5.04e3T^{2} \)
73 \( 1 - 41.3iT - 5.32e3T^{2} \)
79 \( 1 - 42.2iT - 6.24e3T^{2} \)
83 \( 1 - 80.7iT - 6.88e3T^{2} \)
89 \( 1 + 109.T + 7.92e3T^{2} \)
97 \( 1 + 20.0T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.974571657695429616143013695560, −8.456423904528071816280871864479, −7.82178593848562173108549533592, −6.90816196526916888760088369351, −5.76271632955760923107715439983, −5.55479270422444914462375032901, −3.95060359714113281790156352560, −3.55037832603159004683057080147, −2.20905280310797240779454119822, −1.82739558288042118796951315780, 0.13848682864015244424811847369, 1.62940490322693700738289515821, 2.59435235954579377110927474556, 3.32497853482693905804391656900, 4.30325777054530748782259410704, 5.23760413010839323771538385755, 6.10658922275077174895258421732, 7.05705987651970233140495719258, 7.70805130390452841761376977300, 8.442387184077120257227159217054

Graph of the $Z$-function along the critical line