Properties

Label 220.6.b.b.89.14
Level $220$
Weight $6$
Character 220.89
Analytic conductor $35.284$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,6,Mod(89,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.89");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 220.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(35.2844403589\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 2272 x^{12} + 1983198 x^{10} + 827062096 x^{8} + 165415157329 x^{6} + 13843733383152 x^{4} + \cdots + 27\!\cdots\!24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{15}\cdot 3^{2}\cdot 5^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 89.14
Root \(26.2077i\) of defining polynomial
Character \(\chi\) \(=\) 220.89
Dual form 220.6.b.b.89.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+26.2077i q^{3} +(12.7997 + 54.4166i) q^{5} -64.0890i q^{7} -443.842 q^{9} +121.000 q^{11} -528.657i q^{13} +(-1426.13 + 335.450i) q^{15} -1541.39i q^{17} -3107.81 q^{19} +1679.62 q^{21} -1789.78i q^{23} +(-2797.34 + 1393.03i) q^{25} -5263.61i q^{27} -4892.43 q^{29} +1172.26 q^{31} +3171.13i q^{33} +(3487.50 - 820.319i) q^{35} +12632.9i q^{37} +13854.9 q^{39} +1520.48 q^{41} -11538.1i q^{43} +(-5681.05 - 24152.4i) q^{45} -19780.6i q^{47} +12699.6 q^{49} +40396.2 q^{51} +16273.8i q^{53} +(1548.76 + 6584.41i) q^{55} -81448.4i q^{57} -39459.2 q^{59} +18830.5 q^{61} +28445.4i q^{63} +(28767.7 - 6766.65i) q^{65} +40415.1i q^{67} +46906.1 q^{69} -65200.4 q^{71} -46369.3i q^{73} +(-36508.1 - 73311.7i) q^{75} -7754.77i q^{77} +20145.5 q^{79} +30093.4 q^{81} +85967.1i q^{83} +(83877.2 - 19729.3i) q^{85} -128219. i q^{87} -12067.3 q^{89} -33881.1 q^{91} +30722.2i q^{93} +(-39779.0 - 169116. i) q^{95} -137100. i q^{97} -53704.9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 44 q^{5} - 1142 q^{9} + 1694 q^{11} + 326 q^{15} - 4540 q^{19} + 3824 q^{21} - 3816 q^{25} - 9972 q^{29} + 19076 q^{31} + 5136 q^{35} - 13616 q^{39} + 15052 q^{41} - 8374 q^{45} - 55346 q^{49} - 13380 q^{51}+ \cdots - 138182 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 26.2077i 1.68122i 0.541638 + 0.840612i \(0.317804\pi\)
−0.541638 + 0.840612i \(0.682196\pi\)
\(4\) 0 0
\(5\) 12.7997 + 54.4166i 0.228968 + 0.973434i
\(6\) 0 0
\(7\) 64.0890i 0.494354i −0.968970 0.247177i \(-0.920497\pi\)
0.968970 0.247177i \(-0.0795029\pi\)
\(8\) 0 0
\(9\) −443.842 −1.82651
\(10\) 0 0
\(11\) 121.000 0.301511
\(12\) 0 0
\(13\) 528.657i 0.867592i −0.901011 0.433796i \(-0.857174\pi\)
0.901011 0.433796i \(-0.142826\pi\)
\(14\) 0 0
\(15\) −1426.13 + 335.450i −1.63656 + 0.384946i
\(16\) 0 0
\(17\) 1541.39i 1.29357i −0.762672 0.646785i \(-0.776113\pi\)
0.762672 0.646785i \(-0.223887\pi\)
\(18\) 0 0
\(19\) −3107.81 −1.97501 −0.987507 0.157576i \(-0.949632\pi\)
−0.987507 + 0.157576i \(0.949632\pi\)
\(20\) 0 0
\(21\) 1679.62 0.831120
\(22\) 0 0
\(23\) 1789.78i 0.705474i −0.935722 0.352737i \(-0.885251\pi\)
0.935722 0.352737i \(-0.114749\pi\)
\(24\) 0 0
\(25\) −2797.34 + 1393.03i −0.895147 + 0.445770i
\(26\) 0 0
\(27\) 5263.61i 1.38955i
\(28\) 0 0
\(29\) −4892.43 −1.08026 −0.540131 0.841581i \(-0.681625\pi\)
−0.540131 + 0.841581i \(0.681625\pi\)
\(30\) 0 0
\(31\) 1172.26 0.219089 0.109544 0.993982i \(-0.465061\pi\)
0.109544 + 0.993982i \(0.465061\pi\)
\(32\) 0 0
\(33\) 3171.13i 0.506908i
\(34\) 0 0
\(35\) 3487.50 820.319i 0.481221 0.113191i
\(36\) 0 0
\(37\) 12632.9i 1.51705i 0.651644 + 0.758525i \(0.274080\pi\)
−0.651644 + 0.758525i \(0.725920\pi\)
\(38\) 0 0
\(39\) 13854.9 1.45862
\(40\) 0 0
\(41\) 1520.48 0.141261 0.0706305 0.997503i \(-0.477499\pi\)
0.0706305 + 0.997503i \(0.477499\pi\)
\(42\) 0 0
\(43\) 11538.1i 0.951620i −0.879548 0.475810i \(-0.842155\pi\)
0.879548 0.475810i \(-0.157845\pi\)
\(44\) 0 0
\(45\) −5681.05 24152.4i −0.418213 1.77799i
\(46\) 0 0
\(47\) 19780.6i 1.30615i −0.757292 0.653076i \(-0.773478\pi\)
0.757292 0.653076i \(-0.226522\pi\)
\(48\) 0 0
\(49\) 12699.6 0.755614
\(50\) 0 0
\(51\) 40396.2 2.17478
\(52\) 0 0
\(53\) 16273.8i 0.795790i 0.917431 + 0.397895i \(0.130259\pi\)
−0.917431 + 0.397895i \(0.869741\pi\)
\(54\) 0 0
\(55\) 1548.76 + 6584.41i 0.0690364 + 0.293501i
\(56\) 0 0
\(57\) 81448.4i 3.32044i
\(58\) 0 0
\(59\) −39459.2 −1.47577 −0.737884 0.674927i \(-0.764175\pi\)
−0.737884 + 0.674927i \(0.764175\pi\)
\(60\) 0 0
\(61\) 18830.5 0.647943 0.323972 0.946067i \(-0.394982\pi\)
0.323972 + 0.946067i \(0.394982\pi\)
\(62\) 0 0
\(63\) 28445.4i 0.902944i
\(64\) 0 0
\(65\) 28767.7 6766.65i 0.844543 0.198651i
\(66\) 0 0
\(67\) 40415.1i 1.09991i 0.835194 + 0.549955i \(0.185355\pi\)
−0.835194 + 0.549955i \(0.814645\pi\)
\(68\) 0 0
\(69\) 46906.1 1.18606
\(70\) 0 0
\(71\) −65200.4 −1.53499 −0.767493 0.641057i \(-0.778496\pi\)
−0.767493 + 0.641057i \(0.778496\pi\)
\(72\) 0 0
\(73\) 46369.3i 1.01841i −0.860645 0.509205i \(-0.829939\pi\)
0.860645 0.509205i \(-0.170061\pi\)
\(74\) 0 0
\(75\) −36508.1 73311.7i −0.749439 1.50494i
\(76\) 0 0
\(77\) 7754.77i 0.149053i
\(78\) 0 0
\(79\) 20145.5 0.363170 0.181585 0.983375i \(-0.441877\pi\)
0.181585 + 0.983375i \(0.441877\pi\)
\(80\) 0 0
\(81\) 30093.4 0.509634
\(82\) 0 0
\(83\) 85967.1i 1.36974i 0.728667 + 0.684869i \(0.240140\pi\)
−0.728667 + 0.684869i \(0.759860\pi\)
\(84\) 0 0
\(85\) 83877.2 19729.3i 1.25920 0.296186i
\(86\) 0 0
\(87\) 128219.i 1.81616i
\(88\) 0 0
\(89\) −12067.3 −0.161486 −0.0807430 0.996735i \(-0.525729\pi\)
−0.0807430 + 0.996735i \(0.525729\pi\)
\(90\) 0 0
\(91\) −33881.1 −0.428898
\(92\) 0 0
\(93\) 30722.2i 0.368337i
\(94\) 0 0
\(95\) −39779.0 169116.i −0.452215 1.92255i
\(96\) 0 0
\(97\) 137100.i 1.47947i −0.672896 0.739737i \(-0.734950\pi\)
0.672896 0.739737i \(-0.265050\pi\)
\(98\) 0 0
\(99\) −53704.9 −0.550714
\(100\) 0 0
\(101\) −47877.0 −0.467008 −0.233504 0.972356i \(-0.575019\pi\)
−0.233504 + 0.972356i \(0.575019\pi\)
\(102\) 0 0
\(103\) 83825.2i 0.778541i 0.921123 + 0.389271i \(0.127273\pi\)
−0.921123 + 0.389271i \(0.872727\pi\)
\(104\) 0 0
\(105\) 21498.7 + 91399.4i 0.190300 + 0.809040i
\(106\) 0 0
\(107\) 25557.2i 0.215801i −0.994162 0.107901i \(-0.965587\pi\)
0.994162 0.107901i \(-0.0344128\pi\)
\(108\) 0 0
\(109\) −54744.9 −0.441344 −0.220672 0.975348i \(-0.570825\pi\)
−0.220672 + 0.975348i \(0.570825\pi\)
\(110\) 0 0
\(111\) −331080. −2.55050
\(112\) 0 0
\(113\) 72063.0i 0.530904i 0.964124 + 0.265452i \(0.0855212\pi\)
−0.964124 + 0.265452i \(0.914479\pi\)
\(114\) 0 0
\(115\) 97394.0 22908.7i 0.686732 0.161531i
\(116\) 0 0
\(117\) 234640.i 1.58467i
\(118\) 0 0
\(119\) −98786.0 −0.639482
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) 0 0
\(123\) 39848.4i 0.237491i
\(124\) 0 0
\(125\) −111609. 134391.i −0.638888 0.769300i
\(126\) 0 0
\(127\) 113193.i 0.622745i 0.950288 + 0.311372i \(0.100789\pi\)
−0.950288 + 0.311372i \(0.899211\pi\)
\(128\) 0 0
\(129\) 302387. 1.59989
\(130\) 0 0
\(131\) 142156. 0.723746 0.361873 0.932227i \(-0.382137\pi\)
0.361873 + 0.932227i \(0.382137\pi\)
\(132\) 0 0
\(133\) 199176.i 0.976356i
\(134\) 0 0
\(135\) 286428. 67372.6i 1.35264 0.318163i
\(136\) 0 0
\(137\) 206954.i 0.942045i −0.882121 0.471022i \(-0.843885\pi\)
0.882121 0.471022i \(-0.156115\pi\)
\(138\) 0 0
\(139\) −432970. −1.90073 −0.950367 0.311132i \(-0.899292\pi\)
−0.950367 + 0.311132i \(0.899292\pi\)
\(140\) 0 0
\(141\) 518402. 2.19593
\(142\) 0 0
\(143\) 63967.5i 0.261589i
\(144\) 0 0
\(145\) −62621.6 266229.i −0.247345 1.05156i
\(146\) 0 0
\(147\) 332827.i 1.27036i
\(148\) 0 0
\(149\) 171827. 0.634052 0.317026 0.948417i \(-0.397316\pi\)
0.317026 + 0.948417i \(0.397316\pi\)
\(150\) 0 0
\(151\) 295056. 1.05308 0.526542 0.850149i \(-0.323488\pi\)
0.526542 + 0.850149i \(0.323488\pi\)
\(152\) 0 0
\(153\) 684134.i 2.36272i
\(154\) 0 0
\(155\) 15004.6 + 63790.5i 0.0501643 + 0.213268i
\(156\) 0 0
\(157\) 133587.i 0.432529i 0.976335 + 0.216264i \(0.0693873\pi\)
−0.976335 + 0.216264i \(0.930613\pi\)
\(158\) 0 0
\(159\) −426498. −1.33790
\(160\) 0 0
\(161\) −114705. −0.348754
\(162\) 0 0
\(163\) 326639.i 0.962939i 0.876463 + 0.481470i \(0.159897\pi\)
−0.876463 + 0.481470i \(0.840103\pi\)
\(164\) 0 0
\(165\) −172562. + 40589.5i −0.493441 + 0.116066i
\(166\) 0 0
\(167\) 614485.i 1.70498i 0.522741 + 0.852491i \(0.324909\pi\)
−0.522741 + 0.852491i \(0.675091\pi\)
\(168\) 0 0
\(169\) 91814.9 0.247284
\(170\) 0 0
\(171\) 1.37938e6 3.60739
\(172\) 0 0
\(173\) 500953.i 1.27257i 0.771454 + 0.636285i \(0.219530\pi\)
−0.771454 + 0.636285i \(0.780470\pi\)
\(174\) 0 0
\(175\) 89278.0 + 179278.i 0.220368 + 0.442520i
\(176\) 0 0
\(177\) 1.03413e6i 2.48110i
\(178\) 0 0
\(179\) −305612. −0.712915 −0.356457 0.934312i \(-0.616016\pi\)
−0.356457 + 0.934312i \(0.616016\pi\)
\(180\) 0 0
\(181\) −52085.1 −0.118173 −0.0590864 0.998253i \(-0.518819\pi\)
−0.0590864 + 0.998253i \(0.518819\pi\)
\(182\) 0 0
\(183\) 493503.i 1.08934i
\(184\) 0 0
\(185\) −687442. + 161698.i −1.47675 + 0.347356i
\(186\) 0 0
\(187\) 186508.i 0.390026i
\(188\) 0 0
\(189\) −337340. −0.686930
\(190\) 0 0
\(191\) −894767. −1.77471 −0.887354 0.461089i \(-0.847459\pi\)
−0.887354 + 0.461089i \(0.847459\pi\)
\(192\) 0 0
\(193\) 456312.i 0.881797i −0.897557 0.440899i \(-0.854660\pi\)
0.897557 0.440899i \(-0.145340\pi\)
\(194\) 0 0
\(195\) 177338. + 753935.i 0.333976 + 1.41987i
\(196\) 0 0
\(197\) 423709.i 0.777861i −0.921267 0.388931i \(-0.872845\pi\)
0.921267 0.388931i \(-0.127155\pi\)
\(198\) 0 0
\(199\) −1.09199e6 −1.95472 −0.977360 0.211581i \(-0.932139\pi\)
−0.977360 + 0.211581i \(0.932139\pi\)
\(200\) 0 0
\(201\) −1.05919e6 −1.84919
\(202\) 0 0
\(203\) 313551.i 0.534032i
\(204\) 0 0
\(205\) 19461.7 + 82739.6i 0.0323442 + 0.137508i
\(206\) 0 0
\(207\) 794382.i 1.28856i
\(208\) 0 0
\(209\) −376045. −0.595489
\(210\) 0 0
\(211\) −741511. −1.14660 −0.573299 0.819346i \(-0.694337\pi\)
−0.573299 + 0.819346i \(0.694337\pi\)
\(212\) 0 0
\(213\) 1.70875e6i 2.58065i
\(214\) 0 0
\(215\) 627865. 147684.i 0.926340 0.217890i
\(216\) 0 0
\(217\) 75129.0i 0.108307i
\(218\) 0 0
\(219\) 1.21523e6 1.71218
\(220\) 0 0
\(221\) −814866. −1.12229
\(222\) 0 0
\(223\) 1.01755e6i 1.37023i −0.728436 0.685113i \(-0.759753\pi\)
0.728436 0.685113i \(-0.240247\pi\)
\(224\) 0 0
\(225\) 1.24158e6 618287.i 1.63500 0.814205i
\(226\) 0 0
\(227\) 51060.6i 0.0657690i 0.999459 + 0.0328845i \(0.0104694\pi\)
−0.999459 + 0.0328845i \(0.989531\pi\)
\(228\) 0 0
\(229\) −405426. −0.510885 −0.255443 0.966824i \(-0.582221\pi\)
−0.255443 + 0.966824i \(0.582221\pi\)
\(230\) 0 0
\(231\) 203234. 0.250592
\(232\) 0 0
\(233\) 175866.i 0.212223i −0.994354 0.106111i \(-0.966160\pi\)
0.994354 0.106111i \(-0.0338400\pi\)
\(234\) 0 0
\(235\) 1.07639e6 253185.i 1.27145 0.299067i
\(236\) 0 0
\(237\) 527967.i 0.610570i
\(238\) 0 0
\(239\) −310598. −0.351726 −0.175863 0.984415i \(-0.556272\pi\)
−0.175863 + 0.984415i \(0.556272\pi\)
\(240\) 0 0
\(241\) −62501.7 −0.0693185 −0.0346592 0.999399i \(-0.511035\pi\)
−0.0346592 + 0.999399i \(0.511035\pi\)
\(242\) 0 0
\(243\) 490381.i 0.532743i
\(244\) 0 0
\(245\) 162551. + 691069.i 0.173011 + 0.735540i
\(246\) 0 0
\(247\) 1.64296e6i 1.71351i
\(248\) 0 0
\(249\) −2.25300e6 −2.30283
\(250\) 0 0
\(251\) 1.65573e6 1.65885 0.829423 0.558621i \(-0.188670\pi\)
0.829423 + 0.558621i \(0.188670\pi\)
\(252\) 0 0
\(253\) 216564.i 0.212708i
\(254\) 0 0
\(255\) 517059. + 2.19823e6i 0.497955 + 2.11700i
\(256\) 0 0
\(257\) 11379.3i 0.0107469i 0.999986 + 0.00537344i \(0.00171043\pi\)
−0.999986 + 0.00537344i \(0.998290\pi\)
\(258\) 0 0
\(259\) 809632. 0.749960
\(260\) 0 0
\(261\) 2.17147e6 1.97311
\(262\) 0 0
\(263\) 1.42857e6i 1.27354i −0.771053 0.636771i \(-0.780270\pi\)
0.771053 0.636771i \(-0.219730\pi\)
\(264\) 0 0
\(265\) −885564. + 208299.i −0.774649 + 0.182210i
\(266\) 0 0
\(267\) 316256.i 0.271494i
\(268\) 0 0
\(269\) 1.52305e6 1.28331 0.641657 0.766991i \(-0.278247\pi\)
0.641657 + 0.766991i \(0.278247\pi\)
\(270\) 0 0
\(271\) −629994. −0.521090 −0.260545 0.965462i \(-0.583902\pi\)
−0.260545 + 0.965462i \(0.583902\pi\)
\(272\) 0 0
\(273\) 887944.i 0.721073i
\(274\) 0 0
\(275\) −338478. + 168557.i −0.269897 + 0.134405i
\(276\) 0 0
\(277\) 2.27661e6i 1.78274i −0.453275 0.891371i \(-0.649744\pi\)
0.453275 0.891371i \(-0.350256\pi\)
\(278\) 0 0
\(279\) −520299. −0.400168
\(280\) 0 0
\(281\) 496611. 0.375189 0.187595 0.982247i \(-0.439931\pi\)
0.187595 + 0.982247i \(0.439931\pi\)
\(282\) 0 0
\(283\) 1.50166e6i 1.11456i −0.830323 0.557282i \(-0.811844\pi\)
0.830323 0.557282i \(-0.188156\pi\)
\(284\) 0 0
\(285\) 4.43215e6 1.04251e6i 3.23223 0.760274i
\(286\) 0 0
\(287\) 97446.3i 0.0698330i
\(288\) 0 0
\(289\) −956023. −0.673323
\(290\) 0 0
\(291\) 3.59307e6 2.48733
\(292\) 0 0
\(293\) 1.42593e6i 0.970355i −0.874416 0.485177i \(-0.838755\pi\)
0.874416 0.485177i \(-0.161245\pi\)
\(294\) 0 0
\(295\) −505066. 2.14724e6i −0.337904 1.43656i
\(296\) 0 0
\(297\) 636897.i 0.418965i
\(298\) 0 0
\(299\) −946182. −0.612064
\(300\) 0 0
\(301\) −739466. −0.470438
\(302\) 0 0
\(303\) 1.25475e6i 0.785144i
\(304\) 0 0
\(305\) 241025. + 1.02469e6i 0.148358 + 0.630730i
\(306\) 0 0
\(307\) 1.86573e6i 1.12981i 0.825157 + 0.564903i \(0.191086\pi\)
−0.825157 + 0.564903i \(0.808914\pi\)
\(308\) 0 0
\(309\) −2.19686e6 −1.30890
\(310\) 0 0
\(311\) 61240.1 0.0359034 0.0179517 0.999839i \(-0.494285\pi\)
0.0179517 + 0.999839i \(0.494285\pi\)
\(312\) 0 0
\(313\) 152008.i 0.0877011i −0.999038 0.0438506i \(-0.986037\pi\)
0.999038 0.0438506i \(-0.0139625\pi\)
\(314\) 0 0
\(315\) −1.54790e6 + 364092.i −0.878956 + 0.206745i
\(316\) 0 0
\(317\) 1.21712e6i 0.680277i −0.940375 0.340138i \(-0.889526\pi\)
0.940375 0.340138i \(-0.110474\pi\)
\(318\) 0 0
\(319\) −591984. −0.325711
\(320\) 0 0
\(321\) 669795. 0.362810
\(322\) 0 0
\(323\) 4.79034e6i 2.55482i
\(324\) 0 0
\(325\) 736436. + 1.47883e6i 0.386747 + 0.776623i
\(326\) 0 0
\(327\) 1.43474e6i 0.741999i
\(328\) 0 0
\(329\) −1.26772e6 −0.645702
\(330\) 0 0
\(331\) −2.90401e6 −1.45690 −0.728448 0.685101i \(-0.759758\pi\)
−0.728448 + 0.685101i \(0.759758\pi\)
\(332\) 0 0
\(333\) 5.60703e6i 2.77091i
\(334\) 0 0
\(335\) −2.19926e6 + 517302.i −1.07069 + 0.251844i
\(336\) 0 0
\(337\) 577357.i 0.276930i −0.990367 0.138465i \(-0.955783\pi\)
0.990367 0.138465i \(-0.0442168\pi\)
\(338\) 0 0
\(339\) −1.88860e6 −0.892568
\(340\) 0 0
\(341\) 141844. 0.0660577
\(342\) 0 0
\(343\) 1.89105e6i 0.867895i
\(344\) 0 0
\(345\) 600384. + 2.55247e6i 0.271570 + 1.15455i
\(346\) 0 0
\(347\) 2.99345e6i 1.33459i 0.744793 + 0.667296i \(0.232548\pi\)
−0.744793 + 0.667296i \(0.767452\pi\)
\(348\) 0 0
\(349\) −2.05019e6 −0.901012 −0.450506 0.892773i \(-0.648756\pi\)
−0.450506 + 0.892773i \(0.648756\pi\)
\(350\) 0 0
\(351\) −2.78264e6 −1.20556
\(352\) 0 0
\(353\) 566987.i 0.242179i 0.992642 + 0.121089i \(0.0386388\pi\)
−0.992642 + 0.121089i \(0.961361\pi\)
\(354\) 0 0
\(355\) −834545. 3.54799e6i −0.351463 1.49421i
\(356\) 0 0
\(357\) 2.58895e6i 1.07511i
\(358\) 0 0
\(359\) −1.82570e6 −0.747643 −0.373821 0.927501i \(-0.621953\pi\)
−0.373821 + 0.927501i \(0.621953\pi\)
\(360\) 0 0
\(361\) 7.18237e6 2.90068
\(362\) 0 0
\(363\) 383707.i 0.152838i
\(364\) 0 0
\(365\) 2.52326e6 593512.i 0.991356 0.233183i
\(366\) 0 0
\(367\) 1.33009e6i 0.515485i 0.966214 + 0.257742i \(0.0829785\pi\)
−0.966214 + 0.257742i \(0.917021\pi\)
\(368\) 0 0
\(369\) −674856. −0.258015
\(370\) 0 0
\(371\) 1.04297e6 0.393402
\(372\) 0 0
\(373\) 475043.i 0.176791i 0.996085 + 0.0883956i \(0.0281740\pi\)
−0.996085 + 0.0883956i \(0.971826\pi\)
\(374\) 0 0
\(375\) 3.52208e6 2.92502e6i 1.29336 1.07411i
\(376\) 0 0
\(377\) 2.58642e6i 0.937227i
\(378\) 0 0
\(379\) −1.05251e6 −0.376382 −0.188191 0.982132i \(-0.560262\pi\)
−0.188191 + 0.982132i \(0.560262\pi\)
\(380\) 0 0
\(381\) −2.96652e6 −1.04697
\(382\) 0 0
\(383\) 1.05438e6i 0.367283i −0.982993 0.183641i \(-0.941211\pi\)
0.982993 0.183641i \(-0.0587885\pi\)
\(384\) 0 0
\(385\) 421988. 99258.6i 0.145094 0.0341284i
\(386\) 0 0
\(387\) 5.12110e6i 1.73815i
\(388\) 0 0
\(389\) −4.41847e6 −1.48046 −0.740231 0.672352i \(-0.765284\pi\)
−0.740231 + 0.672352i \(0.765284\pi\)
\(390\) 0 0
\(391\) −2.75875e6 −0.912580
\(392\) 0 0
\(393\) 3.72557e6i 1.21678i
\(394\) 0 0
\(395\) 257856. + 1.09625e6i 0.0831543 + 0.353522i
\(396\) 0 0
\(397\) 1.02930e6i 0.327766i 0.986480 + 0.163883i \(0.0524020\pi\)
−0.986480 + 0.163883i \(0.947598\pi\)
\(398\) 0 0
\(399\) −5.21995e6 −1.64147
\(400\) 0 0
\(401\) 4.82524e6 1.49850 0.749252 0.662285i \(-0.230413\pi\)
0.749252 + 0.662285i \(0.230413\pi\)
\(402\) 0 0
\(403\) 619724.i 0.190080i
\(404\) 0 0
\(405\) 385186. + 1.63758e6i 0.116690 + 0.496095i
\(406\) 0 0
\(407\) 1.52859e6i 0.457408i
\(408\) 0 0
\(409\) 5.24511e6 1.55041 0.775205 0.631710i \(-0.217647\pi\)
0.775205 + 0.631710i \(0.217647\pi\)
\(410\) 0 0
\(411\) 5.42377e6 1.58379
\(412\) 0 0
\(413\) 2.52890e6i 0.729552i
\(414\) 0 0
\(415\) −4.67804e6 + 1.10035e6i −1.33335 + 0.313626i
\(416\) 0 0
\(417\) 1.13472e7i 3.19556i
\(418\) 0 0
\(419\) 588049. 0.163636 0.0818180 0.996647i \(-0.473927\pi\)
0.0818180 + 0.996647i \(0.473927\pi\)
\(420\) 0 0
\(421\) 4.83665e6 1.32996 0.664982 0.746860i \(-0.268439\pi\)
0.664982 + 0.746860i \(0.268439\pi\)
\(422\) 0 0
\(423\) 8.77945e6i 2.38570i
\(424\) 0 0
\(425\) 2.14720e6 + 4.31178e6i 0.576635 + 1.15794i
\(426\) 0 0
\(427\) 1.20683e6i 0.320314i
\(428\) 0 0
\(429\) 1.67644e6 0.439789
\(430\) 0 0
\(431\) −3.40144e6 −0.882003 −0.441002 0.897506i \(-0.645377\pi\)
−0.441002 + 0.897506i \(0.645377\pi\)
\(432\) 0 0
\(433\) 5.81707e6i 1.49102i 0.666493 + 0.745512i \(0.267795\pi\)
−0.666493 + 0.745512i \(0.732205\pi\)
\(434\) 0 0
\(435\) 6.97725e6 1.64117e6i 1.76791 0.415843i
\(436\) 0 0
\(437\) 5.56230e6i 1.39332i
\(438\) 0 0
\(439\) 7.33653e6 1.81689 0.908446 0.418001i \(-0.137269\pi\)
0.908446 + 0.418001i \(0.137269\pi\)
\(440\) 0 0
\(441\) −5.63662e6 −1.38014
\(442\) 0 0
\(443\) 1.29709e6i 0.314022i −0.987597 0.157011i \(-0.949814\pi\)
0.987597 0.157011i \(-0.0501858\pi\)
\(444\) 0 0
\(445\) −154458. 656661.i −0.0369751 0.157196i
\(446\) 0 0
\(447\) 4.50317e6i 1.06598i
\(448\) 0 0
\(449\) −4.47446e6 −1.04743 −0.523715 0.851894i \(-0.675454\pi\)
−0.523715 + 0.851894i \(0.675454\pi\)
\(450\) 0 0
\(451\) 183979. 0.0425918
\(452\) 0 0
\(453\) 7.73275e6i 1.77047i
\(454\) 0 0
\(455\) −433667. 1.84369e6i −0.0982038 0.417504i
\(456\) 0 0
\(457\) 5.49383e6i 1.23051i −0.788329 0.615254i \(-0.789054\pi\)
0.788329 0.615254i \(-0.210946\pi\)
\(458\) 0 0
\(459\) −8.11327e6 −1.79748
\(460\) 0 0
\(461\) −4.40705e6 −0.965819 −0.482909 0.875670i \(-0.660420\pi\)
−0.482909 + 0.875670i \(0.660420\pi\)
\(462\) 0 0
\(463\) 5.34156e6i 1.15802i 0.815321 + 0.579009i \(0.196560\pi\)
−0.815321 + 0.579009i \(0.803440\pi\)
\(464\) 0 0
\(465\) −1.67180e6 + 393235.i −0.358552 + 0.0843374i
\(466\) 0 0
\(467\) 4.24423e6i 0.900548i 0.892890 + 0.450274i \(0.148674\pi\)
−0.892890 + 0.450274i \(0.851326\pi\)
\(468\) 0 0
\(469\) 2.59017e6 0.543745
\(470\) 0 0
\(471\) −3.50100e6 −0.727177
\(472\) 0 0
\(473\) 1.39611e6i 0.286924i
\(474\) 0 0
\(475\) 8.69358e6 4.32928e6i 1.76793 0.880402i
\(476\) 0 0
\(477\) 7.22299e6i 1.45352i
\(478\) 0 0
\(479\) −127031. −0.0252970 −0.0126485 0.999920i \(-0.504026\pi\)
−0.0126485 + 0.999920i \(0.504026\pi\)
\(480\) 0 0
\(481\) 6.67849e6 1.31618
\(482\) 0 0
\(483\) 3.00616e6i 0.586333i
\(484\) 0 0
\(485\) 7.46050e6 1.75483e6i 1.44017 0.338752i
\(486\) 0 0
\(487\) 5.88474e6i 1.12436i −0.827015 0.562179i \(-0.809963\pi\)
0.827015 0.562179i \(-0.190037\pi\)
\(488\) 0 0
\(489\) −8.56044e6 −1.61892
\(490\) 0 0
\(491\) 670926. 0.125595 0.0627973 0.998026i \(-0.479998\pi\)
0.0627973 + 0.998026i \(0.479998\pi\)
\(492\) 0 0
\(493\) 7.54113e6i 1.39740i
\(494\) 0 0
\(495\) −687407. 2.92244e6i −0.126096 0.536084i
\(496\) 0 0
\(497\) 4.17863e6i 0.758827i
\(498\) 0 0
\(499\) 4.23099e6 0.760661 0.380330 0.924851i \(-0.375810\pi\)
0.380330 + 0.924851i \(0.375810\pi\)
\(500\) 0 0
\(501\) −1.61042e7 −2.86646
\(502\) 0 0
\(503\) 4.42693e6i 0.780157i −0.920782 0.390079i \(-0.872448\pi\)
0.920782 0.390079i \(-0.127552\pi\)
\(504\) 0 0
\(505\) −612812. 2.60531e6i −0.106930 0.454601i
\(506\) 0 0
\(507\) 2.40626e6i 0.415740i
\(508\) 0 0
\(509\) 7.57091e6 1.29525 0.647625 0.761959i \(-0.275762\pi\)
0.647625 + 0.761959i \(0.275762\pi\)
\(510\) 0 0
\(511\) −2.97176e6 −0.503456
\(512\) 0 0
\(513\) 1.63583e7i 2.74438i
\(514\) 0 0
\(515\) −4.56149e6 + 1.07294e6i −0.757859 + 0.178261i
\(516\) 0 0
\(517\) 2.39345e6i 0.393820i
\(518\) 0 0
\(519\) −1.31288e7 −2.13948
\(520\) 0 0
\(521\) −4.67098e6 −0.753900 −0.376950 0.926234i \(-0.623027\pi\)
−0.376950 + 0.926234i \(0.623027\pi\)
\(522\) 0 0
\(523\) 3.45852e6i 0.552887i −0.961030 0.276444i \(-0.910844\pi\)
0.961030 0.276444i \(-0.0891559\pi\)
\(524\) 0 0
\(525\) −4.69847e6 + 2.33977e6i −0.743975 + 0.370488i
\(526\) 0 0
\(527\) 1.80691e6i 0.283407i
\(528\) 0 0
\(529\) 3.23302e6 0.502306
\(530\) 0 0
\(531\) 1.75137e7 2.69551
\(532\) 0 0
\(533\) 803815.i 0.122557i
\(534\) 0 0
\(535\) 1.39074e6 327124.i 0.210068 0.0494115i
\(536\) 0 0
\(537\) 8.00938e6i 1.19857i
\(538\) 0 0
\(539\) 1.53665e6 0.227826
\(540\) 0 0
\(541\) −9.09362e6 −1.33581 −0.667904 0.744248i \(-0.732808\pi\)
−0.667904 + 0.744248i \(0.732808\pi\)
\(542\) 0 0
\(543\) 1.36503e6i 0.198675i
\(544\) 0 0
\(545\) −700718. 2.97903e6i −0.101054 0.429620i
\(546\) 0 0
\(547\) 5.08979e6i 0.727331i 0.931530 + 0.363665i \(0.118475\pi\)
−0.931530 + 0.363665i \(0.881525\pi\)
\(548\) 0 0
\(549\) −8.35777e6 −1.18348
\(550\) 0 0
\(551\) 1.52047e7 2.13353
\(552\) 0 0
\(553\) 1.29110e6i 0.179535i
\(554\) 0 0
\(555\) −4.23772e6 1.80163e7i −0.583983 2.48274i
\(556\) 0 0
\(557\) 9.80352e6i 1.33889i 0.742863 + 0.669443i \(0.233467\pi\)
−0.742863 + 0.669443i \(0.766533\pi\)
\(558\) 0 0
\(559\) −6.09970e6 −0.825618
\(560\) 0 0
\(561\) 4.88794e6 0.655721
\(562\) 0 0
\(563\) 1.28530e7i 1.70897i 0.519478 + 0.854484i \(0.326126\pi\)
−0.519478 + 0.854484i \(0.673874\pi\)
\(564\) 0 0
\(565\) −3.92142e6 + 922384.i −0.516800 + 0.121560i
\(566\) 0 0
\(567\) 1.92865e6i 0.251940i
\(568\) 0 0
\(569\) −1.43558e6 −0.185886 −0.0929429 0.995671i \(-0.529627\pi\)
−0.0929429 + 0.995671i \(0.529627\pi\)
\(570\) 0 0
\(571\) −4.63588e6 −0.595034 −0.297517 0.954716i \(-0.596159\pi\)
−0.297517 + 0.954716i \(0.596159\pi\)
\(572\) 0 0
\(573\) 2.34498e7i 2.98368i
\(574\) 0 0
\(575\) 2.49323e6 + 5.00663e6i 0.314479 + 0.631503i
\(576\) 0 0
\(577\) 591099.i 0.0739130i 0.999317 + 0.0369565i \(0.0117663\pi\)
−0.999317 + 0.0369565i \(0.988234\pi\)
\(578\) 0 0
\(579\) 1.19589e7 1.48250
\(580\) 0 0
\(581\) 5.50955e6 0.677135
\(582\) 0 0
\(583\) 1.96913e6i 0.239940i
\(584\) 0 0
\(585\) −1.27683e7 + 3.00332e6i −1.54257 + 0.362838i
\(586\) 0 0
\(587\) 2.87938e6i 0.344908i 0.985018 + 0.172454i \(0.0551696\pi\)
−0.985018 + 0.172454i \(0.944830\pi\)
\(588\) 0 0
\(589\) −3.64316e6 −0.432703
\(590\) 0 0
\(591\) 1.11044e7 1.30776
\(592\) 0 0
\(593\) 1.87004e6i 0.218381i 0.994021 + 0.109190i \(0.0348258\pi\)
−0.994021 + 0.109190i \(0.965174\pi\)
\(594\) 0 0
\(595\) −1.26443e6 5.37560e6i −0.146421 0.622493i
\(596\) 0 0
\(597\) 2.86184e7i 3.28632i
\(598\) 0 0
\(599\) 415288. 0.0472915 0.0236457 0.999720i \(-0.492473\pi\)
0.0236457 + 0.999720i \(0.492473\pi\)
\(600\) 0 0
\(601\) 1.31366e7 1.48353 0.741764 0.670661i \(-0.233990\pi\)
0.741764 + 0.670661i \(0.233990\pi\)
\(602\) 0 0
\(603\) 1.79380e7i 2.00900i
\(604\) 0 0
\(605\) 187400. + 796714.i 0.0208153 + 0.0884940i
\(606\) 0 0
\(607\) 18756.3i 0.00206622i −0.999999 0.00103311i \(-0.999671\pi\)
0.999999 0.00103311i \(-0.000328849\pi\)
\(608\) 0 0
\(609\) −8.21744e6 −0.897828
\(610\) 0 0
\(611\) −1.04571e7 −1.13321
\(612\) 0 0
\(613\) 5.55708e6i 0.597304i −0.954362 0.298652i \(-0.903463\pi\)
0.954362 0.298652i \(-0.0965370\pi\)
\(614\) 0 0
\(615\) −2.16841e6 + 510047.i −0.231182 + 0.0543779i
\(616\) 0 0
\(617\) 1.68269e7i 1.77947i 0.456478 + 0.889735i \(0.349111\pi\)
−0.456478 + 0.889735i \(0.650889\pi\)
\(618\) 0 0
\(619\) 6.25620e6 0.656273 0.328136 0.944630i \(-0.393579\pi\)
0.328136 + 0.944630i \(0.393579\pi\)
\(620\) 0 0
\(621\) −9.42073e6 −0.980292
\(622\) 0 0
\(623\) 773381.i 0.0798313i
\(624\) 0 0
\(625\) 5.88455e6 7.79356e6i 0.602578 0.798060i
\(626\) 0 0
\(627\) 9.85526e6i 1.00115i
\(628\) 0 0
\(629\) 1.94723e7 1.96241
\(630\) 0 0
\(631\) 1.28950e7 1.28928 0.644641 0.764486i \(-0.277007\pi\)
0.644641 + 0.764486i \(0.277007\pi\)
\(632\) 0 0
\(633\) 1.94333e7i 1.92769i
\(634\) 0 0
\(635\) −6.15958e6 + 1.44884e6i −0.606201 + 0.142589i
\(636\) 0 0
\(637\) 6.71373e6i 0.655565i
\(638\) 0 0
\(639\) 2.89387e7 2.80367
\(640\) 0 0
\(641\) −1.14483e7 −1.10051 −0.550257 0.834995i \(-0.685470\pi\)
−0.550257 + 0.834995i \(0.685470\pi\)
\(642\) 0 0
\(643\) 9.95257e6i 0.949309i −0.880172 0.474655i \(-0.842573\pi\)
0.880172 0.474655i \(-0.157427\pi\)
\(644\) 0 0
\(645\) 3.87046e6 + 1.64549e7i 0.366323 + 1.55738i
\(646\) 0 0
\(647\) 4.71410e6i 0.442729i −0.975191 0.221365i \(-0.928949\pi\)
0.975191 0.221365i \(-0.0710511\pi\)
\(648\) 0 0
\(649\) −4.77456e6 −0.444961
\(650\) 0 0
\(651\) 1.96896e6 0.182089
\(652\) 0 0
\(653\) 1.66636e7i 1.52928i 0.644459 + 0.764639i \(0.277083\pi\)
−0.644459 + 0.764639i \(0.722917\pi\)
\(654\) 0 0
\(655\) 1.81955e6 + 7.73564e6i 0.165715 + 0.704519i
\(656\) 0 0
\(657\) 2.05806e7i 1.86014i
\(658\) 0 0
\(659\) −7.73348e6 −0.693684 −0.346842 0.937924i \(-0.612746\pi\)
−0.346842 + 0.937924i \(0.612746\pi\)
\(660\) 0 0
\(661\) 8.58080e6 0.763878 0.381939 0.924188i \(-0.375256\pi\)
0.381939 + 0.924188i \(0.375256\pi\)
\(662\) 0 0
\(663\) 2.13557e7i 1.88682i
\(664\) 0 0
\(665\) −1.08385e7 + 2.54939e6i −0.950418 + 0.223554i
\(666\) 0 0
\(667\) 8.75639e6i 0.762097i
\(668\) 0 0
\(669\) 2.66675e7 2.30366
\(670\) 0 0
\(671\) 2.27849e6 0.195362
\(672\) 0 0
\(673\) 1.06321e7i 0.904859i 0.891800 + 0.452429i \(0.149443\pi\)
−0.891800 + 0.452429i \(0.850557\pi\)
\(674\) 0 0
\(675\) 7.33238e6 + 1.47241e7i 0.619420 + 1.24385i
\(676\) 0 0
\(677\) 1.42422e7i 1.19427i 0.802139 + 0.597137i \(0.203695\pi\)
−0.802139 + 0.597137i \(0.796305\pi\)
\(678\) 0 0
\(679\) −8.78658e6 −0.731384
\(680\) 0 0
\(681\) −1.33818e6 −0.110572
\(682\) 0 0
\(683\) 1.10334e7i 0.905020i 0.891759 + 0.452510i \(0.149471\pi\)
−0.891759 + 0.452510i \(0.850529\pi\)
\(684\) 0 0
\(685\) 1.12617e7 2.64894e6i 0.917018 0.215698i
\(686\) 0 0
\(687\) 1.06253e7i 0.858912i
\(688\) 0 0
\(689\) 8.60324e6 0.690421
\(690\) 0 0
\(691\) −3.50968e6 −0.279623 −0.139811 0.990178i \(-0.544650\pi\)
−0.139811 + 0.990178i \(0.544650\pi\)
\(692\) 0 0
\(693\) 3.44189e6i 0.272248i
\(694\) 0 0
\(695\) −5.54189e6 2.35608e7i −0.435207 1.85024i
\(696\) 0 0
\(697\) 2.34366e6i 0.182731i
\(698\) 0 0
\(699\) 4.60904e6 0.356794
\(700\) 0 0
\(701\) −2.06987e7 −1.59092 −0.795458 0.606009i \(-0.792770\pi\)
−0.795458 + 0.606009i \(0.792770\pi\)
\(702\) 0 0
\(703\) 3.92607e7i 2.99620i
\(704\) 0 0
\(705\) 6.63539e6 + 2.82097e7i 0.502798 + 2.13760i
\(706\) 0 0
\(707\) 3.06839e6i 0.230867i
\(708\) 0 0
\(709\) −1.39218e7 −1.04011 −0.520057 0.854132i \(-0.674089\pi\)
−0.520057 + 0.854132i \(0.674089\pi\)
\(710\) 0 0
\(711\) −8.94142e6 −0.663335
\(712\) 0 0
\(713\) 2.09809e6i 0.154561i
\(714\) 0 0
\(715\) 3.48089e6 818764.i 0.254639 0.0598954i
\(716\) 0 0
\(717\) 8.14006e6i 0.591330i
\(718\) 0 0
\(719\) 3.96939e6 0.286353 0.143176 0.989697i \(-0.454268\pi\)
0.143176 + 0.989697i \(0.454268\pi\)
\(720\) 0 0
\(721\) 5.37227e6 0.384875
\(722\) 0 0
\(723\) 1.63802e6i 0.116540i
\(724\) 0 0
\(725\) 1.36858e7 6.81531e6i 0.966994 0.481549i
\(726\) 0 0
\(727\) 1.28442e7i 0.901300i −0.892701 0.450650i \(-0.851192\pi\)
0.892701 0.450650i \(-0.148808\pi\)
\(728\) 0 0
\(729\) 2.01644e7 1.40529
\(730\) 0 0
\(731\) −1.77847e7 −1.23099
\(732\) 0 0
\(733\) 1.51085e7i 1.03863i −0.854582 0.519316i \(-0.826187\pi\)
0.854582 0.519316i \(-0.173813\pi\)
\(734\) 0 0
\(735\) −1.81113e7 + 4.26009e6i −1.23661 + 0.290871i
\(736\) 0 0
\(737\) 4.89023e6i 0.331635i
\(738\) 0 0
\(739\) −2.27094e7 −1.52966 −0.764829 0.644234i \(-0.777176\pi\)
−0.764829 + 0.644234i \(0.777176\pi\)
\(740\) 0 0
\(741\) −4.30583e7 −2.88079
\(742\) 0 0
\(743\) 1.54143e6i 0.102436i −0.998688 0.0512179i \(-0.983690\pi\)
0.998688 0.0512179i \(-0.0163103\pi\)
\(744\) 0 0
\(745\) 2.19933e6 + 9.35022e6i 0.145177 + 0.617207i
\(746\) 0 0
\(747\) 3.81559e7i 2.50184i
\(748\) 0 0
\(749\) −1.63793e6 −0.106682
\(750\) 0 0
\(751\) −7.76182e6 −0.502185 −0.251093 0.967963i \(-0.580790\pi\)
−0.251093 + 0.967963i \(0.580790\pi\)
\(752\) 0 0
\(753\) 4.33929e7i 2.78889i
\(754\) 0 0
\(755\) 3.77663e6 + 1.60560e7i 0.241122 + 1.02511i
\(756\) 0 0
\(757\) 69075.5i 0.00438111i −0.999998 0.00219055i \(-0.999303\pi\)
0.999998 0.00219055i \(-0.000697276\pi\)
\(758\) 0 0
\(759\) 5.67564e6 0.357610
\(760\) 0 0
\(761\) −9.54346e6 −0.597371 −0.298686 0.954352i \(-0.596548\pi\)
−0.298686 + 0.954352i \(0.596548\pi\)
\(762\) 0 0
\(763\) 3.50855e6i 0.218180i
\(764\) 0 0
\(765\) −3.72282e7 + 8.75670e6i −2.29995 + 0.540987i
\(766\) 0 0
\(767\) 2.08604e7i 1.28036i
\(768\) 0 0
\(769\) 1.65278e7 1.00786 0.503929 0.863745i \(-0.331887\pi\)
0.503929 + 0.863745i \(0.331887\pi\)
\(770\) 0 0
\(771\) −298225. −0.0180679
\(772\) 0 0
\(773\) 2.71610e7i 1.63492i −0.575985 0.817460i \(-0.695381\pi\)
0.575985 0.817460i \(-0.304619\pi\)
\(774\) 0 0
\(775\) −3.27921e6 + 1.63300e6i −0.196117 + 0.0976632i
\(776\) 0 0
\(777\) 2.12186e7i 1.26085i
\(778\) 0 0
\(779\) −4.72537e6 −0.278992
\(780\) 0 0
\(781\) −7.88925e6 −0.462816
\(782\) 0 0
\(783\) 2.57518e7i 1.50108i
\(784\) 0 0
\(785\) −7.26935e6 + 1.70987e6i −0.421038 + 0.0990352i
\(786\) 0 0
\(787\) 2.98471e7i 1.71777i 0.512167 + 0.858886i \(0.328843\pi\)
−0.512167 + 0.858886i \(0.671157\pi\)
\(788\) 0 0
\(789\) 3.74396e7 2.14111
\(790\) 0 0
\(791\) 4.61844e6 0.262455
\(792\) 0 0
\(793\) 9.95487e6i 0.562150i
\(794\) 0 0
\(795\) −5.45904e6 2.32086e7i −0.306336 1.30236i
\(796\) 0 0
\(797\) 9.31780e6i 0.519598i 0.965663 + 0.259799i \(0.0836564\pi\)
−0.965663 + 0.259799i \(0.916344\pi\)
\(798\) 0 0
\(799\) −3.04895e7 −1.68960
\(800\) 0 0
\(801\) 5.35598e6 0.294956
\(802\) 0 0
\(803\) 5.61068e6i 0.307062i
\(804\) 0 0
\(805\) −1.46819e6 6.24188e6i −0.0798535 0.339489i
\(806\) 0 0
\(807\) 3.99156e7i 2.15754i
\(808\) 0 0
\(809\) −3.50340e7 −1.88200 −0.940998 0.338411i \(-0.890111\pi\)
−0.940998 + 0.338411i \(0.890111\pi\)
\(810\) 0 0
\(811\) −3.42814e7 −1.83023 −0.915117 0.403190i \(-0.867902\pi\)
−0.915117 + 0.403190i \(0.867902\pi\)
\(812\) 0 0
\(813\) 1.65107e7i 0.876069i
\(814\) 0 0
\(815\) −1.77746e7 + 4.18088e6i −0.937358 + 0.220482i
\(816\) 0 0
\(817\) 3.58582e7i 1.87946i
\(818\) 0 0
\(819\) 1.50379e7 0.783387
\(820\) 0 0
\(821\) 2.38494e7 1.23487 0.617433 0.786623i \(-0.288173\pi\)
0.617433 + 0.786623i \(0.288173\pi\)
\(822\) 0 0
\(823\) 5.89850e6i 0.303558i −0.988414 0.151779i \(-0.951500\pi\)
0.988414 0.151779i \(-0.0485002\pi\)
\(824\) 0 0
\(825\) −4.41748e6 8.87071e6i −0.225964 0.453757i
\(826\) 0 0
\(827\) 1.39931e7i 0.711460i −0.934589 0.355730i \(-0.884232\pi\)
0.934589 0.355730i \(-0.115768\pi\)
\(828\) 0 0
\(829\) 1.94439e7 0.982644 0.491322 0.870978i \(-0.336514\pi\)
0.491322 + 0.870978i \(0.336514\pi\)
\(830\) 0 0
\(831\) 5.96646e7 2.99719
\(832\) 0 0
\(833\) 1.95750e7i 0.977440i
\(834\) 0 0
\(835\) −3.34382e7 + 7.86522e6i −1.65969 + 0.390386i
\(836\) 0 0
\(837\) 6.17033e6i 0.304435i
\(838\) 0 0
\(839\) 1.46211e7 0.717092 0.358546 0.933512i \(-0.383273\pi\)
0.358546 + 0.933512i \(0.383273\pi\)
\(840\) 0 0
\(841\) 3.42470e6 0.166968
\(842\) 0 0
\(843\) 1.30150e7i 0.630777i
\(844\) 0 0
\(845\) 1.17520e6 + 4.99626e6i 0.0566202 + 0.240715i
\(846\) 0 0
\(847\) 938327.i 0.0449413i
\(848\) 0 0
\(849\) 3.93550e7 1.87383
\(850\) 0 0
\(851\) 2.26102e7 1.07024
\(852\) 0 0
\(853\) 1.92349e7i 0.905144i −0.891728 0.452572i \(-0.850507\pi\)
0.891728 0.452572i \(-0.149493\pi\)
\(854\) 0 0
\(855\) 1.76556e7 + 7.50610e7i 0.825976 + 3.51155i
\(856\) 0 0
\(857\) 3.91181e6i 0.181939i 0.995854 + 0.0909694i \(0.0289966\pi\)
−0.995854 + 0.0909694i \(0.971003\pi\)
\(858\) 0 0
\(859\) 1.32707e7 0.613638 0.306819 0.951768i \(-0.400735\pi\)
0.306819 + 0.951768i \(0.400735\pi\)
\(860\) 0 0
\(861\) 2.55384e6 0.117405
\(862\) 0 0
\(863\) 2.05251e7i 0.938121i 0.883166 + 0.469061i \(0.155407\pi\)
−0.883166 + 0.469061i \(0.844593\pi\)
\(864\) 0 0
\(865\) −2.72602e7 + 6.41205e6i −1.23876 + 0.291378i
\(866\) 0 0
\(867\) 2.50551e7i 1.13201i
\(868\) 0 0
\(869\) 2.43760e6 0.109500
\(870\) 0 0
\(871\) 2.13657e7 0.954273
\(872\) 0 0
\(873\) 6.08507e7i 2.70228i
\(874\) 0 0
\(875\) −8.61299e6 + 7.15291e6i −0.380307 + 0.315837i
\(876\) 0 0
\(877\) 2.33070e7i 1.02326i −0.859205 0.511632i \(-0.829041\pi\)
0.859205 0.511632i \(-0.170959\pi\)
\(878\) 0 0
\(879\) 3.73704e7 1.63138
\(880\) 0 0
\(881\) −9.31106e6 −0.404165 −0.202083 0.979368i \(-0.564771\pi\)
−0.202083 + 0.979368i \(0.564771\pi\)
\(882\) 0 0
\(883\) 3.85172e7i 1.66247i −0.555925 0.831233i \(-0.687636\pi\)
0.555925 0.831233i \(-0.312364\pi\)
\(884\) 0 0
\(885\) 5.62741e7 1.32366e7i 2.41518 0.568091i
\(886\) 0 0
\(887\) 2.82081e7i 1.20383i 0.798560 + 0.601915i \(0.205595\pi\)
−0.798560 + 0.601915i \(0.794405\pi\)
\(888\) 0 0
\(889\) 7.25442e6 0.307856
\(890\) 0 0
\(891\) 3.64130e6 0.153660
\(892\) 0 0
\(893\) 6.14742e7i 2.57967i
\(894\) 0 0
\(895\) −3.91174e6 1.66304e7i −0.163235 0.693976i
\(896\) 0 0
\(897\) 2.47972e7i 1.02902i
\(898\) 0 0
\(899\) −5.73520e6 −0.236673
\(900\) 0 0
\(901\) 2.50842e7 1.02941
\(902\) 0 0
\(903\) 1.93797e7i 0.790911i
\(904\) 0 0
\(905\) −666674. 2.83430e6i −0.0270578 0.115033i
\(906\) 0 0
\(907\) 1.41463e7i 0.570985i −0.958381 0.285492i \(-0.907843\pi\)
0.958381 0.285492i \(-0.0921571\pi\)
\(908\) 0 0
\(909\) 2.12499e7 0.852995
\(910\) 0 0
\(911\) −3.41700e7 −1.36411 −0.682055 0.731301i \(-0.738913\pi\)
−0.682055 + 0.731301i \(0.738913\pi\)
\(912\) 0 0
\(913\) 1.04020e7i 0.412991i
\(914\) 0 0
\(915\) −2.68548e7 + 6.31669e6i −1.06040 + 0.249423i
\(916\) 0 0
\(917\) 9.11062e6i 0.357787i
\(918\) 0 0
\(919\) 9.77047e6 0.381616 0.190808 0.981627i \(-0.438889\pi\)
0.190808 + 0.981627i \(0.438889\pi\)
\(920\) 0 0
\(921\) −4.88966e7 −1.89946
\(922\) 0 0
\(923\) 3.44687e7i 1.33174i
\(924\) 0 0
\(925\) −1.75981e7 3.53386e7i −0.676256 1.35798i
\(926\) 0 0
\(927\) 3.72052e7i 1.42202i
\(928\) 0 0
\(929\) 3.67368e7 1.39657 0.698285 0.715820i \(-0.253947\pi\)
0.698285 + 0.715820i \(0.253947\pi\)
\(930\) 0 0
\(931\) −3.94679e7 −1.49235
\(932\) 0 0
\(933\) 1.60496e6i 0.0603616i
\(934\) 0 0
\(935\) 1.01491e7 2.38725e6i 0.379665 0.0893034i
\(936\) 0 0
\(937\) 3.55132e7i 1.32142i 0.750641 + 0.660711i \(0.229745\pi\)
−0.750641 + 0.660711i \(0.770255\pi\)
\(938\) 0 0
\(939\) 3.98377e6 0.147445
\(940\) 0 0
\(941\) 8.61941e6 0.317325 0.158662 0.987333i \(-0.449282\pi\)
0.158662 + 0.987333i \(0.449282\pi\)
\(942\) 0 0
\(943\) 2.72134e6i 0.0996560i
\(944\) 0 0
\(945\) −4.31784e6 1.83569e7i −0.157285 0.668681i
\(946\) 0 0
\(947\) 5.88715e6i 0.213319i 0.994296 + 0.106660i \(0.0340155\pi\)
−0.994296 + 0.106660i \(0.965984\pi\)
\(948\) 0 0
\(949\) −2.45134e7 −0.883565
\(950\) 0 0
\(951\) 3.18979e7 1.14370
\(952\) 0 0
\(953\) 8.65335e6i 0.308640i −0.988021 0.154320i \(-0.950681\pi\)
0.988021 0.154320i \(-0.0493187\pi\)
\(954\) 0 0
\(955\) −1.14527e7 4.86902e7i −0.406351 1.72756i
\(956\) 0 0
\(957\) 1.55145e7i 0.547594i
\(958\) 0 0
\(959\) −1.32634e7 −0.465704
\(960\) 0 0
\(961\) −2.72550e7 −0.952000
\(962\) 0 0
\(963\) 1.13434e7i 0.394163i
\(964\) 0 0
\(965\) 2.48310e7 5.84066e6i 0.858371 0.201903i
\(966\) 0 0
\(967\) 3.86242e7i 1.32829i 0.747603 + 0.664146i \(0.231205\pi\)
−0.747603 + 0.664146i \(0.768795\pi\)
\(968\) 0 0
\(969\) −1.25544e8 −4.29522
\(970\) 0 0
\(971\) −1.98124e7 −0.674357 −0.337179 0.941441i \(-0.609473\pi\)
−0.337179 + 0.941441i \(0.609473\pi\)
\(972\) 0 0
\(973\) 2.77486e7i 0.939636i
\(974\) 0 0
\(975\) −3.87567e7 + 1.93003e7i −1.30568 + 0.650207i
\(976\) 0 0
\(977\) 4.08355e7i 1.36868i 0.729163 + 0.684340i \(0.239910\pi\)
−0.729163 + 0.684340i \(0.760090\pi\)
\(978\) 0 0
\(979\) −1.46014e6 −0.0486899
\(980\) 0 0
\(981\) 2.42981e7 0.806121
\(982\) 0 0
\(983\) 1.60569e7i 0.530003i −0.964248 0.265002i \(-0.914628\pi\)
0.964248 0.265002i \(-0.0853725\pi\)
\(984\) 0 0
\(985\) 2.30568e7 5.42335e6i 0.757197 0.178105i
\(986\) 0 0
\(987\) 3.32239e7i 1.08557i
\(988\) 0 0
\(989\) −2.06507e7 −0.671343
\(990\) 0 0
\(991\) 3.67047e6 0.118724 0.0593619 0.998237i \(-0.481093\pi\)
0.0593619 + 0.998237i \(0.481093\pi\)
\(992\) 0 0
\(993\) 7.61075e7i 2.44937i
\(994\) 0 0
\(995\) −1.39771e7 5.94222e7i −0.447568 1.90279i
\(996\) 0 0
\(997\) 1.14427e7i 0.364579i 0.983245 + 0.182289i \(0.0583507\pi\)
−0.983245 + 0.182289i \(0.941649\pi\)
\(998\) 0 0
\(999\) 6.64949e7 2.10802
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.6.b.b.89.14 yes 14
5.2 odd 4 1100.6.a.m.1.14 14
5.3 odd 4 1100.6.a.m.1.1 14
5.4 even 2 inner 220.6.b.b.89.1 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.6.b.b.89.1 14 5.4 even 2 inner
220.6.b.b.89.14 yes 14 1.1 even 1 trivial
1100.6.a.m.1.1 14 5.3 odd 4
1100.6.a.m.1.14 14 5.2 odd 4