L(s) = 1 | + 26.2i·3-s + (12.7 + 54.4i)5-s − 64.0i·7-s − 443.·9-s + 121·11-s − 528. i·13-s + (−1.42e3 + 335. i)15-s − 1.54e3i·17-s − 3.10e3·19-s + 1.67e3·21-s − 1.78e3i·23-s + (−2.79e3 + 1.39e3i)25-s − 5.26e3i·27-s − 4.89e3·29-s + 1.17e3·31-s + ⋯ |
L(s) = 1 | + 1.68i·3-s + (0.228 + 0.973i)5-s − 0.494i·7-s − 1.82·9-s + 0.301·11-s − 0.867i·13-s + (−1.63 + 0.384i)15-s − 1.29i·17-s − 1.97·19-s + 0.831·21-s − 0.705i·23-s + (−0.895 + 0.445i)25-s − 1.38i·27-s − 1.08·29-s + 0.219·31-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(0.228+0.973i)Λ(6−s)
Λ(s)=(=(220s/2ΓC(s+5/2)L(s)(0.228+0.973i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
0.228+0.973i
|
Analytic conductor: |
35.2844 |
Root analytic conductor: |
5.94007 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(89,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :5/2), 0.228+0.973i)
|
Particular Values
L(3) |
≈ |
0.1257991912 |
L(21) |
≈ |
0.1257991912 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−12.7−54.4i)T |
| 11 | 1−121T |
good | 3 | 1−26.2iT−243T2 |
| 7 | 1+64.0iT−1.68e4T2 |
| 13 | 1+528.iT−3.71e5T2 |
| 17 | 1+1.54e3iT−1.41e6T2 |
| 19 | 1+3.10e3T+2.47e6T2 |
| 23 | 1+1.78e3iT−6.43e6T2 |
| 29 | 1+4.89e3T+2.05e7T2 |
| 31 | 1−1.17e3T+2.86e7T2 |
| 37 | 1−1.26e4iT−6.93e7T2 |
| 41 | 1−1.52e3T+1.15e8T2 |
| 43 | 1+1.15e4iT−1.47e8T2 |
| 47 | 1+1.97e4iT−2.29e8T2 |
| 53 | 1−1.62e4iT−4.18e8T2 |
| 59 | 1+3.94e4T+7.14e8T2 |
| 61 | 1−1.88e4T+8.44e8T2 |
| 67 | 1−4.04e4iT−1.35e9T2 |
| 71 | 1+6.52e4T+1.80e9T2 |
| 73 | 1+4.63e4iT−2.07e9T2 |
| 79 | 1−2.01e4T+3.07e9T2 |
| 83 | 1−8.59e4iT−3.93e9T2 |
| 89 | 1+1.20e4T+5.58e9T2 |
| 97 | 1+1.37e5iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.71884116915888744290315104296, −10.44439392925725388534174089090, −9.518127325479863721122990604124, −8.483923255494046631432929848002, −7.06072265045491266602158159483, −5.87291305896101077764680554704, −4.65517925568218560936373972014, −3.68356943561501691654136554155, −2.60713839568317739207525011394, −0.03508440682371567314721820898,
1.49419607824154743958717521482, 2.12613273853625183774241182471, 4.18433960833391905576088502868, 5.81034520946496049619229421086, 6.41420536354077558026002965468, 7.67513888258630631453653702941, 8.556786906066278736230702814719, 9.258182914359376951987978095431, 10.95888388135685110107767865941, 11.97139858534285079010151998906