Properties

Label 4-220e2-1.1-c3e2-0-0
Degree $4$
Conductor $48400$
Sign $1$
Analytic cond. $168.491$
Root an. cond. $3.60283$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·5-s + 35·9-s − 22·11-s + 136·19-s − 100·25-s − 520·29-s + 350·31-s − 760·41-s − 175·45-s + 610·49-s + 110·55-s + 286·59-s + 1.35e3·61-s + 2.07e3·71-s − 436·79-s + 496·81-s − 2.55e3·89-s − 680·95-s − 770·99-s + 1.27e3·101-s + 284·109-s + 363·121-s + 1.12e3·125-s + 127-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.29·9-s − 0.603·11-s + 1.64·19-s − 4/5·25-s − 3.32·29-s + 2.02·31-s − 2.89·41-s − 0.579·45-s + 1.77·49-s + 0.269·55-s + 0.631·59-s + 2.83·61-s + 3.46·71-s − 0.620·79-s + 0.680·81-s − 3.04·89-s − 0.734·95-s − 0.781·99-s + 1.25·101-s + 0.249·109-s + 3/11·121-s + 0.804·125-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 48400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 48400 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(48400\)    =    \(2^{4} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(168.491\)
Root analytic conductor: \(3.60283\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 48400,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.035427755\)
\(L(\frac12)\) \(\approx\) \(2.035427755\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 + p T + p^{3} T^{2} \)
11$C_1$ \( ( 1 + p T )^{2} \)
good3$C_2^2$ \( 1 - 35 T^{2} + p^{6} T^{4} \)
7$C_2$ \( ( 1 - 36 T + p^{3} T^{2} )( 1 + 36 T + p^{3} T^{2} ) \)
13$C_2^2$ \( 1 + 470 T^{2} + p^{6} T^{4} \)
17$C_2^2$ \( 1 - 9142 T^{2} + p^{6} T^{4} \)
19$C_2$ \( ( 1 - 68 T + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 10483 T^{2} + p^{6} T^{4} \)
29$C_2$ \( ( 1 + 260 T + p^{3} T^{2} )^{2} \)
31$C_2$ \( ( 1 - 175 T + p^{3} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 72407 T^{2} + p^{6} T^{4} \)
41$C_2$ \( ( 1 + 380 T + p^{3} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 65914 T^{2} + p^{6} T^{4} \)
47$C_2^2$ \( 1 - 114546 T^{2} + p^{6} T^{4} \)
53$C_2^2$ \( 1 - 92250 T^{2} + p^{6} T^{4} \)
59$C_2$ \( ( 1 - 143 T + p^{3} T^{2} )^{2} \)
61$C_2$ \( ( 1 - 676 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 323347 T^{2} + p^{6} T^{4} \)
71$C_2$ \( ( 1 - 1035 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 668290 T^{2} + p^{6} T^{4} \)
79$C_2$ \( ( 1 + 218 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 568330 T^{2} + p^{6} T^{4} \)
89$C_2$ \( ( 1 + 1279 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 1230095 T^{2} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.95074739280655888122812547081, −11.58639949252771081875024192292, −11.30284408933867571540769753388, −10.56376511680353018762772406797, −9.897713089129453427350787820338, −9.859277426808712231543834332675, −9.347860888262493976750365016387, −8.376785139584930230905656127960, −8.184744302757415598630857206314, −7.43236208204780404458438339723, −7.12897220904777658051349220430, −6.71616314121717887024652794718, −5.58230306706859417250584546049, −5.42010855150368838168576024934, −4.66051454224359381589732379373, −3.71069324037631876847393722610, −3.66923080155452296311962486922, −2.43516102729658480829965200191, −1.63036085856316864720049048689, −0.61625561810630477085879647291, 0.61625561810630477085879647291, 1.63036085856316864720049048689, 2.43516102729658480829965200191, 3.66923080155452296311962486922, 3.71069324037631876847393722610, 4.66051454224359381589732379373, 5.42010855150368838168576024934, 5.58230306706859417250584546049, 6.71616314121717887024652794718, 7.12897220904777658051349220430, 7.43236208204780404458438339723, 8.184744302757415598630857206314, 8.376785139584930230905656127960, 9.347860888262493976750365016387, 9.859277426808712231543834332675, 9.897713089129453427350787820338, 10.56376511680353018762772406797, 11.30284408933867571540769753388, 11.58639949252771081875024192292, 11.95074739280655888122812547081

Graph of the $Z$-function along the critical line