Properties

Label 2-224-7.2-c1-0-3
Degree 22
Conductor 224224
Sign 0.827+0.561i0.827 + 0.561i
Analytic cond. 1.788641.78864
Root an. cond. 1.337401.33740
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.207 − 0.358i)3-s + (0.914 − 1.58i)5-s + (1 + 2.44i)7-s + (1.41 − 2.44i)9-s + (−1.20 − 2.09i)11-s + 2.82·13-s − 0.757·15-s + (0.0857 + 0.148i)17-s + (3.20 − 5.55i)19-s + (0.671 − 0.866i)21-s + (−2.62 + 4.54i)23-s + (0.828 + 1.43i)25-s − 2.41·27-s − 2.82·29-s + (2.79 + 4.83i)31-s + ⋯
L(s)  = 1  + (−0.119 − 0.207i)3-s + (0.408 − 0.708i)5-s + (0.377 + 0.925i)7-s + (0.471 − 0.816i)9-s + (−0.363 − 0.630i)11-s + 0.784·13-s − 0.195·15-s + (0.0208 + 0.0360i)17-s + (0.735 − 1.27i)19-s + (0.146 − 0.188i)21-s + (−0.546 + 0.946i)23-s + (0.165 + 0.286i)25-s − 0.464·27-s − 0.525·29-s + (0.501 + 0.868i)31-s + ⋯

Functional equation

Λ(s)=(224s/2ΓC(s)L(s)=((0.827+0.561i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.827 + 0.561i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(224s/2ΓC(s+1/2)L(s)=((0.827+0.561i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.827 + 0.561i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 224224    =    2572^{5} \cdot 7
Sign: 0.827+0.561i0.827 + 0.561i
Analytic conductor: 1.788641.78864
Root analytic conductor: 1.337401.33740
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ224(65,)\chi_{224} (65, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 224, ( :1/2), 0.827+0.561i)(2,\ 224,\ (\ :1/2),\ 0.827 + 0.561i)

Particular Values

L(1)L(1) \approx 1.261180.387524i1.26118 - 0.387524i
L(12)L(\frac12) \approx 1.261180.387524i1.26118 - 0.387524i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
7 1+(12.44i)T 1 + (-1 - 2.44i)T
good3 1+(0.207+0.358i)T+(1.5+2.59i)T2 1 + (0.207 + 0.358i)T + (-1.5 + 2.59i)T^{2}
5 1+(0.914+1.58i)T+(2.54.33i)T2 1 + (-0.914 + 1.58i)T + (-2.5 - 4.33i)T^{2}
11 1+(1.20+2.09i)T+(5.5+9.52i)T2 1 + (1.20 + 2.09i)T + (-5.5 + 9.52i)T^{2}
13 12.82T+13T2 1 - 2.82T + 13T^{2}
17 1+(0.08570.148i)T+(8.5+14.7i)T2 1 + (-0.0857 - 0.148i)T + (-8.5 + 14.7i)T^{2}
19 1+(3.20+5.55i)T+(9.516.4i)T2 1 + (-3.20 + 5.55i)T + (-9.5 - 16.4i)T^{2}
23 1+(2.624.54i)T+(11.519.9i)T2 1 + (2.62 - 4.54i)T + (-11.5 - 19.9i)T^{2}
29 1+2.82T+29T2 1 + 2.82T + 29T^{2}
31 1+(2.794.83i)T+(15.5+26.8i)T2 1 + (-2.79 - 4.83i)T + (-15.5 + 26.8i)T^{2}
37 1+(4.327.49i)T+(18.532.0i)T2 1 + (4.32 - 7.49i)T + (-18.5 - 32.0i)T^{2}
41 1+6.82T+41T2 1 + 6.82T + 41T^{2}
43 1+9.65T+43T2 1 + 9.65T + 43T^{2}
47 1+(5.20+9.01i)T+(23.540.7i)T2 1 + (-5.20 + 9.01i)T + (-23.5 - 40.7i)T^{2}
53 1+(0.50.866i)T+(26.5+45.8i)T2 1 + (-0.5 - 0.866i)T + (-26.5 + 45.8i)T^{2}
59 1+(5.449.43i)T+(29.5+51.0i)T2 1 + (-5.44 - 9.43i)T + (-29.5 + 51.0i)T^{2}
61 1+(4.327.49i)T+(30.552.8i)T2 1 + (4.32 - 7.49i)T + (-30.5 - 52.8i)T^{2}
67 1+(1.37+2.38i)T+(33.5+58.0i)T2 1 + (1.37 + 2.38i)T + (-33.5 + 58.0i)T^{2}
71 1+13.6T+71T2 1 + 13.6T + 71T^{2}
73 1+(7.3212.6i)T+(36.5+63.2i)T2 1 + (-7.32 - 12.6i)T + (-36.5 + 63.2i)T^{2}
79 1+(3.03+5.25i)T+(39.568.4i)T2 1 + (-3.03 + 5.25i)T + (-39.5 - 68.4i)T^{2}
83 17.31T+83T2 1 - 7.31T + 83T^{2}
89 1+(4.5+7.79i)T+(44.577.0i)T2 1 + (-4.5 + 7.79i)T + (-44.5 - 77.0i)T^{2}
97 1+1.17T+97T2 1 + 1.17T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.02151322567268289742403550713, −11.51839685059725683568442794199, −10.12723512570474288309290752171, −9.029987772690501658736546380094, −8.501176235773568457284546710126, −7.03195584955686508293638979219, −5.82999175809722255806958740562, −5.01268817516358308506779998655, −3.29620020794666943077395586527, −1.42020400044126229265447745761, 1.93320062019993050476359583201, 3.73839530720966348506545883642, 4.92117242975244540115233052290, 6.25108979036604278242190490554, 7.38496135257613797120916587932, 8.163281339936845850747127716014, 9.843491944862121242722525960421, 10.40073985683443265315842389783, 11.08176790504918435962069633158, 12.35806154393588640752178806093

Graph of the ZZ-function along the critical line