Properties

Label 2-2205-105.104-c1-0-13
Degree $2$
Conductor $2205$
Sign $0.778 - 0.627i$
Analytic cond. $17.6070$
Root an. cond. $4.19607$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + (−1.22 − 1.87i)5-s + 2.82i·11-s − 2.64·13-s + 4·16-s − 3.74i·17-s − 1.73i·19-s + (2.44 + 3.74i)20-s − 6.48·23-s + (−2 + 4.58i)25-s − 1.41i·29-s + 5.19i·31-s − 4.58i·37-s − 4.89·41-s + 4.58i·43-s − 5.65i·44-s + ⋯
L(s)  = 1  − 4-s + (−0.547 − 0.836i)5-s + 0.852i·11-s − 0.733·13-s + 16-s − 0.907i·17-s − 0.397i·19-s + (0.547 + 0.836i)20-s − 1.35·23-s + (−0.400 + 0.916i)25-s − 0.262i·29-s + 0.933i·31-s − 0.753i·37-s − 0.765·41-s + 0.698i·43-s − 0.852i·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.778 - 0.627i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.778 - 0.627i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2205\)    =    \(3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $0.778 - 0.627i$
Analytic conductor: \(17.6070\)
Root analytic conductor: \(4.19607\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2205} (2204, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2205,\ (\ :1/2),\ 0.778 - 0.627i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7403206191\)
\(L(\frac12)\) \(\approx\) \(0.7403206191\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (1.22 + 1.87i)T \)
7 \( 1 \)
good2 \( 1 + 2T^{2} \)
11 \( 1 - 2.82iT - 11T^{2} \)
13 \( 1 + 2.64T + 13T^{2} \)
17 \( 1 + 3.74iT - 17T^{2} \)
19 \( 1 + 1.73iT - 19T^{2} \)
23 \( 1 + 6.48T + 23T^{2} \)
29 \( 1 + 1.41iT - 29T^{2} \)
31 \( 1 - 5.19iT - 31T^{2} \)
37 \( 1 + 4.58iT - 37T^{2} \)
41 \( 1 + 4.89T + 41T^{2} \)
43 \( 1 - 4.58iT - 43T^{2} \)
47 \( 1 + 3.74iT - 47T^{2} \)
53 \( 1 - 12.9T + 53T^{2} \)
59 \( 1 - 7.34T + 59T^{2} \)
61 \( 1 - 10.3iT - 61T^{2} \)
67 \( 1 - 13.7iT - 67T^{2} \)
71 \( 1 - 11.3iT - 71T^{2} \)
73 \( 1 - 13.2T + 73T^{2} \)
79 \( 1 + 7T + 79T^{2} \)
83 \( 1 + 14.9iT - 83T^{2} \)
89 \( 1 - 17.1T + 89T^{2} \)
97 \( 1 - 5.29T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.995946285607267569100717829848, −8.548290535317472372502623715021, −7.61109778733432513980268397535, −7.08801206060990005844198985175, −5.69424286175485911696375241200, −4.97634694932991712156714771059, −4.41812276491340787976833260605, −3.62900935208162070896752702934, −2.24437842663558290085620939973, −0.789437229114683138914058130077, 0.39065222634074966040549745312, 2.13406204490290941269736720746, 3.45120510392043376074512255178, 3.88282230706623575903426916975, 4.90483517559472065484378831525, 5.86609598564883516391839411307, 6.53360609845356786018305585582, 7.71718212256269731989948493129, 8.097305382188431666070905504289, 8.867645481041444250164427430809

Graph of the $Z$-function along the critical line