L(s) = 1 | + (−0.207 + 0.358i)3-s + (0.914 + 1.58i)5-s + (1 − 2.44i)7-s + (1.41 + 2.44i)9-s + (−1.20 + 2.09i)11-s + 2.82·13-s − 0.757·15-s + (0.0857 − 0.148i)17-s + (3.20 + 5.55i)19-s + (0.671 + 0.866i)21-s + (−2.62 − 4.54i)23-s + (0.828 − 1.43i)25-s − 2.41·27-s − 2.82·29-s + (2.79 − 4.83i)31-s + ⋯ |
L(s) = 1 | + (−0.119 + 0.207i)3-s + (0.408 + 0.708i)5-s + (0.377 − 0.925i)7-s + (0.471 + 0.816i)9-s + (−0.363 + 0.630i)11-s + 0.784·13-s − 0.195·15-s + (0.0208 − 0.0360i)17-s + (0.735 + 1.27i)19-s + (0.146 + 0.188i)21-s + (−0.546 − 0.946i)23-s + (0.165 − 0.286i)25-s − 0.464·27-s − 0.525·29-s + (0.501 − 0.868i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.827 - 0.561i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.827 - 0.561i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.26118 + 0.387524i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.26118 + 0.387524i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-1 + 2.44i)T \) |
good | 3 | \( 1 + (0.207 - 0.358i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.914 - 1.58i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.20 - 2.09i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 2.82T + 13T^{2} \) |
| 17 | \( 1 + (-0.0857 + 0.148i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.20 - 5.55i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.62 + 4.54i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 2.82T + 29T^{2} \) |
| 31 | \( 1 + (-2.79 + 4.83i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (4.32 + 7.49i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 6.82T + 41T^{2} \) |
| 43 | \( 1 + 9.65T + 43T^{2} \) |
| 47 | \( 1 + (-5.20 - 9.01i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.5 + 0.866i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.44 + 9.43i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.32 + 7.49i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.37 - 2.38i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 13.6T + 71T^{2} \) |
| 73 | \( 1 + (-7.32 + 12.6i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.03 - 5.25i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 7.31T + 83T^{2} \) |
| 89 | \( 1 + (-4.5 - 7.79i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 1.17T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.35806154393588640752178806093, −11.08176790504918435962069633158, −10.40073985683443265315842389783, −9.843491944862121242722525960421, −8.163281339936845850747127716014, −7.38496135257613797120916587932, −6.25108979036604278242190490554, −4.92117242975244540115233052290, −3.73839530720966348506545883642, −1.93320062019993050476359583201,
1.42020400044126229265447745761, 3.29620020794666943077395586527, 5.01268817516358308506779998655, 5.82999175809722255806958740562, 7.03195584955686508293638979219, 8.501176235773568457284546710126, 9.029987772690501658736546380094, 10.12723512570474288309290752171, 11.51839685059725683568442794199, 12.02151322567268289742403550713