Properties

Label 2205.2.g.a
Level $2205$
Weight $2$
Character orbit 2205.g
Analytic conductor $17.607$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2205,2,Mod(2204,2205)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2205, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2205.2204");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2205.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.6070136457\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.12745506816.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 8x^{6} + 55x^{4} - 72x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 315)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{4} - \beta_{4} q^{5} + 2 \beta_{5} q^{11} - \beta_1 q^{13} + 4 q^{16} + ( - \beta_{6} - \beta_{4}) q^{17} + \beta_{3} q^{19} + 2 \beta_{4} q^{20} + (\beta_{5} + 2 \beta_{2}) q^{23} + ( - \beta_{7} - 2) q^{25}+ \cdots + 2 \beta_1 q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{4} + 32 q^{16} - 16 q^{25} - 64 q^{64} - 56 q^{79} - 56 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 8x^{6} + 55x^{4} - 72x^{2} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{6} - 148 ) / 55 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{7} + 11\nu^{5} - 88\nu^{3} + 336\nu ) / 99 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 16\nu^{6} - 110\nu^{4} + 880\nu^{2} - 657 ) / 495 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{7} - 5\nu^{5} + 40\nu^{3} + 48\nu ) / 45 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -8\nu^{7} + 55\nu^{5} - 341\nu^{3} + 81\nu ) / 297 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{7} - 8\nu^{5} + 55\nu^{3} - 45\nu ) / 27 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -\nu^{6} + 8\nu^{4} - 46\nu^{2} + 36 ) / 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{6} + \beta_{5} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{7} + 4\beta_{3} + \beta _1 + 4 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 5\beta_{6} + 11\beta_{5} + 5\beta_{4} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 8\beta_{7} + 23\beta_{3} - 8\beta _1 - 23 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -24\beta_{6} + 24\beta_{5} + 55\beta_{4} - 31\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -55\beta _1 - 148 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -368\beta_{6} - 368\beta_{5} + 165\beta_{4} - 203\beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2205\mathbb{Z}\right)^\times\).

\(n\) \(442\) \(1081\) \(1226\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2204.1
1.00781 + 0.581861i
−2.23256 + 1.28897i
−2.23256 1.28897i
1.00781 0.581861i
−1.00781 + 0.581861i
2.23256 + 1.28897i
2.23256 1.28897i
−1.00781 0.581861i
0 0 −2.00000 −1.22474 1.87083i 0 0 0 0 0
2204.2 0 0 −2.00000 −1.22474 1.87083i 0 0 0 0 0
2204.3 0 0 −2.00000 −1.22474 + 1.87083i 0 0 0 0 0
2204.4 0 0 −2.00000 −1.22474 + 1.87083i 0 0 0 0 0
2204.5 0 0 −2.00000 1.22474 1.87083i 0 0 0 0 0
2204.6 0 0 −2.00000 1.22474 1.87083i 0 0 0 0 0
2204.7 0 0 −2.00000 1.22474 + 1.87083i 0 0 0 0 0
2204.8 0 0 −2.00000 1.22474 + 1.87083i 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2204.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
7.b odd 2 1 inner
15.d odd 2 1 inner
21.c even 2 1 inner
35.c odd 2 1 inner
105.g even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2205.2.g.a 8
3.b odd 2 1 inner 2205.2.g.a 8
5.b even 2 1 inner 2205.2.g.a 8
7.b odd 2 1 inner 2205.2.g.a 8
7.c even 3 1 315.2.bb.a 8
7.d odd 6 1 315.2.bb.a 8
15.d odd 2 1 inner 2205.2.g.a 8
21.c even 2 1 inner 2205.2.g.a 8
21.g even 6 1 315.2.bb.a 8
21.h odd 6 1 315.2.bb.a 8
35.c odd 2 1 inner 2205.2.g.a 8
35.i odd 6 1 315.2.bb.a 8
35.j even 6 1 315.2.bb.a 8
35.k even 12 2 1575.2.bk.d 8
35.l odd 12 2 1575.2.bk.d 8
105.g even 2 1 inner 2205.2.g.a 8
105.o odd 6 1 315.2.bb.a 8
105.p even 6 1 315.2.bb.a 8
105.w odd 12 2 1575.2.bk.d 8
105.x even 12 2 1575.2.bk.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
315.2.bb.a 8 7.c even 3 1
315.2.bb.a 8 7.d odd 6 1
315.2.bb.a 8 21.g even 6 1
315.2.bb.a 8 21.h odd 6 1
315.2.bb.a 8 35.i odd 6 1
315.2.bb.a 8 35.j even 6 1
315.2.bb.a 8 105.o odd 6 1
315.2.bb.a 8 105.p even 6 1
1575.2.bk.d 8 35.k even 12 2
1575.2.bk.d 8 35.l odd 12 2
1575.2.bk.d 8 105.w odd 12 2
1575.2.bk.d 8 105.x even 12 2
2205.2.g.a 8 1.a even 1 1 trivial
2205.2.g.a 8 3.b odd 2 1 inner
2205.2.g.a 8 5.b even 2 1 inner
2205.2.g.a 8 7.b odd 2 1 inner
2205.2.g.a 8 15.d odd 2 1 inner
2205.2.g.a 8 21.c even 2 1 inner
2205.2.g.a 8 35.c odd 2 1 inner
2205.2.g.a 8 105.g even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{2}^{\mathrm{new}}(2205, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} + 4 T^{2} + 25)^{2} \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( (T^{2} + 8)^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} - 7)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 14)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 3)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 42)^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} + 2)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + 27)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 21)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} - 24)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 21)^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} + 14)^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} - 168)^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} - 54)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 108)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 189)^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} + 128)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} - 175)^{4} \) Copy content Toggle raw display
$79$ \( (T + 7)^{8} \) Copy content Toggle raw display
$83$ \( (T^{2} + 224)^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} - 294)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} - 28)^{4} \) Copy content Toggle raw display
show more
show less