Properties

Label 2016.2.s.q
Level 20162016
Weight 22
Character orbit 2016.s
Analytic conductor 16.09816.098
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2016,2,Mod(289,2016)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2016, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2016.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2016=25327 2016 = 2^{5} \cdot 3^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2016.s (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 16.097841047516.0978410475
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(2,3)\Q(\sqrt{2}, \sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+2x2+4 x^{4} + 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 224)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β2+2β1+1)q5+(β32β11)q7+(β3+β2β1)q11+2β3q13+(2β3+3β2+2β1)q17+(5β2+β15)q19++(2β34)q97+O(q100) q + (\beta_{2} + 2 \beta_1 + 1) q^{5} + ( - \beta_{3} - 2 \beta_1 - 1) q^{7} + ( - \beta_{3} + \beta_{2} - \beta_1) q^{11} + 2 \beta_{3} q^{13} + (2 \beta_{3} + 3 \beta_{2} + 2 \beta_1) q^{17} + ( - 5 \beta_{2} + \beta_1 - 5) q^{19}+ \cdots + (2 \beta_{3} - 4) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q54q72q116q1710q192q238q2514q31+22q356q37+16q41+16q43+18q4720q492q53+12q55+2q596q61+16q97+O(q100) 4 q + 2 q^{5} - 4 q^{7} - 2 q^{11} - 6 q^{17} - 10 q^{19} - 2 q^{23} - 8 q^{25} - 14 q^{31} + 22 q^{35} - 6 q^{37} + 16 q^{41} + 16 q^{43} + 18 q^{47} - 20 q^{49} - 2 q^{53} + 12 q^{55} + 2 q^{59} - 6 q^{61}+ \cdots - 16 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+2x2+4 x^{4} + 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/2 ( \nu^{2} ) / 2 Copy content Toggle raw display
β3\beta_{3}== (ν3)/2 ( \nu^{3} ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 2β2 2\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 2β3 2\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2016Z)×\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times.

nn 127127 577577 17651765 17931793
χ(n)\chi(n) 11 1β2-1 - \beta_{2} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
289.1
−0.707107 + 1.22474i
0.707107 1.22474i
−0.707107 1.22474i
0.707107 + 1.22474i
0 0 0 −0.914214 + 1.58346i 0 −1.00000 2.44949i 0 0 0
289.2 0 0 0 1.91421 3.31552i 0 −1.00000 + 2.44949i 0 0 0
865.1 0 0 0 −0.914214 1.58346i 0 −1.00000 + 2.44949i 0 0 0
865.2 0 0 0 1.91421 + 3.31552i 0 −1.00000 2.44949i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2016.2.s.q 4
3.b odd 2 1 224.2.i.a 4
4.b odd 2 1 2016.2.s.s 4
7.c even 3 1 inner 2016.2.s.q 4
12.b even 2 1 224.2.i.d yes 4
21.c even 2 1 1568.2.i.x 4
21.g even 6 1 1568.2.a.j 2
21.g even 6 1 1568.2.i.x 4
21.h odd 6 1 224.2.i.a 4
21.h odd 6 1 1568.2.a.w 2
24.f even 2 1 448.2.i.g 4
24.h odd 2 1 448.2.i.j 4
28.g odd 6 1 2016.2.s.s 4
84.h odd 2 1 1568.2.i.o 4
84.j odd 6 1 1568.2.a.u 2
84.j odd 6 1 1568.2.i.o 4
84.n even 6 1 224.2.i.d yes 4
84.n even 6 1 1568.2.a.l 2
168.s odd 6 1 448.2.i.j 4
168.s odd 6 1 3136.2.a.bd 2
168.v even 6 1 448.2.i.g 4
168.v even 6 1 3136.2.a.bw 2
168.ba even 6 1 3136.2.a.bx 2
168.be odd 6 1 3136.2.a.be 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
224.2.i.a 4 3.b odd 2 1
224.2.i.a 4 21.h odd 6 1
224.2.i.d yes 4 12.b even 2 1
224.2.i.d yes 4 84.n even 6 1
448.2.i.g 4 24.f even 2 1
448.2.i.g 4 168.v even 6 1
448.2.i.j 4 24.h odd 2 1
448.2.i.j 4 168.s odd 6 1
1568.2.a.j 2 21.g even 6 1
1568.2.a.l 2 84.n even 6 1
1568.2.a.u 2 84.j odd 6 1
1568.2.a.w 2 21.h odd 6 1
1568.2.i.o 4 84.h odd 2 1
1568.2.i.o 4 84.j odd 6 1
1568.2.i.x 4 21.c even 2 1
1568.2.i.x 4 21.g even 6 1
2016.2.s.q 4 1.a even 1 1 trivial
2016.2.s.q 4 7.c even 3 1 inner
2016.2.s.s 4 4.b odd 2 1
2016.2.s.s 4 28.g odd 6 1
3136.2.a.bd 2 168.s odd 6 1
3136.2.a.be 2 168.be odd 6 1
3136.2.a.bw 2 168.v even 6 1
3136.2.a.bx 2 168.ba even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2016,[χ])S_{2}^{\mathrm{new}}(2016, [\chi]):

T542T53+11T52+14T5+49 T_{5}^{4} - 2T_{5}^{3} + 11T_{5}^{2} + 14T_{5} + 49 Copy content Toggle raw display
T114+2T113+5T1122T11+1 T_{11}^{4} + 2T_{11}^{3} + 5T_{11}^{2} - 2T_{11} + 1 Copy content Toggle raw display
T1328 T_{13}^{2} - 8 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T42T3++49 T^{4} - 2 T^{3} + \cdots + 49 Copy content Toggle raw display
77 (T2+2T+7)2 (T^{2} + 2 T + 7)^{2} Copy content Toggle raw display
1111 T4+2T3++1 T^{4} + 2 T^{3} + \cdots + 1 Copy content Toggle raw display
1313 (T28)2 (T^{2} - 8)^{2} Copy content Toggle raw display
1717 T4+6T3++1 T^{4} + 6 T^{3} + \cdots + 1 Copy content Toggle raw display
1919 T4+10T3++529 T^{4} + 10 T^{3} + \cdots + 529 Copy content Toggle raw display
2323 T4+2T3++289 T^{4} + 2 T^{3} + \cdots + 289 Copy content Toggle raw display
2929 (T28)2 (T^{2} - 8)^{2} Copy content Toggle raw display
3131 T4+14T3++2209 T^{4} + 14 T^{3} + \cdots + 2209 Copy content Toggle raw display
3737 T4+6T3++529 T^{4} + 6 T^{3} + \cdots + 529 Copy content Toggle raw display
4141 (T28T+8)2 (T^{2} - 8 T + 8)^{2} Copy content Toggle raw display
4343 (T28T16)2 (T^{2} - 8 T - 16)^{2} Copy content Toggle raw display
4747 T418T3++6241 T^{4} - 18 T^{3} + \cdots + 6241 Copy content Toggle raw display
5353 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
5959 T42T3++9409 T^{4} - 2 T^{3} + \cdots + 9409 Copy content Toggle raw display
6161 T4+6T3++529 T^{4} + 6 T^{3} + \cdots + 529 Copy content Toggle raw display
6767 T414T3++961 T^{4} - 14 T^{3} + \cdots + 961 Copy content Toggle raw display
7171 (T2+16T+32)2 (T^{2} + 16 T + 32)^{2} Copy content Toggle raw display
7373 T418T3++2401 T^{4} - 18 T^{3} + \cdots + 2401 Copy content Toggle raw display
7979 T42T3++2401 T^{4} - 2 T^{3} + \cdots + 2401 Copy content Toggle raw display
8383 (T2+8T112)2 (T^{2} + 8 T - 112)^{2} Copy content Toggle raw display
8989 (T2+9T+81)2 (T^{2} + 9 T + 81)^{2} Copy content Toggle raw display
9797 (T2+8T+8)2 (T^{2} + 8 T + 8)^{2} Copy content Toggle raw display
show more
show less