L(s) = 1 | + (−0.207 − 0.358i)3-s + (0.914 − 1.58i)5-s + (1 + 2.44i)7-s + (1.41 − 2.44i)9-s + (−1.20 − 2.09i)11-s + 2.82·13-s − 0.757·15-s + (0.0857 + 0.148i)17-s + (3.20 − 5.55i)19-s + (0.671 − 0.866i)21-s + (−2.62 + 4.54i)23-s + (0.828 + 1.43i)25-s − 2.41·27-s − 2.82·29-s + (2.79 + 4.83i)31-s + ⋯ |
L(s) = 1 | + (−0.119 − 0.207i)3-s + (0.408 − 0.708i)5-s + (0.377 + 0.925i)7-s + (0.471 − 0.816i)9-s + (−0.363 − 0.630i)11-s + 0.784·13-s − 0.195·15-s + (0.0208 + 0.0360i)17-s + (0.735 − 1.27i)19-s + (0.146 − 0.188i)21-s + (−0.546 + 0.946i)23-s + (0.165 + 0.286i)25-s − 0.464·27-s − 0.525·29-s + (0.501 + 0.868i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.827 + 0.561i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.827 + 0.561i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.26118 - 0.387524i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.26118 - 0.387524i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-1 - 2.44i)T \) |
good | 3 | \( 1 + (0.207 + 0.358i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.914 + 1.58i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (1.20 + 2.09i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 2.82T + 13T^{2} \) |
| 17 | \( 1 + (-0.0857 - 0.148i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.20 + 5.55i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.62 - 4.54i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 2.82T + 29T^{2} \) |
| 31 | \( 1 + (-2.79 - 4.83i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (4.32 - 7.49i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 6.82T + 41T^{2} \) |
| 43 | \( 1 + 9.65T + 43T^{2} \) |
| 47 | \( 1 + (-5.20 + 9.01i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.5 - 0.866i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.44 - 9.43i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.32 - 7.49i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1.37 + 2.38i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 13.6T + 71T^{2} \) |
| 73 | \( 1 + (-7.32 - 12.6i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.03 + 5.25i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 7.31T + 83T^{2} \) |
| 89 | \( 1 + (-4.5 + 7.79i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 1.17T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.02151322567268289742403550713, −11.51839685059725683568442794199, −10.12723512570474288309290752171, −9.029987772690501658736546380094, −8.501176235773568457284546710126, −7.03195584955686508293638979219, −5.82999175809722255806958740562, −5.01268817516358308506779998655, −3.29620020794666943077395586527, −1.42020400044126229265447745761,
1.93320062019993050476359583201, 3.73839530720966348506545883642, 4.92117242975244540115233052290, 6.25108979036604278242190490554, 7.38496135257613797120916587932, 8.163281339936845850747127716014, 9.843491944862121242722525960421, 10.40073985683443265315842389783, 11.08176790504918435962069633158, 12.35806154393588640752178806093