Properties

Label 1100.6.a.m.1.14
Level $1100$
Weight $6$
Character 1100.1
Self dual yes
Analytic conductor $176.422$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,6,Mod(1,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1100.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(176.422201794\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 2272 x^{12} + 1983198 x^{10} - 827062096 x^{8} + 165415157329 x^{6} - 13843733383152 x^{4} + \cdots - 27\!\cdots\!24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{19}\cdot 3^{2}\cdot 5^{8} \)
Twist minimal: no (minimal twist has level 220)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(26.2077\) of defining polynomial
Character \(\chi\) \(=\) 1100.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+26.2077 q^{3} +64.0890 q^{7} +443.842 q^{9} +121.000 q^{11} -528.657 q^{13} +1541.39 q^{17} +3107.81 q^{19} +1679.62 q^{21} -1789.78 q^{23} +5263.61 q^{27} +4892.43 q^{29} +1172.26 q^{31} +3171.13 q^{33} -12632.9 q^{37} -13854.9 q^{39} +1520.48 q^{41} -11538.1 q^{43} +19780.6 q^{47} -12699.6 q^{49} +40396.2 q^{51} +16273.8 q^{53} +81448.4 q^{57} +39459.2 q^{59} +18830.5 q^{61} +28445.4 q^{63} -40415.1 q^{67} -46906.1 q^{69} -65200.4 q^{71} -46369.3 q^{73} +7754.77 q^{77} -20145.5 q^{79} +30093.4 q^{81} +85967.1 q^{83} +128219. q^{87} +12067.3 q^{89} -33881.1 q^{91} +30722.2 q^{93} +137100. q^{97} +53704.9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 1142 q^{9} + 1694 q^{11} + 4540 q^{19} + 3824 q^{21} + 9972 q^{29} + 19076 q^{31} + 13616 q^{39} + 15052 q^{41} + 55346 q^{49} - 13380 q^{51} + 2108 q^{59} + 11660 q^{61} - 1620 q^{69} - 89284 q^{71}+ \cdots + 138182 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 26.2077 1.68122 0.840612 0.541638i \(-0.182196\pi\)
0.840612 + 0.541638i \(0.182196\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 64.0890 0.494354 0.247177 0.968970i \(-0.420497\pi\)
0.247177 + 0.968970i \(0.420497\pi\)
\(8\) 0 0
\(9\) 443.842 1.82651
\(10\) 0 0
\(11\) 121.000 0.301511
\(12\) 0 0
\(13\) −528.657 −0.867592 −0.433796 0.901011i \(-0.642826\pi\)
−0.433796 + 0.901011i \(0.642826\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1541.39 1.29357 0.646785 0.762672i \(-0.276113\pi\)
0.646785 + 0.762672i \(0.276113\pi\)
\(18\) 0 0
\(19\) 3107.81 1.97501 0.987507 0.157576i \(-0.0503678\pi\)
0.987507 + 0.157576i \(0.0503678\pi\)
\(20\) 0 0
\(21\) 1679.62 0.831120
\(22\) 0 0
\(23\) −1789.78 −0.705474 −0.352737 0.935722i \(-0.614749\pi\)
−0.352737 + 0.935722i \(0.614749\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5263.61 1.38955
\(28\) 0 0
\(29\) 4892.43 1.08026 0.540131 0.841581i \(-0.318375\pi\)
0.540131 + 0.841581i \(0.318375\pi\)
\(30\) 0 0
\(31\) 1172.26 0.219089 0.109544 0.993982i \(-0.465061\pi\)
0.109544 + 0.993982i \(0.465061\pi\)
\(32\) 0 0
\(33\) 3171.13 0.506908
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −12632.9 −1.51705 −0.758525 0.651644i \(-0.774080\pi\)
−0.758525 + 0.651644i \(0.774080\pi\)
\(38\) 0 0
\(39\) −13854.9 −1.45862
\(40\) 0 0
\(41\) 1520.48 0.141261 0.0706305 0.997503i \(-0.477499\pi\)
0.0706305 + 0.997503i \(0.477499\pi\)
\(42\) 0 0
\(43\) −11538.1 −0.951620 −0.475810 0.879548i \(-0.657845\pi\)
−0.475810 + 0.879548i \(0.657845\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 19780.6 1.30615 0.653076 0.757292i \(-0.273478\pi\)
0.653076 + 0.757292i \(0.273478\pi\)
\(48\) 0 0
\(49\) −12699.6 −0.755614
\(50\) 0 0
\(51\) 40396.2 2.17478
\(52\) 0 0
\(53\) 16273.8 0.795790 0.397895 0.917431i \(-0.369741\pi\)
0.397895 + 0.917431i \(0.369741\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 81448.4 3.32044
\(58\) 0 0
\(59\) 39459.2 1.47577 0.737884 0.674927i \(-0.235825\pi\)
0.737884 + 0.674927i \(0.235825\pi\)
\(60\) 0 0
\(61\) 18830.5 0.647943 0.323972 0.946067i \(-0.394982\pi\)
0.323972 + 0.946067i \(0.394982\pi\)
\(62\) 0 0
\(63\) 28445.4 0.902944
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −40415.1 −1.09991 −0.549955 0.835194i \(-0.685355\pi\)
−0.549955 + 0.835194i \(0.685355\pi\)
\(68\) 0 0
\(69\) −46906.1 −1.18606
\(70\) 0 0
\(71\) −65200.4 −1.53499 −0.767493 0.641057i \(-0.778496\pi\)
−0.767493 + 0.641057i \(0.778496\pi\)
\(72\) 0 0
\(73\) −46369.3 −1.01841 −0.509205 0.860645i \(-0.670061\pi\)
−0.509205 + 0.860645i \(0.670061\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7754.77 0.149053
\(78\) 0 0
\(79\) −20145.5 −0.363170 −0.181585 0.983375i \(-0.558123\pi\)
−0.181585 + 0.983375i \(0.558123\pi\)
\(80\) 0 0
\(81\) 30093.4 0.509634
\(82\) 0 0
\(83\) 85967.1 1.36974 0.684869 0.728667i \(-0.259860\pi\)
0.684869 + 0.728667i \(0.259860\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 128219. 1.81616
\(88\) 0 0
\(89\) 12067.3 0.161486 0.0807430 0.996735i \(-0.474271\pi\)
0.0807430 + 0.996735i \(0.474271\pi\)
\(90\) 0 0
\(91\) −33881.1 −0.428898
\(92\) 0 0
\(93\) 30722.2 0.368337
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 137100. 1.47947 0.739737 0.672896i \(-0.234950\pi\)
0.739737 + 0.672896i \(0.234950\pi\)
\(98\) 0 0
\(99\) 53704.9 0.550714
\(100\) 0 0
\(101\) −47877.0 −0.467008 −0.233504 0.972356i \(-0.575019\pi\)
−0.233504 + 0.972356i \(0.575019\pi\)
\(102\) 0 0
\(103\) 83825.2 0.778541 0.389271 0.921123i \(-0.372727\pi\)
0.389271 + 0.921123i \(0.372727\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 25557.2 0.215801 0.107901 0.994162i \(-0.465587\pi\)
0.107901 + 0.994162i \(0.465587\pi\)
\(108\) 0 0
\(109\) 54744.9 0.441344 0.220672 0.975348i \(-0.429175\pi\)
0.220672 + 0.975348i \(0.429175\pi\)
\(110\) 0 0
\(111\) −331080. −2.55050
\(112\) 0 0
\(113\) 72063.0 0.530904 0.265452 0.964124i \(-0.414479\pi\)
0.265452 + 0.964124i \(0.414479\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −234640. −1.58467
\(118\) 0 0
\(119\) 98786.0 0.639482
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) 0 0
\(123\) 39848.4 0.237491
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −113193. −0.622745 −0.311372 0.950288i \(-0.600789\pi\)
−0.311372 + 0.950288i \(0.600789\pi\)
\(128\) 0 0
\(129\) −302387. −1.59989
\(130\) 0 0
\(131\) 142156. 0.723746 0.361873 0.932227i \(-0.382137\pi\)
0.361873 + 0.932227i \(0.382137\pi\)
\(132\) 0 0
\(133\) 199176. 0.976356
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 206954. 0.942045 0.471022 0.882121i \(-0.343885\pi\)
0.471022 + 0.882121i \(0.343885\pi\)
\(138\) 0 0
\(139\) 432970. 1.90073 0.950367 0.311132i \(-0.100708\pi\)
0.950367 + 0.311132i \(0.100708\pi\)
\(140\) 0 0
\(141\) 518402. 2.19593
\(142\) 0 0
\(143\) −63967.5 −0.261589
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −332827. −1.27036
\(148\) 0 0
\(149\) −171827. −0.634052 −0.317026 0.948417i \(-0.602684\pi\)
−0.317026 + 0.948417i \(0.602684\pi\)
\(150\) 0 0
\(151\) 295056. 1.05308 0.526542 0.850149i \(-0.323488\pi\)
0.526542 + 0.850149i \(0.323488\pi\)
\(152\) 0 0
\(153\) 684134. 2.36272
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −133587. −0.432529 −0.216264 0.976335i \(-0.569387\pi\)
−0.216264 + 0.976335i \(0.569387\pi\)
\(158\) 0 0
\(159\) 426498. 1.33790
\(160\) 0 0
\(161\) −114705. −0.348754
\(162\) 0 0
\(163\) 326639. 0.962939 0.481470 0.876463i \(-0.340103\pi\)
0.481470 + 0.876463i \(0.340103\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −614485. −1.70498 −0.852491 0.522741i \(-0.824909\pi\)
−0.852491 + 0.522741i \(0.824909\pi\)
\(168\) 0 0
\(169\) −91814.9 −0.247284
\(170\) 0 0
\(171\) 1.37938e6 3.60739
\(172\) 0 0
\(173\) 500953. 1.27257 0.636285 0.771454i \(-0.280470\pi\)
0.636285 + 0.771454i \(0.280470\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.03413e6 2.48110
\(178\) 0 0
\(179\) 305612. 0.712915 0.356457 0.934312i \(-0.383984\pi\)
0.356457 + 0.934312i \(0.383984\pi\)
\(180\) 0 0
\(181\) −52085.1 −0.118173 −0.0590864 0.998253i \(-0.518819\pi\)
−0.0590864 + 0.998253i \(0.518819\pi\)
\(182\) 0 0
\(183\) 493503. 1.08934
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 186508. 0.390026
\(188\) 0 0
\(189\) 337340. 0.686930
\(190\) 0 0
\(191\) −894767. −1.77471 −0.887354 0.461089i \(-0.847459\pi\)
−0.887354 + 0.461089i \(0.847459\pi\)
\(192\) 0 0
\(193\) −456312. −0.881797 −0.440899 0.897557i \(-0.645340\pi\)
−0.440899 + 0.897557i \(0.645340\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 423709. 0.777861 0.388931 0.921267i \(-0.372845\pi\)
0.388931 + 0.921267i \(0.372845\pi\)
\(198\) 0 0
\(199\) 1.09199e6 1.95472 0.977360 0.211581i \(-0.0678613\pi\)
0.977360 + 0.211581i \(0.0678613\pi\)
\(200\) 0 0
\(201\) −1.05919e6 −1.84919
\(202\) 0 0
\(203\) 313551. 0.534032
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −794382. −1.28856
\(208\) 0 0
\(209\) 376045. 0.595489
\(210\) 0 0
\(211\) −741511. −1.14660 −0.573299 0.819346i \(-0.694337\pi\)
−0.573299 + 0.819346i \(0.694337\pi\)
\(212\) 0 0
\(213\) −1.70875e6 −2.58065
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 75129.0 0.108307
\(218\) 0 0
\(219\) −1.21523e6 −1.71218
\(220\) 0 0
\(221\) −814866. −1.12229
\(222\) 0 0
\(223\) −1.01755e6 −1.37023 −0.685113 0.728436i \(-0.740247\pi\)
−0.685113 + 0.728436i \(0.740247\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −51060.6 −0.0657690 −0.0328845 0.999459i \(-0.510469\pi\)
−0.0328845 + 0.999459i \(0.510469\pi\)
\(228\) 0 0
\(229\) 405426. 0.510885 0.255443 0.966824i \(-0.417779\pi\)
0.255443 + 0.966824i \(0.417779\pi\)
\(230\) 0 0
\(231\) 203234. 0.250592
\(232\) 0 0
\(233\) −175866. −0.212223 −0.106111 0.994354i \(-0.533840\pi\)
−0.106111 + 0.994354i \(0.533840\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −527967. −0.610570
\(238\) 0 0
\(239\) 310598. 0.351726 0.175863 0.984415i \(-0.443728\pi\)
0.175863 + 0.984415i \(0.443728\pi\)
\(240\) 0 0
\(241\) −62501.7 −0.0693185 −0.0346592 0.999399i \(-0.511035\pi\)
−0.0346592 + 0.999399i \(0.511035\pi\)
\(242\) 0 0
\(243\) −490381. −0.532743
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.64296e6 −1.71351
\(248\) 0 0
\(249\) 2.25300e6 2.30283
\(250\) 0 0
\(251\) 1.65573e6 1.65885 0.829423 0.558621i \(-0.188670\pi\)
0.829423 + 0.558621i \(0.188670\pi\)
\(252\) 0 0
\(253\) −216564. −0.212708
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −11379.3 −0.0107469 −0.00537344 0.999986i \(-0.501710\pi\)
−0.00537344 + 0.999986i \(0.501710\pi\)
\(258\) 0 0
\(259\) −809632. −0.749960
\(260\) 0 0
\(261\) 2.17147e6 1.97311
\(262\) 0 0
\(263\) −1.42857e6 −1.27354 −0.636771 0.771053i \(-0.719730\pi\)
−0.636771 + 0.771053i \(0.719730\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 316256. 0.271494
\(268\) 0 0
\(269\) −1.52305e6 −1.28331 −0.641657 0.766991i \(-0.721753\pi\)
−0.641657 + 0.766991i \(0.721753\pi\)
\(270\) 0 0
\(271\) −629994. −0.521090 −0.260545 0.965462i \(-0.583902\pi\)
−0.260545 + 0.965462i \(0.583902\pi\)
\(272\) 0 0
\(273\) −887944. −0.721073
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2.27661e6 1.78274 0.891371 0.453275i \(-0.149744\pi\)
0.891371 + 0.453275i \(0.149744\pi\)
\(278\) 0 0
\(279\) 520299. 0.400168
\(280\) 0 0
\(281\) 496611. 0.375189 0.187595 0.982247i \(-0.439931\pi\)
0.187595 + 0.982247i \(0.439931\pi\)
\(282\) 0 0
\(283\) −1.50166e6 −1.11456 −0.557282 0.830323i \(-0.688156\pi\)
−0.557282 + 0.830323i \(0.688156\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 97446.3 0.0698330
\(288\) 0 0
\(289\) 956023. 0.673323
\(290\) 0 0
\(291\) 3.59307e6 2.48733
\(292\) 0 0
\(293\) −1.42593e6 −0.970355 −0.485177 0.874416i \(-0.661245\pi\)
−0.485177 + 0.874416i \(0.661245\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 636897. 0.418965
\(298\) 0 0
\(299\) 946182. 0.612064
\(300\) 0 0
\(301\) −739466. −0.470438
\(302\) 0 0
\(303\) −1.25475e6 −0.785144
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −1.86573e6 −1.12981 −0.564903 0.825157i \(-0.691086\pi\)
−0.564903 + 0.825157i \(0.691086\pi\)
\(308\) 0 0
\(309\) 2.19686e6 1.30890
\(310\) 0 0
\(311\) 61240.1 0.0359034 0.0179517 0.999839i \(-0.494285\pi\)
0.0179517 + 0.999839i \(0.494285\pi\)
\(312\) 0 0
\(313\) −152008. −0.0877011 −0.0438506 0.999038i \(-0.513963\pi\)
−0.0438506 + 0.999038i \(0.513963\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.21712e6 0.680277 0.340138 0.940375i \(-0.389526\pi\)
0.340138 + 0.940375i \(0.389526\pi\)
\(318\) 0 0
\(319\) 591984. 0.325711
\(320\) 0 0
\(321\) 669795. 0.362810
\(322\) 0 0
\(323\) 4.79034e6 2.55482
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1.43474e6 0.741999
\(328\) 0 0
\(329\) 1.26772e6 0.645702
\(330\) 0 0
\(331\) −2.90401e6 −1.45690 −0.728448 0.685101i \(-0.759758\pi\)
−0.728448 + 0.685101i \(0.759758\pi\)
\(332\) 0 0
\(333\) −5.60703e6 −2.77091
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 577357. 0.276930 0.138465 0.990367i \(-0.455783\pi\)
0.138465 + 0.990367i \(0.455783\pi\)
\(338\) 0 0
\(339\) 1.88860e6 0.892568
\(340\) 0 0
\(341\) 141844. 0.0660577
\(342\) 0 0
\(343\) −1.89105e6 −0.867895
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2.99345e6 −1.33459 −0.667296 0.744793i \(-0.732548\pi\)
−0.667296 + 0.744793i \(0.732548\pi\)
\(348\) 0 0
\(349\) 2.05019e6 0.901012 0.450506 0.892773i \(-0.351244\pi\)
0.450506 + 0.892773i \(0.351244\pi\)
\(350\) 0 0
\(351\) −2.78264e6 −1.20556
\(352\) 0 0
\(353\) 566987. 0.242179 0.121089 0.992642i \(-0.461361\pi\)
0.121089 + 0.992642i \(0.461361\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 2.58895e6 1.07511
\(358\) 0 0
\(359\) 1.82570e6 0.747643 0.373821 0.927501i \(-0.378047\pi\)
0.373821 + 0.927501i \(0.378047\pi\)
\(360\) 0 0
\(361\) 7.18237e6 2.90068
\(362\) 0 0
\(363\) 383707. 0.152838
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −1.33009e6 −0.515485 −0.257742 0.966214i \(-0.582979\pi\)
−0.257742 + 0.966214i \(0.582979\pi\)
\(368\) 0 0
\(369\) 674856. 0.258015
\(370\) 0 0
\(371\) 1.04297e6 0.393402
\(372\) 0 0
\(373\) 475043. 0.176791 0.0883956 0.996085i \(-0.471826\pi\)
0.0883956 + 0.996085i \(0.471826\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.58642e6 −0.937227
\(378\) 0 0
\(379\) 1.05251e6 0.376382 0.188191 0.982132i \(-0.439738\pi\)
0.188191 + 0.982132i \(0.439738\pi\)
\(380\) 0 0
\(381\) −2.96652e6 −1.04697
\(382\) 0 0
\(383\) −1.05438e6 −0.367283 −0.183641 0.982993i \(-0.558789\pi\)
−0.183641 + 0.982993i \(0.558789\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −5.12110e6 −1.73815
\(388\) 0 0
\(389\) 4.41847e6 1.48046 0.740231 0.672352i \(-0.234716\pi\)
0.740231 + 0.672352i \(0.234716\pi\)
\(390\) 0 0
\(391\) −2.75875e6 −0.912580
\(392\) 0 0
\(393\) 3.72557e6 1.21678
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1.02930e6 −0.327766 −0.163883 0.986480i \(-0.552402\pi\)
−0.163883 + 0.986480i \(0.552402\pi\)
\(398\) 0 0
\(399\) 5.21995e6 1.64147
\(400\) 0 0
\(401\) 4.82524e6 1.49850 0.749252 0.662285i \(-0.230413\pi\)
0.749252 + 0.662285i \(0.230413\pi\)
\(402\) 0 0
\(403\) −619724. −0.190080
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.52859e6 −0.457408
\(408\) 0 0
\(409\) −5.24511e6 −1.55041 −0.775205 0.631710i \(-0.782353\pi\)
−0.775205 + 0.631710i \(0.782353\pi\)
\(410\) 0 0
\(411\) 5.42377e6 1.58379
\(412\) 0 0
\(413\) 2.52890e6 0.729552
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.13472e7 3.19556
\(418\) 0 0
\(419\) −588049. −0.163636 −0.0818180 0.996647i \(-0.526073\pi\)
−0.0818180 + 0.996647i \(0.526073\pi\)
\(420\) 0 0
\(421\) 4.83665e6 1.32996 0.664982 0.746860i \(-0.268439\pi\)
0.664982 + 0.746860i \(0.268439\pi\)
\(422\) 0 0
\(423\) 8.77945e6 2.38570
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.20683e6 0.320314
\(428\) 0 0
\(429\) −1.67644e6 −0.439789
\(430\) 0 0
\(431\) −3.40144e6 −0.882003 −0.441002 0.897506i \(-0.645377\pi\)
−0.441002 + 0.897506i \(0.645377\pi\)
\(432\) 0 0
\(433\) 5.81707e6 1.49102 0.745512 0.666493i \(-0.232205\pi\)
0.745512 + 0.666493i \(0.232205\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5.56230e6 −1.39332
\(438\) 0 0
\(439\) −7.33653e6 −1.81689 −0.908446 0.418001i \(-0.862731\pi\)
−0.908446 + 0.418001i \(0.862731\pi\)
\(440\) 0 0
\(441\) −5.63662e6 −1.38014
\(442\) 0 0
\(443\) −1.29709e6 −0.314022 −0.157011 0.987597i \(-0.550186\pi\)
−0.157011 + 0.987597i \(0.550186\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −4.50317e6 −1.06598
\(448\) 0 0
\(449\) 4.47446e6 1.04743 0.523715 0.851894i \(-0.324546\pi\)
0.523715 + 0.851894i \(0.324546\pi\)
\(450\) 0 0
\(451\) 183979. 0.0425918
\(452\) 0 0
\(453\) 7.73275e6 1.77047
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 5.49383e6 1.23051 0.615254 0.788329i \(-0.289054\pi\)
0.615254 + 0.788329i \(0.289054\pi\)
\(458\) 0 0
\(459\) 8.11327e6 1.79748
\(460\) 0 0
\(461\) −4.40705e6 −0.965819 −0.482909 0.875670i \(-0.660420\pi\)
−0.482909 + 0.875670i \(0.660420\pi\)
\(462\) 0 0
\(463\) 5.34156e6 1.15802 0.579009 0.815321i \(-0.303440\pi\)
0.579009 + 0.815321i \(0.303440\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4.24423e6 −0.900548 −0.450274 0.892890i \(-0.648674\pi\)
−0.450274 + 0.892890i \(0.648674\pi\)
\(468\) 0 0
\(469\) −2.59017e6 −0.543745
\(470\) 0 0
\(471\) −3.50100e6 −0.727177
\(472\) 0 0
\(473\) −1.39611e6 −0.286924
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 7.22299e6 1.45352
\(478\) 0 0
\(479\) 127031. 0.0252970 0.0126485 0.999920i \(-0.495974\pi\)
0.0126485 + 0.999920i \(0.495974\pi\)
\(480\) 0 0
\(481\) 6.67849e6 1.31618
\(482\) 0 0
\(483\) −3.00616e6 −0.586333
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 5.88474e6 1.12436 0.562179 0.827015i \(-0.309963\pi\)
0.562179 + 0.827015i \(0.309963\pi\)
\(488\) 0 0
\(489\) 8.56044e6 1.61892
\(490\) 0 0
\(491\) 670926. 0.125595 0.0627973 0.998026i \(-0.479998\pi\)
0.0627973 + 0.998026i \(0.479998\pi\)
\(492\) 0 0
\(493\) 7.54113e6 1.39740
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4.17863e6 −0.758827
\(498\) 0 0
\(499\) −4.23099e6 −0.760661 −0.380330 0.924851i \(-0.624190\pi\)
−0.380330 + 0.924851i \(0.624190\pi\)
\(500\) 0 0
\(501\) −1.61042e7 −2.86646
\(502\) 0 0
\(503\) −4.42693e6 −0.780157 −0.390079 0.920782i \(-0.627552\pi\)
−0.390079 + 0.920782i \(0.627552\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −2.40626e6 −0.415740
\(508\) 0 0
\(509\) −7.57091e6 −1.29525 −0.647625 0.761959i \(-0.724238\pi\)
−0.647625 + 0.761959i \(0.724238\pi\)
\(510\) 0 0
\(511\) −2.97176e6 −0.503456
\(512\) 0 0
\(513\) 1.63583e7 2.74438
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 2.39345e6 0.393820
\(518\) 0 0
\(519\) 1.31288e7 2.13948
\(520\) 0 0
\(521\) −4.67098e6 −0.753900 −0.376950 0.926234i \(-0.623027\pi\)
−0.376950 + 0.926234i \(0.623027\pi\)
\(522\) 0 0
\(523\) −3.45852e6 −0.552887 −0.276444 0.961030i \(-0.589156\pi\)
−0.276444 + 0.961030i \(0.589156\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.80691e6 0.283407
\(528\) 0 0
\(529\) −3.23302e6 −0.502306
\(530\) 0 0
\(531\) 1.75137e7 2.69551
\(532\) 0 0
\(533\) −803815. −0.122557
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 8.00938e6 1.19857
\(538\) 0 0
\(539\) −1.53665e6 −0.227826
\(540\) 0 0
\(541\) −9.09362e6 −1.33581 −0.667904 0.744248i \(-0.732808\pi\)
−0.667904 + 0.744248i \(0.732808\pi\)
\(542\) 0 0
\(543\) −1.36503e6 −0.198675
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −5.08979e6 −0.727331 −0.363665 0.931530i \(-0.618475\pi\)
−0.363665 + 0.931530i \(0.618475\pi\)
\(548\) 0 0
\(549\) 8.35777e6 1.18348
\(550\) 0 0
\(551\) 1.52047e7 2.13353
\(552\) 0 0
\(553\) −1.29110e6 −0.179535
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9.80352e6 −1.33889 −0.669443 0.742863i \(-0.733467\pi\)
−0.669443 + 0.742863i \(0.733467\pi\)
\(558\) 0 0
\(559\) 6.09970e6 0.825618
\(560\) 0 0
\(561\) 4.88794e6 0.655721
\(562\) 0 0
\(563\) 1.28530e7 1.70897 0.854484 0.519478i \(-0.173874\pi\)
0.854484 + 0.519478i \(0.173874\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.92865e6 0.251940
\(568\) 0 0
\(569\) 1.43558e6 0.185886 0.0929429 0.995671i \(-0.470373\pi\)
0.0929429 + 0.995671i \(0.470373\pi\)
\(570\) 0 0
\(571\) −4.63588e6 −0.595034 −0.297517 0.954716i \(-0.596159\pi\)
−0.297517 + 0.954716i \(0.596159\pi\)
\(572\) 0 0
\(573\) −2.34498e7 −2.98368
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −591099. −0.0739130 −0.0369565 0.999317i \(-0.511766\pi\)
−0.0369565 + 0.999317i \(0.511766\pi\)
\(578\) 0 0
\(579\) −1.19589e7 −1.48250
\(580\) 0 0
\(581\) 5.50955e6 0.677135
\(582\) 0 0
\(583\) 1.96913e6 0.239940
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2.87938e6 −0.344908 −0.172454 0.985018i \(-0.555170\pi\)
−0.172454 + 0.985018i \(0.555170\pi\)
\(588\) 0 0
\(589\) 3.64316e6 0.432703
\(590\) 0 0
\(591\) 1.11044e7 1.30776
\(592\) 0 0
\(593\) 1.87004e6 0.218381 0.109190 0.994021i \(-0.465174\pi\)
0.109190 + 0.994021i \(0.465174\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2.86184e7 3.28632
\(598\) 0 0
\(599\) −415288. −0.0472915 −0.0236457 0.999720i \(-0.507527\pi\)
−0.0236457 + 0.999720i \(0.507527\pi\)
\(600\) 0 0
\(601\) 1.31366e7 1.48353 0.741764 0.670661i \(-0.233990\pi\)
0.741764 + 0.670661i \(0.233990\pi\)
\(602\) 0 0
\(603\) −1.79380e7 −2.00900
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 18756.3 0.00206622 0.00103311 0.999999i \(-0.499671\pi\)
0.00103311 + 0.999999i \(0.499671\pi\)
\(608\) 0 0
\(609\) 8.21744e6 0.897828
\(610\) 0 0
\(611\) −1.04571e7 −1.13321
\(612\) 0 0
\(613\) −5.55708e6 −0.597304 −0.298652 0.954362i \(-0.596537\pi\)
−0.298652 + 0.954362i \(0.596537\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.68269e7 −1.77947 −0.889735 0.456478i \(-0.849111\pi\)
−0.889735 + 0.456478i \(0.849111\pi\)
\(618\) 0 0
\(619\) −6.25620e6 −0.656273 −0.328136 0.944630i \(-0.606421\pi\)
−0.328136 + 0.944630i \(0.606421\pi\)
\(620\) 0 0
\(621\) −9.42073e6 −0.980292
\(622\) 0 0
\(623\) 773381. 0.0798313
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 9.85526e6 1.00115
\(628\) 0 0
\(629\) −1.94723e7 −1.96241
\(630\) 0 0
\(631\) 1.28950e7 1.28928 0.644641 0.764486i \(-0.277007\pi\)
0.644641 + 0.764486i \(0.277007\pi\)
\(632\) 0 0
\(633\) −1.94333e7 −1.92769
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 6.71373e6 0.655565
\(638\) 0 0
\(639\) −2.89387e7 −2.80367
\(640\) 0 0
\(641\) −1.14483e7 −1.10051 −0.550257 0.834995i \(-0.685470\pi\)
−0.550257 + 0.834995i \(0.685470\pi\)
\(642\) 0 0
\(643\) −9.95257e6 −0.949309 −0.474655 0.880172i \(-0.657427\pi\)
−0.474655 + 0.880172i \(0.657427\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4.71410e6 0.442729 0.221365 0.975191i \(-0.428949\pi\)
0.221365 + 0.975191i \(0.428949\pi\)
\(648\) 0 0
\(649\) 4.77456e6 0.444961
\(650\) 0 0
\(651\) 1.96896e6 0.182089
\(652\) 0 0
\(653\) 1.66636e7 1.52928 0.764639 0.644459i \(-0.222917\pi\)
0.764639 + 0.644459i \(0.222917\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −2.05806e7 −1.86014
\(658\) 0 0
\(659\) 7.73348e6 0.693684 0.346842 0.937924i \(-0.387254\pi\)
0.346842 + 0.937924i \(0.387254\pi\)
\(660\) 0 0
\(661\) 8.58080e6 0.763878 0.381939 0.924188i \(-0.375256\pi\)
0.381939 + 0.924188i \(0.375256\pi\)
\(662\) 0 0
\(663\) −2.13557e7 −1.88682
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −8.75639e6 −0.762097
\(668\) 0 0
\(669\) −2.66675e7 −2.30366
\(670\) 0 0
\(671\) 2.27849e6 0.195362
\(672\) 0 0
\(673\) 1.06321e7 0.904859 0.452429 0.891800i \(-0.350557\pi\)
0.452429 + 0.891800i \(0.350557\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1.42422e7 −1.19427 −0.597137 0.802139i \(-0.703695\pi\)
−0.597137 + 0.802139i \(0.703695\pi\)
\(678\) 0 0
\(679\) 8.78658e6 0.731384
\(680\) 0 0
\(681\) −1.33818e6 −0.110572
\(682\) 0 0
\(683\) 1.10334e7 0.905020 0.452510 0.891759i \(-0.350529\pi\)
0.452510 + 0.891759i \(0.350529\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1.06253e7 0.858912
\(688\) 0 0
\(689\) −8.60324e6 −0.690421
\(690\) 0 0
\(691\) −3.50968e6 −0.279623 −0.139811 0.990178i \(-0.544650\pi\)
−0.139811 + 0.990178i \(0.544650\pi\)
\(692\) 0 0
\(693\) 3.44189e6 0.272248
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2.34366e6 0.182731
\(698\) 0 0
\(699\) −4.60904e6 −0.356794
\(700\) 0 0
\(701\) −2.06987e7 −1.59092 −0.795458 0.606009i \(-0.792770\pi\)
−0.795458 + 0.606009i \(0.792770\pi\)
\(702\) 0 0
\(703\) −3.92607e7 −2.99620
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.06839e6 −0.230867
\(708\) 0 0
\(709\) 1.39218e7 1.04011 0.520057 0.854132i \(-0.325911\pi\)
0.520057 + 0.854132i \(0.325911\pi\)
\(710\) 0 0
\(711\) −8.94142e6 −0.663335
\(712\) 0 0
\(713\) −2.09809e6 −0.154561
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 8.14006e6 0.591330
\(718\) 0 0
\(719\) −3.96939e6 −0.286353 −0.143176 0.989697i \(-0.545732\pi\)
−0.143176 + 0.989697i \(0.545732\pi\)
\(720\) 0 0
\(721\) 5.37227e6 0.384875
\(722\) 0 0
\(723\) −1.63802e6 −0.116540
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1.28442e7 0.901300 0.450650 0.892701i \(-0.351192\pi\)
0.450650 + 0.892701i \(0.351192\pi\)
\(728\) 0 0
\(729\) −2.01644e7 −1.40529
\(730\) 0 0
\(731\) −1.77847e7 −1.23099
\(732\) 0 0
\(733\) −1.51085e7 −1.03863 −0.519316 0.854582i \(-0.673813\pi\)
−0.519316 + 0.854582i \(0.673813\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.89023e6 −0.331635
\(738\) 0 0
\(739\) 2.27094e7 1.52966 0.764829 0.644234i \(-0.222824\pi\)
0.764829 + 0.644234i \(0.222824\pi\)
\(740\) 0 0
\(741\) −4.30583e7 −2.88079
\(742\) 0 0
\(743\) −1.54143e6 −0.102436 −0.0512179 0.998688i \(-0.516310\pi\)
−0.0512179 + 0.998688i \(0.516310\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 3.81559e7 2.50184
\(748\) 0 0
\(749\) 1.63793e6 0.106682
\(750\) 0 0
\(751\) −7.76182e6 −0.502185 −0.251093 0.967963i \(-0.580790\pi\)
−0.251093 + 0.967963i \(0.580790\pi\)
\(752\) 0 0
\(753\) 4.33929e7 2.78889
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 69075.5 0.00438111 0.00219055 0.999998i \(-0.499303\pi\)
0.00219055 + 0.999998i \(0.499303\pi\)
\(758\) 0 0
\(759\) −5.67564e6 −0.357610
\(760\) 0 0
\(761\) −9.54346e6 −0.597371 −0.298686 0.954352i \(-0.596548\pi\)
−0.298686 + 0.954352i \(0.596548\pi\)
\(762\) 0 0
\(763\) 3.50855e6 0.218180
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.08604e7 −1.28036
\(768\) 0 0
\(769\) −1.65278e7 −1.00786 −0.503929 0.863745i \(-0.668113\pi\)
−0.503929 + 0.863745i \(0.668113\pi\)
\(770\) 0 0
\(771\) −298225. −0.0180679
\(772\) 0 0
\(773\) −2.71610e7 −1.63492 −0.817460 0.575985i \(-0.804619\pi\)
−0.817460 + 0.575985i \(0.804619\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −2.12186e7 −1.26085
\(778\) 0 0
\(779\) 4.72537e6 0.278992
\(780\) 0 0
\(781\) −7.88925e6 −0.462816
\(782\) 0 0
\(783\) 2.57518e7 1.50108
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −2.98471e7 −1.71777 −0.858886 0.512167i \(-0.828843\pi\)
−0.858886 + 0.512167i \(0.828843\pi\)
\(788\) 0 0
\(789\) −3.74396e7 −2.14111
\(790\) 0 0
\(791\) 4.61844e6 0.262455
\(792\) 0 0
\(793\) −9.95487e6 −0.562150
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −9.31780e6 −0.519598 −0.259799 0.965663i \(-0.583656\pi\)
−0.259799 + 0.965663i \(0.583656\pi\)
\(798\) 0 0
\(799\) 3.04895e7 1.68960
\(800\) 0 0
\(801\) 5.35598e6 0.294956
\(802\) 0 0
\(803\) −5.61068e6 −0.307062
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −3.99156e7 −2.15754
\(808\) 0 0
\(809\) 3.50340e7 1.88200 0.940998 0.338411i \(-0.109889\pi\)
0.940998 + 0.338411i \(0.109889\pi\)
\(810\) 0 0
\(811\) −3.42814e7 −1.83023 −0.915117 0.403190i \(-0.867902\pi\)
−0.915117 + 0.403190i \(0.867902\pi\)
\(812\) 0 0
\(813\) −1.65107e7 −0.876069
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −3.58582e7 −1.87946
\(818\) 0 0
\(819\) −1.50379e7 −0.783387
\(820\) 0 0
\(821\) 2.38494e7 1.23487 0.617433 0.786623i \(-0.288173\pi\)
0.617433 + 0.786623i \(0.288173\pi\)
\(822\) 0 0
\(823\) −5.89850e6 −0.303558 −0.151779 0.988414i \(-0.548500\pi\)
−0.151779 + 0.988414i \(0.548500\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.39931e7 0.711460 0.355730 0.934589i \(-0.384232\pi\)
0.355730 + 0.934589i \(0.384232\pi\)
\(828\) 0 0
\(829\) −1.94439e7 −0.982644 −0.491322 0.870978i \(-0.663486\pi\)
−0.491322 + 0.870978i \(0.663486\pi\)
\(830\) 0 0
\(831\) 5.96646e7 2.99719
\(832\) 0 0
\(833\) −1.95750e7 −0.977440
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 6.17033e6 0.304435
\(838\) 0 0
\(839\) −1.46211e7 −0.717092 −0.358546 0.933512i \(-0.616727\pi\)
−0.358546 + 0.933512i \(0.616727\pi\)
\(840\) 0 0
\(841\) 3.42470e6 0.166968
\(842\) 0 0
\(843\) 1.30150e7 0.630777
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 938327. 0.0449413
\(848\) 0 0
\(849\) −3.93550e7 −1.87383
\(850\) 0 0
\(851\) 2.26102e7 1.07024
\(852\) 0 0
\(853\) −1.92349e7 −0.905144 −0.452572 0.891728i \(-0.649493\pi\)
−0.452572 + 0.891728i \(0.649493\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −3.91181e6 −0.181939 −0.0909694 0.995854i \(-0.528997\pi\)
−0.0909694 + 0.995854i \(0.528997\pi\)
\(858\) 0 0
\(859\) −1.32707e7 −0.613638 −0.306819 0.951768i \(-0.599265\pi\)
−0.306819 + 0.951768i \(0.599265\pi\)
\(860\) 0 0
\(861\) 2.55384e6 0.117405
\(862\) 0 0
\(863\) 2.05251e7 0.938121 0.469061 0.883166i \(-0.344593\pi\)
0.469061 + 0.883166i \(0.344593\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 2.50551e7 1.13201
\(868\) 0 0
\(869\) −2.43760e6 −0.109500
\(870\) 0 0
\(871\) 2.13657e7 0.954273
\(872\) 0 0
\(873\) 6.08507e7 2.70228
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.33070e7 1.02326 0.511632 0.859205i \(-0.329041\pi\)
0.511632 + 0.859205i \(0.329041\pi\)
\(878\) 0 0
\(879\) −3.73704e7 −1.63138
\(880\) 0 0
\(881\) −9.31106e6 −0.404165 −0.202083 0.979368i \(-0.564771\pi\)
−0.202083 + 0.979368i \(0.564771\pi\)
\(882\) 0 0
\(883\) −3.85172e7 −1.66247 −0.831233 0.555925i \(-0.812364\pi\)
−0.831233 + 0.555925i \(0.812364\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −2.82081e7 −1.20383 −0.601915 0.798560i \(-0.705595\pi\)
−0.601915 + 0.798560i \(0.705595\pi\)
\(888\) 0 0
\(889\) −7.25442e6 −0.307856
\(890\) 0 0
\(891\) 3.64130e6 0.153660
\(892\) 0 0
\(893\) 6.14742e7 2.57967
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 2.47972e7 1.02902
\(898\) 0 0
\(899\) 5.73520e6 0.236673
\(900\) 0 0
\(901\) 2.50842e7 1.02941
\(902\) 0 0
\(903\) −1.93797e7 −0.790911
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.41463e7 0.570985 0.285492 0.958381i \(-0.407843\pi\)
0.285492 + 0.958381i \(0.407843\pi\)
\(908\) 0 0
\(909\) −2.12499e7 −0.852995
\(910\) 0 0
\(911\) −3.41700e7 −1.36411 −0.682055 0.731301i \(-0.738913\pi\)
−0.682055 + 0.731301i \(0.738913\pi\)
\(912\) 0 0
\(913\) 1.04020e7 0.412991
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 9.11062e6 0.357787
\(918\) 0 0
\(919\) −9.77047e6 −0.381616 −0.190808 0.981627i \(-0.561111\pi\)
−0.190808 + 0.981627i \(0.561111\pi\)
\(920\) 0 0
\(921\) −4.88966e7 −1.89946
\(922\) 0 0
\(923\) 3.44687e7 1.33174
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 3.72052e7 1.42202
\(928\) 0 0
\(929\) −3.67368e7 −1.39657 −0.698285 0.715820i \(-0.746053\pi\)
−0.698285 + 0.715820i \(0.746053\pi\)
\(930\) 0 0
\(931\) −3.94679e7 −1.49235
\(932\) 0 0
\(933\) 1.60496e6 0.0603616
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −3.55132e7 −1.32142 −0.660711 0.750641i \(-0.729745\pi\)
−0.660711 + 0.750641i \(0.729745\pi\)
\(938\) 0 0
\(939\) −3.98377e6 −0.147445
\(940\) 0 0
\(941\) 8.61941e6 0.317325 0.158662 0.987333i \(-0.449282\pi\)
0.158662 + 0.987333i \(0.449282\pi\)
\(942\) 0 0
\(943\) −2.72134e6 −0.0996560
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −5.88715e6 −0.213319 −0.106660 0.994296i \(-0.534016\pi\)
−0.106660 + 0.994296i \(0.534016\pi\)
\(948\) 0 0
\(949\) 2.45134e7 0.883565
\(950\) 0 0
\(951\) 3.18979e7 1.14370
\(952\) 0 0
\(953\) −8.65335e6 −0.308640 −0.154320 0.988021i \(-0.549319\pi\)
−0.154320 + 0.988021i \(0.549319\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1.55145e7 0.547594
\(958\) 0 0
\(959\) 1.32634e7 0.465704
\(960\) 0 0
\(961\) −2.72550e7 −0.952000
\(962\) 0 0
\(963\) 1.13434e7 0.394163
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −3.86242e7 −1.32829 −0.664146 0.747603i \(-0.731205\pi\)
−0.664146 + 0.747603i \(0.731205\pi\)
\(968\) 0 0
\(969\) 1.25544e8 4.29522
\(970\) 0 0
\(971\) −1.98124e7 −0.674357 −0.337179 0.941441i \(-0.609473\pi\)
−0.337179 + 0.941441i \(0.609473\pi\)
\(972\) 0 0
\(973\) 2.77486e7 0.939636
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −4.08355e7 −1.36868 −0.684340 0.729163i \(-0.739910\pi\)
−0.684340 + 0.729163i \(0.739910\pi\)
\(978\) 0 0
\(979\) 1.46014e6 0.0486899
\(980\) 0 0
\(981\) 2.42981e7 0.806121
\(982\) 0 0
\(983\) −1.60569e7 −0.530003 −0.265002 0.964248i \(-0.585372\pi\)
−0.265002 + 0.964248i \(0.585372\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 3.32239e7 1.08557
\(988\) 0 0
\(989\) 2.06507e7 0.671343
\(990\) 0 0
\(991\) 3.67047e6 0.118724 0.0593619 0.998237i \(-0.481093\pi\)
0.0593619 + 0.998237i \(0.481093\pi\)
\(992\) 0 0
\(993\) −7.61075e7 −2.44937
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1.14427e7 −0.364579 −0.182289 0.983245i \(-0.558351\pi\)
−0.182289 + 0.983245i \(0.558351\pi\)
\(998\) 0 0
\(999\) −6.64949e7 −2.10802
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.6.a.m.1.14 14
5.2 odd 4 220.6.b.b.89.1 14
5.3 odd 4 220.6.b.b.89.14 yes 14
5.4 even 2 inner 1100.6.a.m.1.1 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.6.b.b.89.1 14 5.2 odd 4
220.6.b.b.89.14 yes 14 5.3 odd 4
1100.6.a.m.1.1 14 5.4 even 2 inner
1100.6.a.m.1.14 14 1.1 even 1 trivial