L(s) = 1 | + 26.2i·3-s + (12.7 + 54.4i)5-s − 64.0i·7-s − 443.·9-s + 121·11-s − 528. i·13-s + (−1.42e3 + 335. i)15-s − 1.54e3i·17-s − 3.10e3·19-s + 1.67e3·21-s − 1.78e3i·23-s + (−2.79e3 + 1.39e3i)25-s − 5.26e3i·27-s − 4.89e3·29-s + 1.17e3·31-s + ⋯ |
L(s) = 1 | + 1.68i·3-s + (0.228 + 0.973i)5-s − 0.494i·7-s − 1.82·9-s + 0.301·11-s − 0.867i·13-s + (−1.63 + 0.384i)15-s − 1.29i·17-s − 1.97·19-s + 0.831·21-s − 0.705i·23-s + (−0.895 + 0.445i)25-s − 1.38i·27-s − 1.08·29-s + 0.219·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.228 + 0.973i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.228 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.1257991912\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1257991912\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-12.7 - 54.4i)T \) |
| 11 | \( 1 - 121T \) |
good | 3 | \( 1 - 26.2iT - 243T^{2} \) |
| 7 | \( 1 + 64.0iT - 1.68e4T^{2} \) |
| 13 | \( 1 + 528. iT - 3.71e5T^{2} \) |
| 17 | \( 1 + 1.54e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 + 3.10e3T + 2.47e6T^{2} \) |
| 23 | \( 1 + 1.78e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 + 4.89e3T + 2.05e7T^{2} \) |
| 31 | \( 1 - 1.17e3T + 2.86e7T^{2} \) |
| 37 | \( 1 - 1.26e4iT - 6.93e7T^{2} \) |
| 41 | \( 1 - 1.52e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 1.15e4iT - 1.47e8T^{2} \) |
| 47 | \( 1 + 1.97e4iT - 2.29e8T^{2} \) |
| 53 | \( 1 - 1.62e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 + 3.94e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 1.88e4T + 8.44e8T^{2} \) |
| 67 | \( 1 - 4.04e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 + 6.52e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 4.63e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 2.01e4T + 3.07e9T^{2} \) |
| 83 | \( 1 - 8.59e4iT - 3.93e9T^{2} \) |
| 89 | \( 1 + 1.20e4T + 5.58e9T^{2} \) |
| 97 | \( 1 + 1.37e5iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.71884116915888744290315104296, −10.44439392925725388534174089090, −9.518127325479863721122990604124, −8.483923255494046631432929848002, −7.06072265045491266602158159483, −5.87291305896101077764680554704, −4.65517925568218560936373972014, −3.68356943561501691654136554155, −2.60713839568317739207525011394, −0.03508440682371567314721820898,
1.49419607824154743958717521482, 2.12613273853625183774241182471, 4.18433960833391905576088502868, 5.81034520946496049619229421086, 6.41420536354077558026002965468, 7.67513888258630631453653702941, 8.556786906066278736230702814719, 9.258182914359376951987978095431, 10.95888388135685110107767865941, 11.97139858534285079010151998906