L(s) = 1 | + (1.20 − 2.09i)3-s + (−1.91 − 3.31i)5-s + (1 + 2.44i)7-s + (−1.41 − 2.44i)9-s + (0.207 − 0.358i)11-s − 2.82·13-s − 9.24·15-s + (2.91 − 5.04i)17-s + (1.79 + 3.10i)19-s + (6.32 + 0.866i)21-s + (1.62 + 2.80i)23-s + (−4.82 + 8.36i)25-s + 0.414·27-s + 2.82·29-s + (4.20 − 7.28i)31-s + ⋯ |
L(s) = 1 | + (0.696 − 1.20i)3-s + (−0.856 − 1.48i)5-s + (0.377 + 0.925i)7-s + (−0.471 − 0.816i)9-s + (0.0624 − 0.108i)11-s − 0.784·13-s − 2.38·15-s + (0.706 − 1.22i)17-s + (0.411 + 0.712i)19-s + (1.38 + 0.188i)21-s + (0.338 + 0.585i)23-s + (−0.965 + 1.67i)25-s + 0.0797·27-s + 0.525·29-s + (0.755 − 1.30i)31-s + ⋯ |
Λ(s)=(=(224s/2ΓC(s)L(s)(−0.198+0.980i)Λ(2−s)
Λ(s)=(=(224s/2ΓC(s+1/2)L(s)(−0.198+0.980i)Λ(1−s)
Degree: |
2 |
Conductor: |
224
= 25⋅7
|
Sign: |
−0.198+0.980i
|
Analytic conductor: |
1.78864 |
Root analytic conductor: |
1.33740 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ224(193,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 224, ( :1/2), −0.198+0.980i)
|
Particular Values
L(1) |
≈ |
0.844766−1.03253i |
L(21) |
≈ |
0.844766−1.03253i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(−1−2.44i)T |
good | 3 | 1+(−1.20+2.09i)T+(−1.5−2.59i)T2 |
| 5 | 1+(1.91+3.31i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−0.207+0.358i)T+(−5.5−9.52i)T2 |
| 13 | 1+2.82T+13T2 |
| 17 | 1+(−2.91+5.04i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.79−3.10i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−1.62−2.80i)T+(−11.5+19.9i)T2 |
| 29 | 1−2.82T+29T2 |
| 31 | 1+(−4.20+7.28i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−1.32−2.30i)T+(−18.5+32.0i)T2 |
| 41 | 1+1.17T+41T2 |
| 43 | 1−1.65T+43T2 |
| 47 | 1+(−3.79−6.56i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−0.5+0.866i)T+(−26.5−45.8i)T2 |
| 59 | 1+(4.44−7.70i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−1.32−2.30i)T+(−30.5+52.8i)T2 |
| 67 | 1+(5.62−9.73i)T+(−33.5−58.0i)T2 |
| 71 | 1+2.34T+71T2 |
| 73 | 1+(−1.67+2.89i)T+(−36.5−63.2i)T2 |
| 79 | 1+(4.03+6.98i)T+(−39.5+68.4i)T2 |
| 83 | 1+15.3T+83T2 |
| 89 | 1+(−4.5−7.79i)T+(−44.5+77.0i)T2 |
| 97 | 1+6.82T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.98389527962239673048910508638, −11.76013992815798216651585201982, −9.617757617717251643877824008287, −8.774810531444504115688774683425, −7.942184246966596231017470418944, −7.41484753012266688206776437691, −5.67397719754822427760497833740, −4.59673674289179745639317948363, −2.77961921529794564951490862901, −1.18799524278326479230258955465,
2.91798100499612039371382808529, 3.78261020861227705606017715149, 4.73721283945033151759484524394, 6.70459373576304116152620958514, 7.57814932740326661071945422621, 8.550211721877067638018216529020, 9.991091123629378655314275699201, 10.44580801002007241902780874961, 11.18897976348401153406923243078, 12.36276636613793200641842647485