L(s) = 1 | + (−1.18 − 0.686i)3-s + (0.345 + 0.597i)5-s + (2.63 + 0.222i)7-s + (−0.557 − 0.966i)9-s + (1.63 − 2.82i)11-s + 5.27·13-s − 0.947i·15-s + (−2.20 − 1.27i)17-s + (0.484 − 0.279i)19-s + (−2.98 − 2.07i)21-s + (2.50 − 1.44i)23-s + (2.26 − 3.91i)25-s + 5.64i·27-s − 0.444i·29-s + (−4.45 + 7.71i)31-s + ⋯ |
L(s) = 1 | + (−0.686 − 0.396i)3-s + (0.154 + 0.267i)5-s + (0.996 + 0.0840i)7-s + (−0.185 − 0.322i)9-s + (0.491 − 0.851i)11-s + 1.46·13-s − 0.244i·15-s + (−0.534 − 0.308i)17-s + (0.111 − 0.0642i)19-s + (−0.650 − 0.452i)21-s + (0.522 − 0.301i)23-s + (0.452 − 0.783i)25-s + 1.08i·27-s − 0.0825i·29-s + (−0.799 + 1.38i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.824 + 0.565i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.824 + 0.565i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.07912 - 0.334656i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.07912 - 0.334656i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-2.63 - 0.222i)T \) |
good | 3 | \( 1 + (1.18 + 0.686i)T + (1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.345 - 0.597i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.63 + 2.82i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 5.27T + 13T^{2} \) |
| 17 | \( 1 + (2.20 + 1.27i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.484 + 0.279i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.50 + 1.44i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 0.444iT - 29T^{2} \) |
| 31 | \( 1 + (4.45 - 7.71i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (6.00 - 3.46i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 9.76iT - 41T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 + (2.20 + 3.81i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (8.17 + 4.71i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (8.59 + 4.96i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.23 - 9.06i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.45 + 2.51i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 5.29iT - 71T^{2} \) |
| 73 | \( 1 + (5.28 + 3.05i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.01 + 2.89i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 1.83iT - 83T^{2} \) |
| 89 | \( 1 + (-1.5 + 0.866i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 7.42iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.91512230254354141775685966496, −11.23912174697751877792044414029, −10.66268298415281464482322908427, −8.977758998631219437355660168777, −8.349355155470935490950910274293, −6.81433071241681710753875949284, −6.11833166406471587875567237431, −4.95028358443376226661601507317, −3.35055767410698625646299740563, −1.28233500450643950769275025321,
1.71565955527870246854056685864, 3.98105212273386391673769879490, 5.02521687769114316873686548696, 5.95483381892363880126132287818, 7.32309131416298131248198924608, 8.492218820577851254705827509311, 9.405443677855213326546324307269, 10.91093929360230159269360771119, 11.02161747637537463065705652416, 12.18804097880267786029076837020