L(s) = 1 | + 2.84·3-s + 2.23·5-s + 3.16i·7-s − 0.887·9-s + 1.15i·13-s + 6.36·15-s + 17.5i·17-s + 20.0i·19-s + 9.01i·21-s − 36.9·23-s + 5.00·25-s − 28.1·27-s − 5.00i·29-s − 61.1·31-s + 7.07i·35-s + ⋯ |
L(s) = 1 | + 0.949·3-s + 0.447·5-s + 0.452i·7-s − 0.0986·9-s + 0.0885i·13-s + 0.424·15-s + 1.03i·17-s + 1.05i·19-s + 0.429i·21-s − 1.60·23-s + 0.200·25-s − 1.04·27-s − 0.172i·29-s − 1.97·31-s + 0.202i·35-s + ⋯ |
Λ(s)=(=(2420s/2ΓC(s)L(s)(−0.975−0.219i)Λ(3−s)
Λ(s)=(=(2420s/2ΓC(s+1)L(s)(−0.975−0.219i)Λ(1−s)
Degree: |
2 |
Conductor: |
2420
= 22⋅5⋅112
|
Sign: |
−0.975−0.219i
|
Analytic conductor: |
65.9402 |
Root analytic conductor: |
8.12035 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2420(241,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2420, ( :1), −0.975−0.219i)
|
Particular Values
L(23) |
≈ |
0.7795657989 |
L(21) |
≈ |
0.7795657989 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−2.23T |
| 11 | 1 |
good | 3 | 1−2.84T+9T2 |
| 7 | 1−3.16iT−49T2 |
| 13 | 1−1.15iT−169T2 |
| 17 | 1−17.5iT−289T2 |
| 19 | 1−20.0iT−361T2 |
| 23 | 1+36.9T+529T2 |
| 29 | 1+5.00iT−841T2 |
| 31 | 1+61.1T+961T2 |
| 37 | 1+26.0T+1.36e3T2 |
| 41 | 1+60.2iT−1.68e3T2 |
| 43 | 1+65.3iT−1.84e3T2 |
| 47 | 1+26.6T+2.20e3T2 |
| 53 | 1−3.09T+2.80e3T2 |
| 59 | 1+9.31T+3.48e3T2 |
| 61 | 1+33.9iT−3.72e3T2 |
| 67 | 1+17.1T+4.48e3T2 |
| 71 | 1−50.7T+5.04e3T2 |
| 73 | 1−41.3iT−5.32e3T2 |
| 79 | 1−42.2iT−6.24e3T2 |
| 83 | 1−80.7iT−6.88e3T2 |
| 89 | 1+109.T+7.92e3T2 |
| 97 | 1+20.0T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.974571657695429616143013695560, −8.456423904528071816280871864479, −7.82178593848562173108549533592, −6.90816196526916888760088369351, −5.76271632955760923107715439983, −5.55479270422444914462375032901, −3.95060359714113281790156352560, −3.55037832603159004683057080147, −2.20905280310797240779454119822, −1.82739558288042118796951315780,
0.13848682864015244424811847369, 1.62940490322693700738289515821, 2.59435235954579377110927474556, 3.32497853482693905804391656900, 4.30325777054530748782259410704, 5.23760413010839323771538385755, 6.10658922275077174895258421732, 7.05705987651970233140495719258, 7.70805130390452841761376977300, 8.442387184077120257227159217054