Properties

Label 224.2.i.d
Level 224224
Weight 22
Character orbit 224.i
Analytic conductor 1.7891.789
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [224,2,Mod(65,224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(224, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("224.65");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 224=257 224 = 2^{5} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 224.i (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.788649005281.78864900528
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(2,3)\Q(\sqrt{2}, \sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+2x2+4 x^{4} + 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β2+β1+1)q3+(2β3+β2+2β1)q5+(β32β1+1)q7+(2β3+2β1)q9+(β2+β11)q11+2β3q13++(2β34)q99+O(q100) q + (\beta_{2} + \beta_1 + 1) q^{3} + (2 \beta_{3} + \beta_{2} + 2 \beta_1) q^{5} + ( - \beta_{3} - 2 \beta_1 + 1) q^{7} + (2 \beta_{3} + 2 \beta_1) q^{9} + ( - \beta_{2} + \beta_1 - 1) q^{11} + 2 \beta_{3} q^{13}+ \cdots + ( - 2 \beta_{3} - 4) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q32q5+4q72q1120q15+6q17+10q19+14q212q238q254q27+14q312q33+22q356q378q3916q4116q43+16q99+O(q100) 4 q + 2 q^{3} - 2 q^{5} + 4 q^{7} - 2 q^{11} - 20 q^{15} + 6 q^{17} + 10 q^{19} + 14 q^{21} - 2 q^{23} - 8 q^{25} - 4 q^{27} + 14 q^{31} - 2 q^{33} + 22 q^{35} - 6 q^{37} - 8 q^{39} - 16 q^{41} - 16 q^{43}+ \cdots - 16 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+2x2+4 x^{4} + 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/2 ( \nu^{2} ) / 2 Copy content Toggle raw display
β3\beta_{3}== (ν3)/2 ( \nu^{3} ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 2β2 2\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 2β3 2\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/224Z)×\left(\mathbb{Z}/224\mathbb{Z}\right)^\times.

nn 127127 129129 197197
χ(n)\chi(n) 11 β2\beta_{2} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
65.1
−0.707107 1.22474i
0.707107 + 1.22474i
−0.707107 + 1.22474i
0.707107 1.22474i
0 −0.207107 0.358719i 0 0.914214 1.58346i 0 1.00000 + 2.44949i 0 1.41421 2.44949i 0
65.2 0 1.20711 + 2.09077i 0 −1.91421 + 3.31552i 0 1.00000 2.44949i 0 −1.41421 + 2.44949i 0
193.1 0 −0.207107 + 0.358719i 0 0.914214 + 1.58346i 0 1.00000 2.44949i 0 1.41421 + 2.44949i 0
193.2 0 1.20711 2.09077i 0 −1.91421 3.31552i 0 1.00000 + 2.44949i 0 −1.41421 2.44949i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 224.2.i.d yes 4
3.b odd 2 1 2016.2.s.s 4
4.b odd 2 1 224.2.i.a 4
7.b odd 2 1 1568.2.i.o 4
7.c even 3 1 inner 224.2.i.d yes 4
7.c even 3 1 1568.2.a.l 2
7.d odd 6 1 1568.2.a.u 2
7.d odd 6 1 1568.2.i.o 4
8.b even 2 1 448.2.i.g 4
8.d odd 2 1 448.2.i.j 4
12.b even 2 1 2016.2.s.q 4
21.h odd 6 1 2016.2.s.s 4
28.d even 2 1 1568.2.i.x 4
28.f even 6 1 1568.2.a.j 2
28.f even 6 1 1568.2.i.x 4
28.g odd 6 1 224.2.i.a 4
28.g odd 6 1 1568.2.a.w 2
56.j odd 6 1 3136.2.a.be 2
56.k odd 6 1 448.2.i.j 4
56.k odd 6 1 3136.2.a.bd 2
56.m even 6 1 3136.2.a.bx 2
56.p even 6 1 448.2.i.g 4
56.p even 6 1 3136.2.a.bw 2
84.n even 6 1 2016.2.s.q 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
224.2.i.a 4 4.b odd 2 1
224.2.i.a 4 28.g odd 6 1
224.2.i.d yes 4 1.a even 1 1 trivial
224.2.i.d yes 4 7.c even 3 1 inner
448.2.i.g 4 8.b even 2 1
448.2.i.g 4 56.p even 6 1
448.2.i.j 4 8.d odd 2 1
448.2.i.j 4 56.k odd 6 1
1568.2.a.j 2 28.f even 6 1
1568.2.a.l 2 7.c even 3 1
1568.2.a.u 2 7.d odd 6 1
1568.2.a.w 2 28.g odd 6 1
1568.2.i.o 4 7.b odd 2 1
1568.2.i.o 4 7.d odd 6 1
1568.2.i.x 4 28.d even 2 1
1568.2.i.x 4 28.f even 6 1
2016.2.s.q 4 12.b even 2 1
2016.2.s.q 4 84.n even 6 1
2016.2.s.s 4 3.b odd 2 1
2016.2.s.s 4 21.h odd 6 1
3136.2.a.bd 2 56.k odd 6 1
3136.2.a.be 2 56.j odd 6 1
3136.2.a.bw 2 56.p even 6 1
3136.2.a.bx 2 56.m even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T342T33+5T32+2T3+1 T_{3}^{4} - 2T_{3}^{3} + 5T_{3}^{2} + 2T_{3} + 1 acting on S2new(224,[χ])S_{2}^{\mathrm{new}}(224, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T42T3++1 T^{4} - 2 T^{3} + \cdots + 1 Copy content Toggle raw display
55 T4+2T3++49 T^{4} + 2 T^{3} + \cdots + 49 Copy content Toggle raw display
77 (T22T+7)2 (T^{2} - 2 T + 7)^{2} Copy content Toggle raw display
1111 T4+2T3++1 T^{4} + 2 T^{3} + \cdots + 1 Copy content Toggle raw display
1313 (T28)2 (T^{2} - 8)^{2} Copy content Toggle raw display
1717 T46T3++1 T^{4} - 6 T^{3} + \cdots + 1 Copy content Toggle raw display
1919 T410T3++529 T^{4} - 10 T^{3} + \cdots + 529 Copy content Toggle raw display
2323 T4+2T3++289 T^{4} + 2 T^{3} + \cdots + 289 Copy content Toggle raw display
2929 (T28)2 (T^{2} - 8)^{2} Copy content Toggle raw display
3131 T414T3++2209 T^{4} - 14 T^{3} + \cdots + 2209 Copy content Toggle raw display
3737 T4+6T3++529 T^{4} + 6 T^{3} + \cdots + 529 Copy content Toggle raw display
4141 (T2+8T+8)2 (T^{2} + 8 T + 8)^{2} Copy content Toggle raw display
4343 (T2+8T16)2 (T^{2} + 8 T - 16)^{2} Copy content Toggle raw display
4747 T418T3++6241 T^{4} - 18 T^{3} + \cdots + 6241 Copy content Toggle raw display
5353 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
5959 T42T3++9409 T^{4} - 2 T^{3} + \cdots + 9409 Copy content Toggle raw display
6161 T4+6T3++529 T^{4} + 6 T^{3} + \cdots + 529 Copy content Toggle raw display
6767 T4+14T3++961 T^{4} + 14 T^{3} + \cdots + 961 Copy content Toggle raw display
7171 (T2+16T+32)2 (T^{2} + 16 T + 32)^{2} Copy content Toggle raw display
7373 T418T3++2401 T^{4} - 18 T^{3} + \cdots + 2401 Copy content Toggle raw display
7979 T4+2T3++2401 T^{4} + 2 T^{3} + \cdots + 2401 Copy content Toggle raw display
8383 (T2+8T112)2 (T^{2} + 8 T - 112)^{2} Copy content Toggle raw display
8989 (T29T+81)2 (T^{2} - 9 T + 81)^{2} Copy content Toggle raw display
9797 (T2+8T+8)2 (T^{2} + 8 T + 8)^{2} Copy content Toggle raw display
show more
show less