Properties

Label 2-2205-105.104-c1-0-68
Degree $2$
Conductor $2205$
Sign $-0.731 + 0.681i$
Analytic cond. $17.6070$
Root an. cond. $4.19607$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + (1.22 − 1.87i)5-s − 2.82i·11-s + 2.64·13-s + 4·16-s − 3.74i·17-s − 1.73i·19-s + (−2.44 + 3.74i)20-s − 6.48·23-s + (−2 − 4.58i)25-s + 1.41i·29-s + 5.19i·31-s + 4.58i·37-s + 4.89·41-s − 4.58i·43-s + 5.65i·44-s + ⋯
L(s)  = 1  − 4-s + (0.547 − 0.836i)5-s − 0.852i·11-s + 0.733·13-s + 16-s − 0.907i·17-s − 0.397i·19-s + (−0.547 + 0.836i)20-s − 1.35·23-s + (−0.400 − 0.916i)25-s + 0.262i·29-s + 0.933i·31-s + 0.753i·37-s + 0.765·41-s − 0.698i·43-s + 0.852i·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.731 + 0.681i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.731 + 0.681i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2205\)    =    \(3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $-0.731 + 0.681i$
Analytic conductor: \(17.6070\)
Root analytic conductor: \(4.19607\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2205} (2204, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2205,\ (\ :1/2),\ -0.731 + 0.681i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.050163750\)
\(L(\frac12)\) \(\approx\) \(1.050163750\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (-1.22 + 1.87i)T \)
7 \( 1 \)
good2 \( 1 + 2T^{2} \)
11 \( 1 + 2.82iT - 11T^{2} \)
13 \( 1 - 2.64T + 13T^{2} \)
17 \( 1 + 3.74iT - 17T^{2} \)
19 \( 1 + 1.73iT - 19T^{2} \)
23 \( 1 + 6.48T + 23T^{2} \)
29 \( 1 - 1.41iT - 29T^{2} \)
31 \( 1 - 5.19iT - 31T^{2} \)
37 \( 1 - 4.58iT - 37T^{2} \)
41 \( 1 - 4.89T + 41T^{2} \)
43 \( 1 + 4.58iT - 43T^{2} \)
47 \( 1 + 3.74iT - 47T^{2} \)
53 \( 1 - 12.9T + 53T^{2} \)
59 \( 1 + 7.34T + 59T^{2} \)
61 \( 1 - 10.3iT - 61T^{2} \)
67 \( 1 + 13.7iT - 67T^{2} \)
71 \( 1 + 11.3iT - 71T^{2} \)
73 \( 1 + 13.2T + 73T^{2} \)
79 \( 1 + 7T + 79T^{2} \)
83 \( 1 + 14.9iT - 83T^{2} \)
89 \( 1 + 17.1T + 89T^{2} \)
97 \( 1 + 5.29T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.679252085611135369472149075698, −8.395387502243485756879006123810, −7.31767435292985437414169052554, −6.10026866652383353921188589585, −5.57981743893404732053745586574, −4.75514170954860371602700545995, −3.99377861310697333037189301413, −2.96128670198283719003690460339, −1.47901301333700946686694006045, −0.39827420464113891480754984352, 1.48028027423828420064776310880, 2.57448179599202634735217712692, 3.88077070114952506038219789246, 4.24069355147805438821952829173, 5.67773903105972549869237684019, 5.95142813486148328786760097237, 7.04307298160157711611613849884, 7.905754421042482199964340024925, 8.542513959589201303388899811108, 9.575460360539384107945054359125

Graph of the $Z$-function along the critical line