L(s) = 1 | + (−0.207 − 0.358i)3-s + (0.914 − 1.58i)5-s + (1 + 2.44i)7-s + (1.41 − 2.44i)9-s + (−1.20 − 2.09i)11-s + 2.82·13-s − 0.757·15-s + (0.0857 + 0.148i)17-s + (3.20 − 5.55i)19-s + (0.671 − 0.866i)21-s + (−2.62 + 4.54i)23-s + (0.828 + 1.43i)25-s − 2.41·27-s − 2.82·29-s + (2.79 + 4.83i)31-s + ⋯ |
L(s) = 1 | + (−0.119 − 0.207i)3-s + (0.408 − 0.708i)5-s + (0.377 + 0.925i)7-s + (0.471 − 0.816i)9-s + (−0.363 − 0.630i)11-s + 0.784·13-s − 0.195·15-s + (0.0208 + 0.0360i)17-s + (0.735 − 1.27i)19-s + (0.146 − 0.188i)21-s + (−0.546 + 0.946i)23-s + (0.165 + 0.286i)25-s − 0.464·27-s − 0.525·29-s + (0.501 + 0.868i)31-s + ⋯ |
Λ(s)=(=(224s/2ΓC(s)L(s)(0.827+0.561i)Λ(2−s)
Λ(s)=(=(224s/2ΓC(s+1/2)L(s)(0.827+0.561i)Λ(1−s)
Degree: |
2 |
Conductor: |
224
= 25⋅7
|
Sign: |
0.827+0.561i
|
Analytic conductor: |
1.78864 |
Root analytic conductor: |
1.33740 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ224(65,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 224, ( :1/2), 0.827+0.561i)
|
Particular Values
L(1) |
≈ |
1.26118−0.387524i |
L(21) |
≈ |
1.26118−0.387524i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(−1−2.44i)T |
good | 3 | 1+(0.207+0.358i)T+(−1.5+2.59i)T2 |
| 5 | 1+(−0.914+1.58i)T+(−2.5−4.33i)T2 |
| 11 | 1+(1.20+2.09i)T+(−5.5+9.52i)T2 |
| 13 | 1−2.82T+13T2 |
| 17 | 1+(−0.0857−0.148i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−3.20+5.55i)T+(−9.5−16.4i)T2 |
| 23 | 1+(2.62−4.54i)T+(−11.5−19.9i)T2 |
| 29 | 1+2.82T+29T2 |
| 31 | 1+(−2.79−4.83i)T+(−15.5+26.8i)T2 |
| 37 | 1+(4.32−7.49i)T+(−18.5−32.0i)T2 |
| 41 | 1+6.82T+41T2 |
| 43 | 1+9.65T+43T2 |
| 47 | 1+(−5.20+9.01i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−0.5−0.866i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−5.44−9.43i)T+(−29.5+51.0i)T2 |
| 61 | 1+(4.32−7.49i)T+(−30.5−52.8i)T2 |
| 67 | 1+(1.37+2.38i)T+(−33.5+58.0i)T2 |
| 71 | 1+13.6T+71T2 |
| 73 | 1+(−7.32−12.6i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−3.03+5.25i)T+(−39.5−68.4i)T2 |
| 83 | 1−7.31T+83T2 |
| 89 | 1+(−4.5+7.79i)T+(−44.5−77.0i)T2 |
| 97 | 1+1.17T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.02151322567268289742403550713, −11.51839685059725683568442794199, −10.12723512570474288309290752171, −9.029987772690501658736546380094, −8.501176235773568457284546710126, −7.03195584955686508293638979219, −5.82999175809722255806958740562, −5.01268817516358308506779998655, −3.29620020794666943077395586527, −1.42020400044126229265447745761,
1.93320062019993050476359583201, 3.73839530720966348506545883642, 4.92117242975244540115233052290, 6.25108979036604278242190490554, 7.38496135257613797120916587932, 8.163281339936845850747127716014, 9.843491944862121242722525960421, 10.40073985683443265315842389783, 11.08176790504918435962069633158, 12.35806154393588640752178806093