L(s) = 1 | + (−1.18 − 0.686i)3-s + (0.345 + 0.597i)5-s + (2.63 + 0.222i)7-s + (−0.557 − 0.966i)9-s + (1.63 − 2.82i)11-s + 5.27·13-s − 0.947i·15-s + (−2.20 − 1.27i)17-s + (0.484 − 0.279i)19-s + (−2.98 − 2.07i)21-s + (2.50 − 1.44i)23-s + (2.26 − 3.91i)25-s + 5.64i·27-s − 0.444i·29-s + (−4.45 + 7.71i)31-s + ⋯ |
L(s) = 1 | + (−0.686 − 0.396i)3-s + (0.154 + 0.267i)5-s + (0.996 + 0.0840i)7-s + (−0.185 − 0.322i)9-s + (0.491 − 0.851i)11-s + 1.46·13-s − 0.244i·15-s + (−0.534 − 0.308i)17-s + (0.111 − 0.0642i)19-s + (−0.650 − 0.452i)21-s + (0.522 − 0.301i)23-s + (0.452 − 0.783i)25-s + 1.08i·27-s − 0.0825i·29-s + (−0.799 + 1.38i)31-s + ⋯ |
Λ(s)=(=(224s/2ΓC(s)L(s)(0.824+0.565i)Λ(2−s)
Λ(s)=(=(224s/2ΓC(s+1/2)L(s)(0.824+0.565i)Λ(1−s)
Degree: |
2 |
Conductor: |
224
= 25⋅7
|
Sign: |
0.824+0.565i
|
Analytic conductor: |
1.78864 |
Root analytic conductor: |
1.33740 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ224(143,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 224, ( :1/2), 0.824+0.565i)
|
Particular Values
L(1) |
≈ |
1.07912−0.334656i |
L(21) |
≈ |
1.07912−0.334656i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(−2.63−0.222i)T |
good | 3 | 1+(1.18+0.686i)T+(1.5+2.59i)T2 |
| 5 | 1+(−0.345−0.597i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−1.63+2.82i)T+(−5.5−9.52i)T2 |
| 13 | 1−5.27T+13T2 |
| 17 | 1+(2.20+1.27i)T+(8.5+14.7i)T2 |
| 19 | 1+(−0.484+0.279i)T+(9.5−16.4i)T2 |
| 23 | 1+(−2.50+1.44i)T+(11.5−19.9i)T2 |
| 29 | 1+0.444iT−29T2 |
| 31 | 1+(4.45−7.71i)T+(−15.5−26.8i)T2 |
| 37 | 1+(6.00−3.46i)T+(18.5−32.0i)T2 |
| 41 | 1−9.76iT−41T2 |
| 43 | 1+43T2 |
| 47 | 1+(2.20+3.81i)T+(−23.5+40.7i)T2 |
| 53 | 1+(8.17+4.71i)T+(26.5+45.8i)T2 |
| 59 | 1+(8.59+4.96i)T+(29.5+51.0i)T2 |
| 61 | 1+(−5.23−9.06i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−1.45+2.51i)T+(−33.5−58.0i)T2 |
| 71 | 1−5.29iT−71T2 |
| 73 | 1+(5.28+3.05i)T+(36.5+63.2i)T2 |
| 79 | 1+(−5.01+2.89i)T+(39.5−68.4i)T2 |
| 83 | 1+1.83iT−83T2 |
| 89 | 1+(−1.5+0.866i)T+(44.5−77.0i)T2 |
| 97 | 1+7.42iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.91512230254354141775685966496, −11.23912174697751877792044414029, −10.66268298415281464482322908427, −8.977758998631219437355660168777, −8.349355155470935490950910274293, −6.81433071241681710753875949284, −6.11833166406471587875567237431, −4.95028358443376226661601507317, −3.35055767410698625646299740563, −1.28233500450643950769275025321,
1.71565955527870246854056685864, 3.98105212273386391673769879490, 5.02521687769114316873686548696, 5.95483381892363880126132287818, 7.32309131416298131248198924608, 8.492218820577851254705827509311, 9.405443677855213326546324307269, 10.91093929360230159269360771119, 11.02161747637537463065705652416, 12.18804097880267786029076837020