Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [224,2,Mod(65,224)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(224, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("224.65");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 224.i (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
65.1 |
|
0 | −0.207107 | − | 0.358719i | 0 | 0.914214 | − | 1.58346i | 0 | 1.00000 | + | 2.44949i | 0 | 1.41421 | − | 2.44949i | 0 | ||||||||||||||||||||||
65.2 | 0 | 1.20711 | + | 2.09077i | 0 | −1.91421 | + | 3.31552i | 0 | 1.00000 | − | 2.44949i | 0 | −1.41421 | + | 2.44949i | 0 | |||||||||||||||||||||||
193.1 | 0 | −0.207107 | + | 0.358719i | 0 | 0.914214 | + | 1.58346i | 0 | 1.00000 | − | 2.44949i | 0 | 1.41421 | + | 2.44949i | 0 | |||||||||||||||||||||||
193.2 | 0 | 1.20711 | − | 2.09077i | 0 | −1.91421 | − | 3.31552i | 0 | 1.00000 | + | 2.44949i | 0 | −1.41421 | − | 2.44949i | 0 | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 224.2.i.d | yes | 4 |
3.b | odd | 2 | 1 | 2016.2.s.s | 4 | ||
4.b | odd | 2 | 1 | 224.2.i.a | ✓ | 4 | |
7.b | odd | 2 | 1 | 1568.2.i.o | 4 | ||
7.c | even | 3 | 1 | inner | 224.2.i.d | yes | 4 |
7.c | even | 3 | 1 | 1568.2.a.l | 2 | ||
7.d | odd | 6 | 1 | 1568.2.a.u | 2 | ||
7.d | odd | 6 | 1 | 1568.2.i.o | 4 | ||
8.b | even | 2 | 1 | 448.2.i.g | 4 | ||
8.d | odd | 2 | 1 | 448.2.i.j | 4 | ||
12.b | even | 2 | 1 | 2016.2.s.q | 4 | ||
21.h | odd | 6 | 1 | 2016.2.s.s | 4 | ||
28.d | even | 2 | 1 | 1568.2.i.x | 4 | ||
28.f | even | 6 | 1 | 1568.2.a.j | 2 | ||
28.f | even | 6 | 1 | 1568.2.i.x | 4 | ||
28.g | odd | 6 | 1 | 224.2.i.a | ✓ | 4 | |
28.g | odd | 6 | 1 | 1568.2.a.w | 2 | ||
56.j | odd | 6 | 1 | 3136.2.a.be | 2 | ||
56.k | odd | 6 | 1 | 448.2.i.j | 4 | ||
56.k | odd | 6 | 1 | 3136.2.a.bd | 2 | ||
56.m | even | 6 | 1 | 3136.2.a.bx | 2 | ||
56.p | even | 6 | 1 | 448.2.i.g | 4 | ||
56.p | even | 6 | 1 | 3136.2.a.bw | 2 | ||
84.n | even | 6 | 1 | 2016.2.s.q | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
224.2.i.a | ✓ | 4 | 4.b | odd | 2 | 1 | |
224.2.i.a | ✓ | 4 | 28.g | odd | 6 | 1 | |
224.2.i.d | yes | 4 | 1.a | even | 1 | 1 | trivial |
224.2.i.d | yes | 4 | 7.c | even | 3 | 1 | inner |
448.2.i.g | 4 | 8.b | even | 2 | 1 | ||
448.2.i.g | 4 | 56.p | even | 6 | 1 | ||
448.2.i.j | 4 | 8.d | odd | 2 | 1 | ||
448.2.i.j | 4 | 56.k | odd | 6 | 1 | ||
1568.2.a.j | 2 | 28.f | even | 6 | 1 | ||
1568.2.a.l | 2 | 7.c | even | 3 | 1 | ||
1568.2.a.u | 2 | 7.d | odd | 6 | 1 | ||
1568.2.a.w | 2 | 28.g | odd | 6 | 1 | ||
1568.2.i.o | 4 | 7.b | odd | 2 | 1 | ||
1568.2.i.o | 4 | 7.d | odd | 6 | 1 | ||
1568.2.i.x | 4 | 28.d | even | 2 | 1 | ||
1568.2.i.x | 4 | 28.f | even | 6 | 1 | ||
2016.2.s.q | 4 | 12.b | even | 2 | 1 | ||
2016.2.s.q | 4 | 84.n | even | 6 | 1 | ||
2016.2.s.s | 4 | 3.b | odd | 2 | 1 | ||
2016.2.s.s | 4 | 21.h | odd | 6 | 1 | ||
3136.2.a.bd | 2 | 56.k | odd | 6 | 1 | ||
3136.2.a.be | 2 | 56.j | odd | 6 | 1 | ||
3136.2.a.bw | 2 | 56.p | even | 6 | 1 | ||
3136.2.a.bx | 2 | 56.m | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .