Properties

Label 220.4.b.a.89.2
Level $220$
Weight $4$
Character 220.89
Analytic conductor $12.980$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,4,Mod(89,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.89");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 220.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.9804202013\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-19}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 89.2
Root \(0.500000 - 2.17945i\) of defining polynomial
Character \(\chi\) \(=\) 220.89
Dual form 220.4.b.a.89.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.35890i q^{3} +(-2.50000 - 10.8972i) q^{5} +8.71780i q^{7} +8.00000 q^{9} -11.0000 q^{11} +69.7424i q^{13} +(47.5000 - 10.8972i) q^{15} +26.1534i q^{17} +68.0000 q^{19} -38.0000 q^{21} +117.690i q^{23} +(-112.500 + 54.4862i) q^{25} +152.561i q^{27} -260.000 q^{29} +175.000 q^{31} -47.9479i q^{33} +(95.0000 - 21.7945i) q^{35} +169.997i q^{37} -304.000 q^{39} -380.000 q^{41} +305.123i q^{43} +(-20.0000 - 87.1780i) q^{45} -305.123i q^{47} +267.000 q^{49} -114.000 q^{51} +453.325i q^{53} +(27.5000 + 119.870i) q^{55} +296.405i q^{57} +143.000 q^{59} +676.000 q^{61} +69.7424i q^{63} +(760.000 - 174.356i) q^{65} -527.427i q^{67} -513.000 q^{69} +1035.00 q^{71} +331.276i q^{73} +(-237.500 - 490.376i) q^{75} -95.8958i q^{77} -218.000 q^{79} -449.000 q^{81} -758.448i q^{83} +(285.000 - 65.3835i) q^{85} -1133.31i q^{87} -1279.00 q^{89} -608.000 q^{91} +762.807i q^{93} +(-170.000 - 741.013i) q^{95} -771.525i q^{97} -88.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 5 q^{5} + 16 q^{9} - 22 q^{11} + 95 q^{15} + 136 q^{19} - 76 q^{21} - 225 q^{25} - 520 q^{29} + 350 q^{31} + 190 q^{35} - 608 q^{39} - 760 q^{41} - 40 q^{45} + 534 q^{49} - 228 q^{51} + 55 q^{55}+ \cdots - 176 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.35890i 0.838870i 0.907785 + 0.419435i \(0.137772\pi\)
−0.907785 + 0.419435i \(0.862228\pi\)
\(4\) 0 0
\(5\) −2.50000 10.8972i −0.223607 0.974679i
\(6\) 0 0
\(7\) 8.71780i 0.470717i 0.971909 + 0.235358i \(0.0756264\pi\)
−0.971909 + 0.235358i \(0.924374\pi\)
\(8\) 0 0
\(9\) 8.00000 0.296296
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 69.7424i 1.48793i 0.668220 + 0.743964i \(0.267056\pi\)
−0.668220 + 0.743964i \(0.732944\pi\)
\(14\) 0 0
\(15\) 47.5000 10.8972i 0.817630 0.187577i
\(16\) 0 0
\(17\) 26.1534i 0.373125i 0.982443 + 0.186563i \(0.0597347\pi\)
−0.982443 + 0.186563i \(0.940265\pi\)
\(18\) 0 0
\(19\) 68.0000 0.821067 0.410533 0.911846i \(-0.365343\pi\)
0.410533 + 0.911846i \(0.365343\pi\)
\(20\) 0 0
\(21\) −38.0000 −0.394870
\(22\) 0 0
\(23\) 117.690i 1.06696i 0.845812 + 0.533481i \(0.179116\pi\)
−0.845812 + 0.533481i \(0.820884\pi\)
\(24\) 0 0
\(25\) −112.500 + 54.4862i −0.900000 + 0.435890i
\(26\) 0 0
\(27\) 152.561i 1.08742i
\(28\) 0 0
\(29\) −260.000 −1.66485 −0.832427 0.554134i \(-0.813049\pi\)
−0.832427 + 0.554134i \(0.813049\pi\)
\(30\) 0 0
\(31\) 175.000 1.01390 0.506950 0.861975i \(-0.330773\pi\)
0.506950 + 0.861975i \(0.330773\pi\)
\(32\) 0 0
\(33\) 47.9479i 0.252929i
\(34\) 0 0
\(35\) 95.0000 21.7945i 0.458798 0.105255i
\(36\) 0 0
\(37\) 169.997i 0.755334i 0.925942 + 0.377667i \(0.123274\pi\)
−0.925942 + 0.377667i \(0.876726\pi\)
\(38\) 0 0
\(39\) −304.000 −1.24818
\(40\) 0 0
\(41\) −380.000 −1.44746 −0.723732 0.690081i \(-0.757575\pi\)
−0.723732 + 0.690081i \(0.757575\pi\)
\(42\) 0 0
\(43\) 305.123i 1.08211i 0.840987 + 0.541056i \(0.181975\pi\)
−0.840987 + 0.541056i \(0.818025\pi\)
\(44\) 0 0
\(45\) −20.0000 87.1780i −0.0662539 0.288794i
\(46\) 0 0
\(47\) 305.123i 0.946952i −0.880807 0.473476i \(-0.842999\pi\)
0.880807 0.473476i \(-0.157001\pi\)
\(48\) 0 0
\(49\) 267.000 0.778426
\(50\) 0 0
\(51\) −114.000 −0.313004
\(52\) 0 0
\(53\) 453.325i 1.17489i 0.809265 + 0.587444i \(0.199866\pi\)
−0.809265 + 0.587444i \(0.800134\pi\)
\(54\) 0 0
\(55\) 27.5000 + 119.870i 0.0674200 + 0.293877i
\(56\) 0 0
\(57\) 296.405i 0.688769i
\(58\) 0 0
\(59\) 143.000 0.315543 0.157771 0.987476i \(-0.449569\pi\)
0.157771 + 0.987476i \(0.449569\pi\)
\(60\) 0 0
\(61\) 676.000 1.41890 0.709450 0.704756i \(-0.248943\pi\)
0.709450 + 0.704756i \(0.248943\pi\)
\(62\) 0 0
\(63\) 69.7424i 0.139472i
\(64\) 0 0
\(65\) 760.000 174.356i 1.45025 0.332711i
\(66\) 0 0
\(67\) 527.427i 0.961723i −0.876797 0.480861i \(-0.840324\pi\)
0.876797 0.480861i \(-0.159676\pi\)
\(68\) 0 0
\(69\) −513.000 −0.895043
\(70\) 0 0
\(71\) 1035.00 1.73003 0.865013 0.501749i \(-0.167310\pi\)
0.865013 + 0.501749i \(0.167310\pi\)
\(72\) 0 0
\(73\) 331.276i 0.531136i 0.964092 + 0.265568i \(0.0855596\pi\)
−0.964092 + 0.265568i \(0.914440\pi\)
\(74\) 0 0
\(75\) −237.500 490.376i −0.365655 0.754983i
\(76\) 0 0
\(77\) 95.8958i 0.141926i
\(78\) 0 0
\(79\) −218.000 −0.310467 −0.155234 0.987878i \(-0.549613\pi\)
−0.155234 + 0.987878i \(0.549613\pi\)
\(80\) 0 0
\(81\) −449.000 −0.615912
\(82\) 0 0
\(83\) 758.448i 1.00302i −0.865152 0.501509i \(-0.832778\pi\)
0.865152 0.501509i \(-0.167222\pi\)
\(84\) 0 0
\(85\) 285.000 65.3835i 0.363678 0.0834333i
\(86\) 0 0
\(87\) 1133.31i 1.39660i
\(88\) 0 0
\(89\) −1279.00 −1.52330 −0.761650 0.647988i \(-0.775610\pi\)
−0.761650 + 0.647988i \(0.775610\pi\)
\(90\) 0 0
\(91\) −608.000 −0.700393
\(92\) 0 0
\(93\) 762.807i 0.850532i
\(94\) 0 0
\(95\) −170.000 741.013i −0.183596 0.800277i
\(96\) 0 0
\(97\) 771.525i 0.807593i −0.914849 0.403796i \(-0.867690\pi\)
0.914849 0.403796i \(-0.132310\pi\)
\(98\) 0 0
\(99\) −88.0000 −0.0893367
\(100\) 0 0
\(101\) 638.000 0.628548 0.314274 0.949332i \(-0.398239\pi\)
0.314274 + 0.949332i \(0.398239\pi\)
\(102\) 0 0
\(103\) 531.786i 0.508722i −0.967109 0.254361i \(-0.918135\pi\)
0.967109 0.254361i \(-0.0818652\pi\)
\(104\) 0 0
\(105\) 95.0000 + 414.095i 0.0882957 + 0.384872i
\(106\) 0 0
\(107\) 61.0246i 0.0551352i −0.999620 0.0275676i \(-0.991224\pi\)
0.999620 0.0275676i \(-0.00877616\pi\)
\(108\) 0 0
\(109\) 142.000 0.124781 0.0623905 0.998052i \(-0.480128\pi\)
0.0623905 + 0.998052i \(0.480128\pi\)
\(110\) 0 0
\(111\) −741.000 −0.633627
\(112\) 0 0
\(113\) 2332.01i 1.94139i −0.240314 0.970695i \(-0.577250\pi\)
0.240314 0.970695i \(-0.422750\pi\)
\(114\) 0 0
\(115\) 1282.50 294.226i 1.03995 0.238580i
\(116\) 0 0
\(117\) 557.939i 0.440867i
\(118\) 0 0
\(119\) −228.000 −0.175636
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) 1656.38i 1.21423i
\(124\) 0 0
\(125\) 875.000 + 1089.72i 0.626099 + 0.779744i
\(126\) 0 0
\(127\) 976.393i 0.682212i 0.940025 + 0.341106i \(0.110801\pi\)
−0.940025 + 0.341106i \(0.889199\pi\)
\(128\) 0 0
\(129\) −1330.00 −0.907752
\(130\) 0 0
\(131\) 774.000 0.516219 0.258110 0.966116i \(-0.416900\pi\)
0.258110 + 0.966116i \(0.416900\pi\)
\(132\) 0 0
\(133\) 592.810i 0.386490i
\(134\) 0 0
\(135\) 1662.50 381.404i 1.05989 0.243156i
\(136\) 0 0
\(137\) 39.2301i 0.0244646i 0.999925 + 0.0122323i \(0.00389376\pi\)
−0.999925 + 0.0122323i \(0.996106\pi\)
\(138\) 0 0
\(139\) −2986.00 −1.82208 −0.911040 0.412317i \(-0.864720\pi\)
−0.911040 + 0.412317i \(0.864720\pi\)
\(140\) 0 0
\(141\) 1330.00 0.794370
\(142\) 0 0
\(143\) 767.166i 0.448627i
\(144\) 0 0
\(145\) 650.000 + 2833.28i 0.372273 + 1.62270i
\(146\) 0 0
\(147\) 1163.83i 0.652998i
\(148\) 0 0
\(149\) 1546.00 0.850022 0.425011 0.905188i \(-0.360270\pi\)
0.425011 + 0.905188i \(0.360270\pi\)
\(150\) 0 0
\(151\) 3150.00 1.69764 0.848819 0.528683i \(-0.177314\pi\)
0.848819 + 0.528683i \(0.177314\pi\)
\(152\) 0 0
\(153\) 209.227i 0.110556i
\(154\) 0 0
\(155\) −437.500 1907.02i −0.226715 0.988228i
\(156\) 0 0
\(157\) 501.273i 0.254815i 0.991850 + 0.127408i \(0.0406656\pi\)
−0.991850 + 0.127408i \(0.959334\pi\)
\(158\) 0 0
\(159\) −1976.00 −0.985579
\(160\) 0 0
\(161\) −1026.00 −0.502237
\(162\) 0 0
\(163\) 932.804i 0.448239i −0.974562 0.224119i \(-0.928049\pi\)
0.974562 0.224119i \(-0.0719505\pi\)
\(164\) 0 0
\(165\) −522.500 + 119.870i −0.246525 + 0.0565566i
\(166\) 0 0
\(167\) 1952.79i 0.904857i 0.891801 + 0.452429i \(0.149442\pi\)
−0.891801 + 0.452429i \(0.850558\pi\)
\(168\) 0 0
\(169\) −2667.00 −1.21393
\(170\) 0 0
\(171\) 544.000 0.243279
\(172\) 0 0
\(173\) 2345.09i 1.03060i 0.857010 + 0.515300i \(0.172319\pi\)
−0.857010 + 0.515300i \(0.827681\pi\)
\(174\) 0 0
\(175\) −475.000 980.752i −0.205181 0.423645i
\(176\) 0 0
\(177\) 623.323i 0.264699i
\(178\) 0 0
\(179\) −699.000 −0.291875 −0.145938 0.989294i \(-0.546620\pi\)
−0.145938 + 0.989294i \(0.546620\pi\)
\(180\) 0 0
\(181\) −2603.00 −1.06895 −0.534474 0.845185i \(-0.679490\pi\)
−0.534474 + 0.845185i \(0.679490\pi\)
\(182\) 0 0
\(183\) 2946.62i 1.19027i
\(184\) 0 0
\(185\) 1852.50 424.993i 0.736208 0.168898i
\(186\) 0 0
\(187\) 287.687i 0.112502i
\(188\) 0 0
\(189\) −1330.00 −0.511869
\(190\) 0 0
\(191\) 1329.00 0.503472 0.251736 0.967796i \(-0.418999\pi\)
0.251736 + 0.967796i \(0.418999\pi\)
\(192\) 0 0
\(193\) 1394.85i 0.520225i 0.965578 + 0.260112i \(0.0837596\pi\)
−0.965578 + 0.260112i \(0.916240\pi\)
\(194\) 0 0
\(195\) 760.000 + 3312.76i 0.279101 + 1.21657i
\(196\) 0 0
\(197\) 2327.65i 0.841819i −0.907103 0.420909i \(-0.861711\pi\)
0.907103 0.420909i \(-0.138289\pi\)
\(198\) 0 0
\(199\) 8.00000 0.00284977 0.00142489 0.999999i \(-0.499546\pi\)
0.00142489 + 0.999999i \(0.499546\pi\)
\(200\) 0 0
\(201\) 2299.00 0.806761
\(202\) 0 0
\(203\) 2266.63i 0.783675i
\(204\) 0 0
\(205\) 950.000 + 4140.95i 0.323663 + 1.41081i
\(206\) 0 0
\(207\) 941.522i 0.316137i
\(208\) 0 0
\(209\) −748.000 −0.247561
\(210\) 0 0
\(211\) −2840.00 −0.926605 −0.463303 0.886200i \(-0.653336\pi\)
−0.463303 + 0.886200i \(0.653336\pi\)
\(212\) 0 0
\(213\) 4511.46i 1.45127i
\(214\) 0 0
\(215\) 3325.00 762.807i 1.05471 0.241968i
\(216\) 0 0
\(217\) 1525.61i 0.477260i
\(218\) 0 0
\(219\) −1444.00 −0.445555
\(220\) 0 0
\(221\) −1824.00 −0.555183
\(222\) 0 0
\(223\) 4154.03i 1.24742i −0.781656 0.623710i \(-0.785625\pi\)
0.781656 0.623710i \(-0.214375\pi\)
\(224\) 0 0
\(225\) −900.000 + 435.890i −0.266667 + 0.129153i
\(226\) 0 0
\(227\) 2467.14i 0.721364i 0.932689 + 0.360682i \(0.117456\pi\)
−0.932689 + 0.360682i \(0.882544\pi\)
\(228\) 0 0
\(229\) −5813.00 −1.67744 −0.838720 0.544563i \(-0.816696\pi\)
−0.838720 + 0.544563i \(0.816696\pi\)
\(230\) 0 0
\(231\) 418.000 0.119058
\(232\) 0 0
\(233\) 2022.53i 0.568671i −0.958725 0.284335i \(-0.908227\pi\)
0.958725 0.284335i \(-0.0917729\pi\)
\(234\) 0 0
\(235\) −3325.00 + 762.807i −0.922975 + 0.211745i
\(236\) 0 0
\(237\) 950.240i 0.260442i
\(238\) 0 0
\(239\) 246.000 0.0665792 0.0332896 0.999446i \(-0.489402\pi\)
0.0332896 + 0.999446i \(0.489402\pi\)
\(240\) 0 0
\(241\) 3388.00 0.905561 0.452781 0.891622i \(-0.350432\pi\)
0.452781 + 0.891622i \(0.350432\pi\)
\(242\) 0 0
\(243\) 2162.01i 0.570754i
\(244\) 0 0
\(245\) −667.500 2909.57i −0.174061 0.758715i
\(246\) 0 0
\(247\) 4742.48i 1.22169i
\(248\) 0 0
\(249\) 3306.00 0.841403
\(250\) 0 0
\(251\) 1091.00 0.274356 0.137178 0.990546i \(-0.456197\pi\)
0.137178 + 0.990546i \(0.456197\pi\)
\(252\) 0 0
\(253\) 1294.59i 0.321701i
\(254\) 0 0
\(255\) 285.000 + 1242.29i 0.0699898 + 0.305078i
\(256\) 0 0
\(257\) 4132.24i 1.00296i −0.865168 0.501482i \(-0.832788\pi\)
0.865168 0.501482i \(-0.167212\pi\)
\(258\) 0 0
\(259\) −1482.00 −0.355548
\(260\) 0 0
\(261\) −2080.00 −0.493290
\(262\) 0 0
\(263\) 6982.96i 1.63721i −0.574353 0.818607i \(-0.694746\pi\)
0.574353 0.818607i \(-0.305254\pi\)
\(264\) 0 0
\(265\) 4940.00 1133.31i 1.14514 0.262713i
\(266\) 0 0
\(267\) 5575.03i 1.27785i
\(268\) 0 0
\(269\) 314.000 0.0711707 0.0355853 0.999367i \(-0.488670\pi\)
0.0355853 + 0.999367i \(0.488670\pi\)
\(270\) 0 0
\(271\) 3180.00 0.712809 0.356405 0.934332i \(-0.384003\pi\)
0.356405 + 0.934332i \(0.384003\pi\)
\(272\) 0 0
\(273\) 2650.21i 0.587539i
\(274\) 0 0
\(275\) 1237.50 599.349i 0.271360 0.131426i
\(276\) 0 0
\(277\) 3879.42i 0.841487i 0.907180 + 0.420743i \(0.138231\pi\)
−0.907180 + 0.420743i \(0.861769\pi\)
\(278\) 0 0
\(279\) 1400.00 0.300415
\(280\) 0 0
\(281\) −4218.00 −0.895462 −0.447731 0.894168i \(-0.647768\pi\)
−0.447731 + 0.894168i \(0.647768\pi\)
\(282\) 0 0
\(283\) 8351.65i 1.75425i 0.480258 + 0.877127i \(0.340543\pi\)
−0.480258 + 0.877127i \(0.659457\pi\)
\(284\) 0 0
\(285\) 3230.00 741.013i 0.671329 0.154013i
\(286\) 0 0
\(287\) 3312.76i 0.681346i
\(288\) 0 0
\(289\) 4229.00 0.860778
\(290\) 0 0
\(291\) 3363.00 0.677466
\(292\) 0 0
\(293\) 6363.99i 1.26890i 0.772963 + 0.634451i \(0.218774\pi\)
−0.772963 + 0.634451i \(0.781226\pi\)
\(294\) 0 0
\(295\) −357.500 1558.31i −0.0705575 0.307553i
\(296\) 0 0
\(297\) 1678.18i 0.327871i
\(298\) 0 0
\(299\) −8208.00 −1.58756
\(300\) 0 0
\(301\) −2660.00 −0.509368
\(302\) 0 0
\(303\) 2780.98i 0.527271i
\(304\) 0 0
\(305\) −1690.00 7366.54i −0.317276 1.38297i
\(306\) 0 0
\(307\) 6608.09i 1.22848i −0.789119 0.614240i \(-0.789462\pi\)
0.789119 0.614240i \(-0.210538\pi\)
\(308\) 0 0
\(309\) 2318.00 0.426752
\(310\) 0 0
\(311\) 5812.00 1.05971 0.529853 0.848090i \(-0.322247\pi\)
0.529853 + 0.848090i \(0.322247\pi\)
\(312\) 0 0
\(313\) 5888.87i 1.06345i −0.846918 0.531723i \(-0.821545\pi\)
0.846918 0.531723i \(-0.178455\pi\)
\(314\) 0 0
\(315\) 760.000 174.356i 0.135940 0.0311868i
\(316\) 0 0
\(317\) 8966.26i 1.58863i −0.607507 0.794314i \(-0.707831\pi\)
0.607507 0.794314i \(-0.292169\pi\)
\(318\) 0 0
\(319\) 2860.00 0.501973
\(320\) 0 0
\(321\) 266.000 0.0462513
\(322\) 0 0
\(323\) 1778.43i 0.306361i
\(324\) 0 0
\(325\) −3800.00 7846.02i −0.648573 1.33913i
\(326\) 0 0
\(327\) 618.964i 0.104675i
\(328\) 0 0
\(329\) 2660.00 0.445746
\(330\) 0 0
\(331\) 8683.00 1.44188 0.720938 0.693000i \(-0.243711\pi\)
0.720938 + 0.693000i \(0.243711\pi\)
\(332\) 0 0
\(333\) 1359.98i 0.223803i
\(334\) 0 0
\(335\) −5747.50 + 1318.57i −0.937372 + 0.215048i
\(336\) 0 0
\(337\) 5152.22i 0.832817i 0.909178 + 0.416408i \(0.136711\pi\)
−0.909178 + 0.416408i \(0.863289\pi\)
\(338\) 0 0
\(339\) 10165.0 1.62858
\(340\) 0 0
\(341\) −1925.00 −0.305703
\(342\) 0 0
\(343\) 5317.86i 0.837135i
\(344\) 0 0
\(345\) 1282.50 + 5590.29i 0.200138 + 0.872380i
\(346\) 0 0
\(347\) 52.3068i 0.00809215i 0.999992 + 0.00404607i \(0.00128791\pi\)
−0.999992 + 0.00404607i \(0.998712\pi\)
\(348\) 0 0
\(349\) −2126.00 −0.326081 −0.163040 0.986619i \(-0.552130\pi\)
−0.163040 + 0.986619i \(0.552130\pi\)
\(350\) 0 0
\(351\) −10640.0 −1.61801
\(352\) 0 0
\(353\) 7588.84i 1.14423i −0.820173 0.572115i \(-0.806123\pi\)
0.820173 0.572115i \(-0.193877\pi\)
\(354\) 0 0
\(355\) −2587.50 11278.7i −0.386846 1.68622i
\(356\) 0 0
\(357\) 993.829i 0.147336i
\(358\) 0 0
\(359\) −4156.00 −0.610990 −0.305495 0.952194i \(-0.598822\pi\)
−0.305495 + 0.952194i \(0.598822\pi\)
\(360\) 0 0
\(361\) −2235.00 −0.325849
\(362\) 0 0
\(363\) 527.427i 0.0762610i
\(364\) 0 0
\(365\) 3610.00 828.191i 0.517688 0.118766i
\(366\) 0 0
\(367\) 13299.0i 1.89156i 0.324809 + 0.945780i \(0.394700\pi\)
−0.324809 + 0.945780i \(0.605300\pi\)
\(368\) 0 0
\(369\) −3040.00 −0.428878
\(370\) 0 0
\(371\) −3952.00 −0.553039
\(372\) 0 0
\(373\) 5622.98i 0.780555i −0.920697 0.390277i \(-0.872379\pi\)
0.920697 0.390277i \(-0.127621\pi\)
\(374\) 0 0
\(375\) −4750.00 + 3814.04i −0.654104 + 0.525216i
\(376\) 0 0
\(377\) 18133.0i 2.47718i
\(378\) 0 0
\(379\) −631.000 −0.0855206 −0.0427603 0.999085i \(-0.513615\pi\)
−0.0427603 + 0.999085i \(0.513615\pi\)
\(380\) 0 0
\(381\) −4256.00 −0.572287
\(382\) 0 0
\(383\) 7091.93i 0.946164i −0.881019 0.473082i \(-0.843142\pi\)
0.881019 0.473082i \(-0.156858\pi\)
\(384\) 0 0
\(385\) −1045.00 + 239.739i −0.138333 + 0.0317357i
\(386\) 0 0
\(387\) 2440.98i 0.320626i
\(388\) 0 0
\(389\) 5613.00 0.731595 0.365797 0.930694i \(-0.380796\pi\)
0.365797 + 0.930694i \(0.380796\pi\)
\(390\) 0 0
\(391\) −3078.00 −0.398110
\(392\) 0 0
\(393\) 3373.79i 0.433041i
\(394\) 0 0
\(395\) 545.000 + 2375.60i 0.0694226 + 0.302606i
\(396\) 0 0
\(397\) 14018.2i 1.77218i 0.463516 + 0.886088i \(0.346588\pi\)
−0.463516 + 0.886088i \(0.653412\pi\)
\(398\) 0 0
\(399\) −2584.00 −0.324215
\(400\) 0 0
\(401\) −162.000 −0.0201743 −0.0100871 0.999949i \(-0.503211\pi\)
−0.0100871 + 0.999949i \(0.503211\pi\)
\(402\) 0 0
\(403\) 12204.9i 1.50861i
\(404\) 0 0
\(405\) 1122.50 + 4892.86i 0.137722 + 0.600317i
\(406\) 0 0
\(407\) 1869.97i 0.227742i
\(408\) 0 0
\(409\) 14142.0 1.70972 0.854862 0.518856i \(-0.173642\pi\)
0.854862 + 0.518856i \(0.173642\pi\)
\(410\) 0 0
\(411\) −171.000 −0.0205226
\(412\) 0 0
\(413\) 1246.65i 0.148531i
\(414\) 0 0
\(415\) −8265.00 + 1896.12i −0.977621 + 0.224282i
\(416\) 0 0
\(417\) 13015.7i 1.52849i
\(418\) 0 0
\(419\) 11532.0 1.34457 0.672285 0.740292i \(-0.265313\pi\)
0.672285 + 0.740292i \(0.265313\pi\)
\(420\) 0 0
\(421\) −3430.00 −0.397074 −0.198537 0.980093i \(-0.563619\pi\)
−0.198537 + 0.980093i \(0.563619\pi\)
\(422\) 0 0
\(423\) 2440.98i 0.280578i
\(424\) 0 0
\(425\) −1425.00 2942.26i −0.162642 0.335813i
\(426\) 0 0
\(427\) 5893.23i 0.667900i
\(428\) 0 0
\(429\) 3344.00 0.376340
\(430\) 0 0
\(431\) 8658.00 0.967613 0.483806 0.875175i \(-0.339254\pi\)
0.483806 + 0.875175i \(0.339254\pi\)
\(432\) 0 0
\(433\) 745.372i 0.0827258i −0.999144 0.0413629i \(-0.986830\pi\)
0.999144 0.0413629i \(-0.0131700\pi\)
\(434\) 0 0
\(435\) −12350.0 + 2833.28i −1.36123 + 0.312289i
\(436\) 0 0
\(437\) 8002.94i 0.876047i
\(438\) 0 0
\(439\) −4532.00 −0.492712 −0.246356 0.969179i \(-0.579233\pi\)
−0.246356 + 0.969179i \(0.579233\pi\)
\(440\) 0 0
\(441\) 2136.00 0.230645
\(442\) 0 0
\(443\) 4310.95i 0.462346i 0.972913 + 0.231173i \(0.0742564\pi\)
−0.972913 + 0.231173i \(0.925744\pi\)
\(444\) 0 0
\(445\) 3197.50 + 13937.6i 0.340620 + 1.48473i
\(446\) 0 0
\(447\) 6738.86i 0.713058i
\(448\) 0 0
\(449\) 2333.00 0.245214 0.122607 0.992455i \(-0.460875\pi\)
0.122607 + 0.992455i \(0.460875\pi\)
\(450\) 0 0
\(451\) 4180.00 0.436427
\(452\) 0 0
\(453\) 13730.5i 1.42410i
\(454\) 0 0
\(455\) 1520.00 + 6625.53i 0.156613 + 0.682658i
\(456\) 0 0
\(457\) 6921.93i 0.708521i −0.935147 0.354261i \(-0.884733\pi\)
0.935147 0.354261i \(-0.115267\pi\)
\(458\) 0 0
\(459\) −3990.00 −0.405746
\(460\) 0 0
\(461\) 5332.00 0.538690 0.269345 0.963044i \(-0.413193\pi\)
0.269345 + 0.963044i \(0.413193\pi\)
\(462\) 0 0
\(463\) 9314.97i 0.934996i −0.883994 0.467498i \(-0.845155\pi\)
0.883994 0.467498i \(-0.154845\pi\)
\(464\) 0 0
\(465\) 8312.50 1907.02i 0.828996 0.190185i
\(466\) 0 0
\(467\) 17623.0i 1.74625i 0.487501 + 0.873123i \(0.337909\pi\)
−0.487501 + 0.873123i \(0.662091\pi\)
\(468\) 0 0
\(469\) 4598.00 0.452699
\(470\) 0 0
\(471\) −2185.00 −0.213757
\(472\) 0 0
\(473\) 3356.35i 0.326269i
\(474\) 0 0
\(475\) −7650.00 + 3705.06i −0.738960 + 0.357895i
\(476\) 0 0
\(477\) 3626.60i 0.348115i
\(478\) 0 0
\(479\) 13748.0 1.31140 0.655702 0.755020i \(-0.272373\pi\)
0.655702 + 0.755020i \(0.272373\pi\)
\(480\) 0 0
\(481\) −11856.0 −1.12388
\(482\) 0 0
\(483\) 4472.23i 0.421312i
\(484\) 0 0
\(485\) −8407.50 + 1928.81i −0.787144 + 0.180583i
\(486\) 0 0
\(487\) 4101.72i 0.381657i −0.981623 0.190828i \(-0.938883\pi\)
0.981623 0.190828i \(-0.0611174\pi\)
\(488\) 0 0
\(489\) 4066.00 0.376014
\(490\) 0 0
\(491\) −4016.00 −0.369123 −0.184562 0.982821i \(-0.559087\pi\)
−0.184562 + 0.982821i \(0.559087\pi\)
\(492\) 0 0
\(493\) 6799.88i 0.621199i
\(494\) 0 0
\(495\) 220.000 + 958.958i 0.0199763 + 0.0870746i
\(496\) 0 0
\(497\) 9022.92i 0.814353i
\(498\) 0 0
\(499\) 14236.0 1.27714 0.638568 0.769565i \(-0.279527\pi\)
0.638568 + 0.769565i \(0.279527\pi\)
\(500\) 0 0
\(501\) −8512.00 −0.759058
\(502\) 0 0
\(503\) 18089.4i 1.60351i 0.597650 + 0.801757i \(0.296101\pi\)
−0.597650 + 0.801757i \(0.703899\pi\)
\(504\) 0 0
\(505\) −1595.00 6952.44i −0.140548 0.612633i
\(506\) 0 0
\(507\) 11625.2i 1.01833i
\(508\) 0 0
\(509\) 8379.00 0.729652 0.364826 0.931076i \(-0.381129\pi\)
0.364826 + 0.931076i \(0.381129\pi\)
\(510\) 0 0
\(511\) −2888.00 −0.250015
\(512\) 0 0
\(513\) 10374.2i 0.892848i
\(514\) 0 0
\(515\) −5795.00 + 1329.46i −0.495841 + 0.113754i
\(516\) 0 0
\(517\) 3356.35i 0.285517i
\(518\) 0 0
\(519\) −10222.0 −0.864539
\(520\) 0 0
\(521\) −20277.0 −1.70509 −0.852545 0.522654i \(-0.824942\pi\)
−0.852545 + 0.522654i \(0.824942\pi\)
\(522\) 0 0
\(523\) 12152.6i 1.01605i 0.861341 + 0.508027i \(0.169625\pi\)
−0.861341 + 0.508027i \(0.830375\pi\)
\(524\) 0 0
\(525\) 4275.00 2070.48i 0.355383 0.172120i
\(526\) 0 0
\(527\) 4576.84i 0.378312i
\(528\) 0 0
\(529\) −1684.00 −0.138407
\(530\) 0 0
\(531\) 1144.00 0.0934941
\(532\) 0 0
\(533\) 26502.1i 2.15372i
\(534\) 0 0
\(535\) −665.000 + 152.561i −0.0537392 + 0.0123286i
\(536\) 0 0
\(537\) 3046.87i 0.244846i
\(538\) 0 0
\(539\) −2937.00 −0.234704
\(540\) 0 0
\(541\) −4796.00 −0.381139 −0.190569 0.981674i \(-0.561033\pi\)
−0.190569 + 0.981674i \(0.561033\pi\)
\(542\) 0 0
\(543\) 11346.2i 0.896708i
\(544\) 0 0
\(545\) −355.000 1547.41i −0.0279019 0.121622i
\(546\) 0 0
\(547\) 16790.5i 1.31245i −0.754566 0.656224i \(-0.772153\pi\)
0.754566 0.656224i \(-0.227847\pi\)
\(548\) 0 0
\(549\) 5408.00 0.420415
\(550\) 0 0
\(551\) −17680.0 −1.36696
\(552\) 0 0
\(553\) 1900.48i 0.146142i
\(554\) 0 0
\(555\) 1852.50 + 8074.86i 0.141683 + 0.617583i
\(556\) 0 0
\(557\) 9859.83i 0.750044i 0.927016 + 0.375022i \(0.122365\pi\)
−0.927016 + 0.375022i \(0.877635\pi\)
\(558\) 0 0
\(559\) −21280.0 −1.61010
\(560\) 0 0
\(561\) 1254.00 0.0943742
\(562\) 0 0
\(563\) 10095.2i 0.755706i −0.925866 0.377853i \(-0.876662\pi\)
0.925866 0.377853i \(-0.123338\pi\)
\(564\) 0 0
\(565\) −25412.5 + 5830.03i −1.89223 + 0.434108i
\(566\) 0 0
\(567\) 3914.29i 0.289920i
\(568\) 0 0
\(569\) 12240.0 0.901806 0.450903 0.892573i \(-0.351102\pi\)
0.450903 + 0.892573i \(0.351102\pi\)
\(570\) 0 0
\(571\) 21224.0 1.55551 0.777755 0.628567i \(-0.216358\pi\)
0.777755 + 0.628567i \(0.216358\pi\)
\(572\) 0 0
\(573\) 5792.98i 0.422347i
\(574\) 0 0
\(575\) −6412.50 13240.2i −0.465078 0.960265i
\(576\) 0 0
\(577\) 972.034i 0.0701323i −0.999385 0.0350661i \(-0.988836\pi\)
0.999385 0.0350661i \(-0.0111642\pi\)
\(578\) 0 0
\(579\) −6080.00 −0.436401
\(580\) 0 0
\(581\) 6612.00 0.472138
\(582\) 0 0
\(583\) 4986.58i 0.354242i
\(584\) 0 0
\(585\) 6080.00 1394.85i 0.429704 0.0985809i
\(586\) 0 0
\(587\) 7662.94i 0.538814i 0.963026 + 0.269407i \(0.0868276\pi\)
−0.963026 + 0.269407i \(0.913172\pi\)
\(588\) 0 0
\(589\) 11900.0 0.832480
\(590\) 0 0
\(591\) 10146.0 0.706177
\(592\) 0 0
\(593\) 14541.3i 1.00698i −0.864001 0.503490i \(-0.832049\pi\)
0.864001 0.503490i \(-0.167951\pi\)
\(594\) 0 0
\(595\) 570.000 + 2484.57i 0.0392735 + 0.171189i
\(596\) 0 0
\(597\) 34.8712i 0.00239059i
\(598\) 0 0
\(599\) 20520.0 1.39971 0.699853 0.714286i \(-0.253249\pi\)
0.699853 + 0.714286i \(0.253249\pi\)
\(600\) 0 0
\(601\) 12726.0 0.863734 0.431867 0.901937i \(-0.357855\pi\)
0.431867 + 0.901937i \(0.357855\pi\)
\(602\) 0 0
\(603\) 4219.41i 0.284955i
\(604\) 0 0
\(605\) −302.500 1318.57i −0.0203279 0.0886072i
\(606\) 0 0
\(607\) 3338.92i 0.223266i −0.993750 0.111633i \(-0.964392\pi\)
0.993750 0.111633i \(-0.0356081\pi\)
\(608\) 0 0
\(609\) 9880.00 0.657402
\(610\) 0 0
\(611\) 21280.0 1.40900
\(612\) 0 0
\(613\) 5457.34i 0.359576i 0.983705 + 0.179788i \(0.0575411\pi\)
−0.983705 + 0.179788i \(0.942459\pi\)
\(614\) 0 0
\(615\) −18050.0 + 4140.95i −1.18349 + 0.271511i
\(616\) 0 0
\(617\) 1272.80i 0.0830485i −0.999137 0.0415243i \(-0.986779\pi\)
0.999137 0.0415243i \(-0.0132214\pi\)
\(618\) 0 0
\(619\) 17307.0 1.12379 0.561896 0.827208i \(-0.310072\pi\)
0.561896 + 0.827208i \(0.310072\pi\)
\(620\) 0 0
\(621\) −17955.0 −1.16024
\(622\) 0 0
\(623\) 11150.1i 0.717043i
\(624\) 0 0
\(625\) 9687.50 12259.4i 0.620000 0.784602i
\(626\) 0 0
\(627\) 3260.46i 0.207672i
\(628\) 0 0
\(629\) −4446.00 −0.281834
\(630\) 0 0
\(631\) 24977.0 1.57578 0.787891 0.615814i \(-0.211173\pi\)
0.787891 + 0.615814i \(0.211173\pi\)
\(632\) 0 0
\(633\) 12379.3i 0.777302i
\(634\) 0 0
\(635\) 10640.0 2440.98i 0.664938 0.152547i
\(636\) 0 0
\(637\) 18621.2i 1.15824i
\(638\) 0 0
\(639\) 8280.00 0.512601
\(640\) 0 0
\(641\) −23151.0 −1.42654 −0.713268 0.700891i \(-0.752786\pi\)
−0.713268 + 0.700891i \(0.752786\pi\)
\(642\) 0 0
\(643\) 710.501i 0.0435761i −0.999763 0.0217880i \(-0.993064\pi\)
0.999763 0.0217880i \(-0.00693589\pi\)
\(644\) 0 0
\(645\) 3325.00 + 14493.3i 0.202979 + 0.884767i
\(646\) 0 0
\(647\) 3081.74i 0.187258i −0.995607 0.0936289i \(-0.970153\pi\)
0.995607 0.0936289i \(-0.0298467\pi\)
\(648\) 0 0
\(649\) −1573.00 −0.0951397
\(650\) 0 0
\(651\) −6650.00 −0.400360
\(652\) 0 0
\(653\) 579.734i 0.0347423i 0.999849 + 0.0173712i \(0.00552969\pi\)
−0.999849 + 0.0173712i \(0.994470\pi\)
\(654\) 0 0
\(655\) −1935.00 8434.47i −0.115430 0.503148i
\(656\) 0 0
\(657\) 2650.21i 0.157374i
\(658\) 0 0
\(659\) 3458.00 0.204408 0.102204 0.994763i \(-0.467411\pi\)
0.102204 + 0.994763i \(0.467411\pi\)
\(660\) 0 0
\(661\) −12983.0 −0.763964 −0.381982 0.924170i \(-0.624758\pi\)
−0.381982 + 0.924170i \(0.624758\pi\)
\(662\) 0 0
\(663\) 7950.63i 0.465727i
\(664\) 0 0
\(665\) 6460.00 1482.03i 0.376704 0.0864218i
\(666\) 0 0
\(667\) 30599.5i 1.77634i
\(668\) 0 0
\(669\) 18107.0 1.04642
\(670\) 0 0
\(671\) −7436.00 −0.427815
\(672\) 0 0
\(673\) 31357.9i 1.79608i −0.439918 0.898038i \(-0.644993\pi\)
0.439918 0.898038i \(-0.355007\pi\)
\(674\) 0 0
\(675\) −8312.50 17163.2i −0.473997 0.978682i
\(676\) 0 0
\(677\) 8796.26i 0.499361i 0.968328 + 0.249681i \(0.0803257\pi\)
−0.968328 + 0.249681i \(0.919674\pi\)
\(678\) 0 0
\(679\) 6726.00 0.380148
\(680\) 0 0
\(681\) −10754.0 −0.605131
\(682\) 0 0
\(683\) 6355.27i 0.356044i 0.984027 + 0.178022i \(0.0569698\pi\)
−0.984027 + 0.178022i \(0.943030\pi\)
\(684\) 0 0
\(685\) 427.500 98.0752i 0.0238452 0.00547046i
\(686\) 0 0
\(687\) 25338.3i 1.40716i
\(688\) 0 0
\(689\) −31616.0 −1.74815
\(690\) 0 0
\(691\) 11819.0 0.650674 0.325337 0.945598i \(-0.394522\pi\)
0.325337 + 0.945598i \(0.394522\pi\)
\(692\) 0 0
\(693\) 767.166i 0.0420523i
\(694\) 0 0
\(695\) 7465.00 + 32539.2i 0.407430 + 1.77594i
\(696\) 0 0
\(697\) 9938.29i 0.540085i
\(698\) 0 0
\(699\) 8816.00 0.477041
\(700\) 0 0
\(701\) 6978.00 0.375971 0.187985 0.982172i \(-0.439804\pi\)
0.187985 + 0.982172i \(0.439804\pi\)
\(702\) 0 0
\(703\) 11559.8i 0.620179i
\(704\) 0 0
\(705\) −3325.00 14493.3i −0.177627 0.774256i
\(706\) 0 0
\(707\) 5561.96i 0.295868i
\(708\) 0 0
\(709\) −17947.0 −0.950654 −0.475327 0.879809i \(-0.657670\pi\)
−0.475327 + 0.879809i \(0.657670\pi\)
\(710\) 0 0
\(711\) −1744.00 −0.0919903
\(712\) 0 0
\(713\) 20595.8i 1.08179i
\(714\) 0 0
\(715\) −8360.00 + 1917.92i −0.437268 + 0.100316i
\(716\) 0 0
\(717\) 1072.29i 0.0558513i
\(718\) 0 0
\(719\) −905.000 −0.0469413 −0.0234707 0.999725i \(-0.507472\pi\)
−0.0234707 + 0.999725i \(0.507472\pi\)
\(720\) 0 0
\(721\) 4636.00 0.239464
\(722\) 0 0
\(723\) 14767.9i 0.759649i
\(724\) 0 0
\(725\) 29250.0 14166.4i 1.49837 0.725693i
\(726\) 0 0
\(727\) 30961.3i 1.57949i −0.613435 0.789745i \(-0.710213\pi\)
0.613435 0.789745i \(-0.289787\pi\)
\(728\) 0 0
\(729\) −21547.0 −1.09470
\(730\) 0 0
\(731\) −7980.00 −0.403763
\(732\) 0 0
\(733\) 23520.6i 1.18520i 0.805496 + 0.592602i \(0.201899\pi\)
−0.805496 + 0.592602i \(0.798101\pi\)
\(734\) 0 0
\(735\) 12682.5 2909.57i 0.636464 0.146015i
\(736\) 0 0
\(737\) 5801.69i 0.289970i
\(738\) 0 0
\(739\) −30654.0 −1.52588 −0.762940 0.646469i \(-0.776245\pi\)
−0.762940 + 0.646469i \(0.776245\pi\)
\(740\) 0 0
\(741\) −20672.0 −1.02484
\(742\) 0 0
\(743\) 40154.2i 1.98266i 0.131408 + 0.991328i \(0.458050\pi\)
−0.131408 + 0.991328i \(0.541950\pi\)
\(744\) 0 0
\(745\) −3865.00 16847.1i −0.190071 0.828499i
\(746\) 0 0
\(747\) 6067.59i 0.297191i
\(748\) 0 0
\(749\) 532.000 0.0259531
\(750\) 0 0
\(751\) 19735.0 0.958909 0.479454 0.877567i \(-0.340835\pi\)
0.479454 + 0.877567i \(0.340835\pi\)
\(752\) 0 0
\(753\) 4755.56i 0.230149i
\(754\) 0 0
\(755\) −7875.00 34326.3i −0.379603 1.65465i
\(756\) 0 0
\(757\) 10583.4i 0.508138i 0.967186 + 0.254069i \(0.0817690\pi\)
−0.967186 + 0.254069i \(0.918231\pi\)
\(758\) 0 0
\(759\) 5643.00 0.269866
\(760\) 0 0
\(761\) 6876.00 0.327536 0.163768 0.986499i \(-0.447635\pi\)
0.163768 + 0.986499i \(0.447635\pi\)
\(762\) 0 0
\(763\) 1237.93i 0.0587365i
\(764\) 0 0
\(765\) 2280.00 523.068i 0.107756 0.0247210i
\(766\) 0 0
\(767\) 9973.16i 0.469505i
\(768\) 0 0
\(769\) −16956.0 −0.795122 −0.397561 0.917576i \(-0.630143\pi\)
−0.397561 + 0.917576i \(0.630143\pi\)
\(770\) 0 0
\(771\) 18012.0 0.841357
\(772\) 0 0
\(773\) 29954.4i 1.39377i 0.717184 + 0.696884i \(0.245431\pi\)
−0.717184 + 0.696884i \(0.754569\pi\)
\(774\) 0 0
\(775\) −19687.5 + 9535.09i −0.912511 + 0.441949i
\(776\) 0 0
\(777\) 6459.89i 0.298259i
\(778\) 0 0
\(779\) −25840.0 −1.18846
\(780\) 0 0
\(781\) −11385.0 −0.521623
\(782\) 0 0
\(783\) 39666.0i 1.81040i
\(784\) 0 0
\(785\) 5462.50 1253.18i 0.248363 0.0569784i
\(786\) 0 0
\(787\) 1098.44i 0.0497525i 0.999691 + 0.0248763i \(0.00791918\pi\)
−0.999691 + 0.0248763i \(0.992081\pi\)
\(788\) 0 0
\(789\) 30438.0 1.37341
\(790\) 0 0
\(791\) 20330.0 0.913845
\(792\) 0 0
\(793\) 47145.9i 2.11122i
\(794\) 0 0
\(795\) 4940.00 + 21533.0i 0.220382 + 0.960623i
\(796\) 0 0
\(797\) 14118.5i 0.627481i 0.949509 + 0.313740i \(0.101582\pi\)
−0.949509 + 0.313740i \(0.898418\pi\)
\(798\) 0 0
\(799\) 7980.00 0.353332
\(800\) 0 0
\(801\) −10232.0 −0.451348
\(802\) 0 0
\(803\) 3644.04i 0.160144i
\(804\) 0 0
\(805\) 2565.00 + 11180.6i 0.112304 + 0.489520i
\(806\) 0 0
\(807\) 1368.69i 0.0597030i
\(808\) 0 0
\(809\) 30076.0 1.30707 0.653533 0.756898i \(-0.273286\pi\)
0.653533 + 0.756898i \(0.273286\pi\)
\(810\) 0 0
\(811\) −7062.00 −0.305771 −0.152886 0.988244i \(-0.548857\pi\)
−0.152886 + 0.988244i \(0.548857\pi\)
\(812\) 0 0
\(813\) 13861.3i 0.597954i
\(814\) 0 0
\(815\) −10165.0 + 2332.01i −0.436889 + 0.100229i
\(816\) 0 0
\(817\) 20748.4i 0.888486i
\(818\) 0 0
\(819\) −4864.00 −0.207524
\(820\) 0 0
\(821\) −14090.0 −0.598958 −0.299479 0.954103i \(-0.596813\pi\)
−0.299479 + 0.954103i \(0.596813\pi\)
\(822\) 0 0
\(823\) 10300.1i 0.436255i −0.975920 0.218128i \(-0.930005\pi\)
0.975920 0.218128i \(-0.0699949\pi\)
\(824\) 0 0
\(825\) 2612.50 + 5394.14i 0.110249 + 0.227636i
\(826\) 0 0
\(827\) 16110.5i 0.677408i −0.940893 0.338704i \(-0.890011\pi\)
0.940893 0.338704i \(-0.109989\pi\)
\(828\) 0 0
\(829\) 14611.0 0.612136 0.306068 0.952010i \(-0.400986\pi\)
0.306068 + 0.952010i \(0.400986\pi\)
\(830\) 0 0
\(831\) −16910.0 −0.705898
\(832\) 0 0
\(833\) 6982.96i 0.290450i
\(834\) 0 0
\(835\) 21280.0 4881.97i 0.881946 0.202332i
\(836\) 0 0
\(837\) 26698.3i 1.10254i
\(838\) 0 0
\(839\) −37259.0 −1.53316 −0.766581 0.642147i \(-0.778044\pi\)
−0.766581 + 0.642147i \(0.778044\pi\)
\(840\) 0 0
\(841\) 43211.0 1.77174
\(842\) 0 0
\(843\) 18385.8i 0.751177i
\(844\) 0 0
\(845\) 6667.50 + 29063.0i 0.271443 + 1.18319i
\(846\) 0 0
\(847\) 1054.85i 0.0427924i
\(848\) 0 0
\(849\) −36404.0 −1.47159
\(850\) 0 0
\(851\) −20007.0 −0.805912
\(852\) 0 0
\(853\) 5239.40i 0.210309i −0.994456 0.105154i \(-0.966466\pi\)
0.994456 0.105154i \(-0.0335337\pi\)
\(854\) 0 0
\(855\) −1360.00 5928.10i −0.0543989 0.237119i
\(856\) 0 0
\(857\) 26781.1i 1.06747i 0.845651 + 0.533736i \(0.179213\pi\)
−0.845651 + 0.533736i \(0.820787\pi\)
\(858\) 0 0
\(859\) −29955.0 −1.18982 −0.594908 0.803794i \(-0.702811\pi\)
−0.594908 + 0.803794i \(0.702811\pi\)
\(860\) 0 0
\(861\) 14440.0 0.571561
\(862\) 0 0
\(863\) 14462.8i 0.570475i 0.958457 + 0.285238i \(0.0920726\pi\)
−0.958457 + 0.285238i \(0.907927\pi\)
\(864\) 0 0
\(865\) 25555.0 5862.72i 1.00450 0.230449i
\(866\) 0 0
\(867\) 18433.8i 0.722081i
\(868\) 0 0
\(869\) 2398.00 0.0936094
\(870\) 0 0
\(871\) 36784.0 1.43097
\(872\) 0 0
\(873\) 6172.20i 0.239287i
\(874\) 0 0
\(875\) −9500.00 + 7628.07i −0.367038 + 0.294715i
\(876\) 0 0
\(877\) 24898.0i 0.958662i −0.877634 0.479331i \(-0.840879\pi\)
0.877634 0.479331i \(-0.159121\pi\)
\(878\) 0 0
\(879\) −27740.0 −1.06444
\(880\) 0 0
\(881\) −19987.0 −0.764335 −0.382168 0.924093i \(-0.624822\pi\)
−0.382168 + 0.924093i \(0.624822\pi\)
\(882\) 0 0
\(883\) 5466.06i 0.208321i −0.994560 0.104161i \(-0.966784\pi\)
0.994560 0.104161i \(-0.0332156\pi\)
\(884\) 0 0
\(885\) 6792.50 1558.31i 0.257997 0.0591886i
\(886\) 0 0
\(887\) 25586.7i 0.968567i 0.874911 + 0.484283i \(0.160920\pi\)
−0.874911 + 0.484283i \(0.839080\pi\)
\(888\) 0 0
\(889\) −8512.00 −0.321129
\(890\) 0 0
\(891\) 4939.00 0.185705
\(892\) 0 0
\(893\) 20748.4i 0.777511i
\(894\) 0 0
\(895\) 1747.50 + 7617.18i 0.0652653 + 0.284485i
\(896\) 0 0
\(897\) 35777.8i 1.33176i
\(898\) 0 0
\(899\) −45500.0 −1.68800
\(900\) 0 0
\(901\) −11856.0 −0.438380
\(902\) 0 0
\(903\) 11594.7i 0.427294i
\(904\) 0 0
\(905\) 6507.50 + 28365.5i 0.239024 + 1.04188i
\(906\) 0 0
\(907\) 1368.69i 0.0501067i −0.999686 0.0250533i \(-0.992024\pi\)
0.999686 0.0250533i \(-0.00797556\pi\)
\(908\) 0 0
\(909\) 5104.00 0.186237
\(910\) 0 0
\(911\) −20068.0 −0.729838 −0.364919 0.931039i \(-0.618903\pi\)
−0.364919 + 0.931039i \(0.618903\pi\)
\(912\) 0 0
\(913\) 8342.93i 0.302421i
\(914\) 0 0
\(915\) 32110.0 7366.54i 1.16014 0.266153i
\(916\) 0 0
\(917\) 6747.58i 0.242993i
\(918\) 0 0
\(919\) 10946.0 0.392900 0.196450 0.980514i \(-0.437059\pi\)
0.196450 + 0.980514i \(0.437059\pi\)
\(920\) 0 0
\(921\) 28804.0 1.03054
\(922\) 0 0
\(923\) 72183.4i 2.57415i
\(924\) 0 0
\(925\) −9262.50 19124.7i −0.329242 0.679800i
\(926\) 0 0
\(927\) 4254.29i 0.150733i
\(928\) 0 0
\(929\) 33338.0 1.17738 0.588689 0.808360i \(-0.299644\pi\)
0.588689 + 0.808360i \(0.299644\pi\)
\(930\) 0 0
\(931\) 18156.0 0.639139
\(932\) 0 0
\(933\) 25333.9i 0.888955i
\(934\) 0 0
\(935\) −3135.00 + 719.218i −0.109653 + 0.0251561i
\(936\) 0 0
\(937\) 51487.3i 1.79511i 0.440903 + 0.897555i \(0.354658\pi\)
−0.440903 + 0.897555i \(0.645342\pi\)
\(938\) 0 0
\(939\) 25669.0 0.892094
\(940\) 0 0
\(941\) −21590.0 −0.747942 −0.373971 0.927440i \(-0.622004\pi\)
−0.373971 + 0.927440i \(0.622004\pi\)
\(942\) 0 0
\(943\) 44722.3i 1.54439i
\(944\) 0 0
\(945\) 3325.00 + 14493.3i 0.114457 + 0.498908i
\(946\) 0 0
\(947\) 23420.4i 0.803653i −0.915716 0.401827i \(-0.868375\pi\)
0.915716 0.401827i \(-0.131625\pi\)
\(948\) 0 0
\(949\) −23104.0 −0.790292
\(950\) 0 0
\(951\) 39083.0 1.33265
\(952\) 0 0
\(953\) 22221.7i 0.755331i −0.925942 0.377665i \(-0.876727\pi\)
0.925942 0.377665i \(-0.123273\pi\)
\(954\) 0 0
\(955\) −3322.50 14482.4i −0.112580 0.490723i
\(956\) 0 0
\(957\) 12466.5i 0.421090i
\(958\) 0 0
\(959\) −342.000 −0.0115159
\(960\) 0 0
\(961\) 834.000 0.0279950
\(962\) 0 0
\(963\) 488.197i 0.0163364i
\(964\) 0 0
\(965\) 15200.0 3487.12i 0.507052 0.116326i
\(966\) 0 0
\(967\) 15883.8i 0.528221i 0.964492 + 0.264110i \(0.0850783\pi\)
−0.964492 + 0.264110i \(0.914922\pi\)
\(968\) 0 0
\(969\) −7752.00 −0.256997
\(970\) 0 0
\(971\) −13965.0 −0.461543 −0.230771 0.973008i \(-0.574125\pi\)
−0.230771 + 0.973008i \(0.574125\pi\)
\(972\) 0 0
\(973\) 26031.3i 0.857684i
\(974\) 0 0
\(975\) 34200.0 16563.8i 1.12336 0.544068i
\(976\) 0 0
\(977\) 36418.6i 1.19256i −0.802775 0.596282i \(-0.796644\pi\)
0.802775 0.596282i \(-0.203356\pi\)
\(978\) 0 0
\(979\) 14069.0 0.459292
\(980\) 0 0
\(981\) 1136.00 0.0369722
\(982\) 0 0
\(983\) 49844.0i 1.61727i −0.588310 0.808635i \(-0.700207\pi\)
0.588310 0.808635i \(-0.299793\pi\)
\(984\) 0 0
\(985\) −25365.0 + 5819.13i −0.820504 + 0.188236i
\(986\) 0 0
\(987\) 11594.7i 0.373923i
\(988\) 0 0
\(989\) −35910.0 −1.15457
\(990\) 0 0
\(991\) 55024.0 1.76377 0.881884 0.471466i \(-0.156275\pi\)
0.881884 + 0.471466i \(0.156275\pi\)
\(992\) 0 0
\(993\) 37848.3i 1.20955i
\(994\) 0 0
\(995\) −20.0000 87.1780i −0.000637229 0.00277762i
\(996\) 0 0
\(997\) 51740.1i 1.64356i −0.569807 0.821779i \(-0.692982\pi\)
0.569807 0.821779i \(-0.307018\pi\)
\(998\) 0 0
\(999\) −25935.0 −0.821368
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.4.b.a.89.2 yes 2
3.2 odd 2 1980.4.c.a.1189.2 2
4.3 odd 2 880.4.b.b.529.1 2
5.2 odd 4 1100.4.a.f.1.2 2
5.3 odd 4 1100.4.a.f.1.1 2
5.4 even 2 inner 220.4.b.a.89.1 2
15.14 odd 2 1980.4.c.a.1189.1 2
20.19 odd 2 880.4.b.b.529.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.4.b.a.89.1 2 5.4 even 2 inner
220.4.b.a.89.2 yes 2 1.1 even 1 trivial
880.4.b.b.529.1 2 4.3 odd 2
880.4.b.b.529.2 2 20.19 odd 2
1100.4.a.f.1.1 2 5.3 odd 4
1100.4.a.f.1.2 2 5.2 odd 4
1980.4.c.a.1189.1 2 15.14 odd 2
1980.4.c.a.1189.2 2 3.2 odd 2