Properties

Label 224.2.q.a
Level $224$
Weight $2$
Character orbit 224.q
Analytic conductor $1.789$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [224,2,Mod(47,224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(224, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("224.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 224.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.78864900528\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.144054149089536.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3x^{11} + x^{9} + 48x^{8} - 189x^{7} + 431x^{6} - 654x^{5} + 624x^{4} - 340x^{3} + 96x^{2} - 12x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{8} q^{3} + ( - \beta_{7} - \beta_{4}) q^{5} + ( - \beta_{10} - \beta_{7} + \beta_{5}) q^{7} + ( - \beta_{9} + 2 \beta_{8} - \beta_{6} + \cdots - 1) q^{9} + ( - \beta_{6} + \beta_{3} + 1) q^{11}+ \cdots + (\beta_{9} + \beta_{8} + \beta_1 + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{3} + 6 q^{11} - 6 q^{17} + 6 q^{19} - 6 q^{33} - 18 q^{35} - 12 q^{49} - 6 q^{51} - 36 q^{57} - 42 q^{59} - 12 q^{65} - 30 q^{67} + 18 q^{73} - 24 q^{75} + 6 q^{81} + 18 q^{89} + 72 q^{91} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 3x^{11} + x^{9} + 48x^{8} - 189x^{7} + 431x^{6} - 654x^{5} + 624x^{4} - 340x^{3} + 96x^{2} - 12x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 6789 \nu^{11} + 407977 \nu^{10} - 701704 \nu^{9} - 1014429 \nu^{8} - 865016 \nu^{7} + \cdots - 9570816 ) / 5500348 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 76837 \nu^{11} - 171179 \nu^{10} + 509986 \nu^{9} + 1428477 \nu^{8} - 2520360 \nu^{7} + \cdots - 7508164 ) / 5500348 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 54041 \nu^{11} - 302383 \nu^{10} + 439891 \nu^{9} + 184300 \nu^{8} + 2261772 \nu^{7} + \cdots - 178398 ) / 2750174 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 127195 \nu^{11} + 82977 \nu^{10} + 563109 \nu^{9} + 592838 \nu^{8} - 5748844 \nu^{7} + \cdots - 2572044 ) / 2750174 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 295642 \nu^{11} - 410251 \nu^{10} - 714509 \nu^{9} - 877952 \nu^{8} + 12614519 \nu^{7} + \cdots + 15787424 ) / 5500348 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 2236 \nu^{11} - 4785 \nu^{10} - 6307 \nu^{9} + 1316 \nu^{8} + 113135 \nu^{7} - 323728 \nu^{6} + \cdots + 27316 ) / 41356 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 588552 \nu^{11} + 1471277 \nu^{10} + 959613 \nu^{9} - 594282 \nu^{8} - 29122539 \nu^{7} + \cdots + 3770204 ) / 5500348 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 658600 \nu^{11} - 892121 \nu^{10} - 2171303 \nu^{9} - 1848624 \nu^{8} + 30777883 \nu^{7} + \cdots - 5832856 ) / 5500348 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 721311 \nu^{11} + 2509218 \nu^{10} - 349445 \nu^{9} - 2200105 \nu^{8} - 35847041 \nu^{7} + \cdots - 2329388 ) / 5500348 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 944653 \nu^{11} - 1864021 \nu^{10} - 2371448 \nu^{9} - 304551 \nu^{8} + 45642708 \nu^{7} + \cdots + 938824 ) / 5500348 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 4510 \nu^{11} + 15163 \nu^{10} - 1205 \nu^{9} - 9766 \nu^{8} - 224935 \nu^{7} + 920210 \nu^{6} + \cdots + 76880 ) / 26068 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{8} + \beta_{7} + \beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{11} - 2\beta_{10} - 2\beta_{9} + 3\beta_{8} - 2\beta_{7} - 4\beta_{6} + \beta_{4} - 3\beta_{3} - 2\beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{11} + 2\beta_{10} + 7\beta_{7} + 14\beta_{6} + 7\beta_{4} + 7\beta_{3} - \beta_{2} + 5\beta _1 - 3 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 4 \beta_{11} - 20 \beta_{10} - 8 \beta_{9} + 16 \beta_{8} - 12 \beta_{7} - 15 \beta_{6} + 3 \beta_{5} + \cdots - 25 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 14 \beta_{11} + 13 \beta_{10} - 37 \beta_{9} - 3 \beta_{8} + 8 \beta_{7} - 5 \beta_{6} - 13 \beta_{5} + \cdots + 56 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 11 \beta_{11} + 24 \beta_{10} + 54 \beta_{9} - 9 \beta_{8} + 136 \beta_{7} + 217 \beta_{6} + \cdots - 278 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 114 \beta_{11} - 291 \beta_{10} - 326 \beta_{9} + 194 \beta_{8} - 542 \beta_{7} - 901 \beta_{6} + \cdots + 247 ) / 2 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - 113 \beta_{11} + 1276 \beta_{10} + 404 \beta_{9} - 940 \beta_{8} + 1655 \beta_{7} + 2527 \beta_{6} + \cdots + 96 ) / 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 25 \beta_{11} - 2766 \beta_{10} + 72 \beta_{9} + 1773 \beta_{8} - 2716 \beta_{7} - 3969 \beta_{6} + \cdots - 4406 ) / 2 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 1301 \beta_{11} + 4480 \beta_{10} - 4337 \beta_{9} - 3460 \beta_{8} - 1298 \beta_{7} - 4210 \beta_{6} + \cdots + 18488 ) / 2 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 7243 \beta_{11} + 10057 \beta_{10} + 22468 \beta_{9} - 7768 \beta_{8} + 29731 \beta_{7} + \cdots - 47282 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(\beta_{6}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
47.1
1.09935 + 0.468876i
−0.0263223 + 0.217464i
−2.37165 1.78079i
0.186445 + 1.54034i
2.00233 0.854000i
0.609850 0.457915i
1.09935 0.468876i
−0.0263223 0.217464i
−2.37165 + 1.78079i
0.186445 1.54034i
2.00233 + 0.854000i
0.609850 + 0.457915i
0 −1.18878 + 0.686340i 0 −0.345107 + 0.597743i 0 −2.63639 + 0.222310i 0 −0.557875 + 0.966267i 0
47.2 0 −1.18878 + 0.686340i 0 0.345107 0.597743i 0 2.63639 0.222310i 0 −0.557875 + 0.966267i 0
47.3 0 0.416472 0.240450i 0 −1.59713 + 2.76632i 0 0.694153 + 2.55307i 0 −1.38437 + 2.39779i 0
47.4 0 0.416472 0.240450i 0 1.59713 2.76632i 0 −0.694153 2.55307i 0 −1.38437 + 2.39779i 0
47.5 0 2.27230 1.31191i 0 −1.03926 + 1.80005i 0 1.25203 2.33076i 0 1.94224 3.36406i 0
47.6 0 2.27230 1.31191i 0 1.03926 1.80005i 0 −1.25203 + 2.33076i 0 1.94224 3.36406i 0
143.1 0 −1.18878 0.686340i 0 −0.345107 0.597743i 0 −2.63639 0.222310i 0 −0.557875 0.966267i 0
143.2 0 −1.18878 0.686340i 0 0.345107 + 0.597743i 0 2.63639 + 0.222310i 0 −0.557875 0.966267i 0
143.3 0 0.416472 + 0.240450i 0 −1.59713 2.76632i 0 0.694153 2.55307i 0 −1.38437 2.39779i 0
143.4 0 0.416472 + 0.240450i 0 1.59713 + 2.76632i 0 −0.694153 + 2.55307i 0 −1.38437 2.39779i 0
143.5 0 2.27230 + 1.31191i 0 −1.03926 1.80005i 0 1.25203 + 2.33076i 0 1.94224 + 3.36406i 0
143.6 0 2.27230 + 1.31191i 0 1.03926 + 1.80005i 0 −1.25203 2.33076i 0 1.94224 + 3.36406i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 47.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner
8.d odd 2 1 inner
56.m even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 224.2.q.a 12
3.b odd 2 1 2016.2.bs.a 12
4.b odd 2 1 56.2.m.a 12
7.b odd 2 1 1568.2.q.g 12
7.c even 3 1 1568.2.e.e 12
7.c even 3 1 1568.2.q.g 12
7.d odd 6 1 inner 224.2.q.a 12
7.d odd 6 1 1568.2.e.e 12
8.b even 2 1 56.2.m.a 12
8.d odd 2 1 inner 224.2.q.a 12
12.b even 2 1 504.2.bk.a 12
21.g even 6 1 2016.2.bs.a 12
24.f even 2 1 2016.2.bs.a 12
24.h odd 2 1 504.2.bk.a 12
28.d even 2 1 392.2.m.g 12
28.f even 6 1 56.2.m.a 12
28.f even 6 1 392.2.e.e 12
28.g odd 6 1 392.2.e.e 12
28.g odd 6 1 392.2.m.g 12
56.e even 2 1 1568.2.q.g 12
56.h odd 2 1 392.2.m.g 12
56.j odd 6 1 56.2.m.a 12
56.j odd 6 1 392.2.e.e 12
56.k odd 6 1 1568.2.e.e 12
56.k odd 6 1 1568.2.q.g 12
56.m even 6 1 inner 224.2.q.a 12
56.m even 6 1 1568.2.e.e 12
56.p even 6 1 392.2.e.e 12
56.p even 6 1 392.2.m.g 12
84.j odd 6 1 504.2.bk.a 12
168.ba even 6 1 504.2.bk.a 12
168.be odd 6 1 2016.2.bs.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.2.m.a 12 4.b odd 2 1
56.2.m.a 12 8.b even 2 1
56.2.m.a 12 28.f even 6 1
56.2.m.a 12 56.j odd 6 1
224.2.q.a 12 1.a even 1 1 trivial
224.2.q.a 12 7.d odd 6 1 inner
224.2.q.a 12 8.d odd 2 1 inner
224.2.q.a 12 56.m even 6 1 inner
392.2.e.e 12 28.f even 6 1
392.2.e.e 12 28.g odd 6 1
392.2.e.e 12 56.j odd 6 1
392.2.e.e 12 56.p even 6 1
392.2.m.g 12 28.d even 2 1
392.2.m.g 12 28.g odd 6 1
392.2.m.g 12 56.h odd 2 1
392.2.m.g 12 56.p even 6 1
504.2.bk.a 12 12.b even 2 1
504.2.bk.a 12 24.h odd 2 1
504.2.bk.a 12 84.j odd 6 1
504.2.bk.a 12 168.ba even 6 1
1568.2.e.e 12 7.c even 3 1
1568.2.e.e 12 7.d odd 6 1
1568.2.e.e 12 56.k odd 6 1
1568.2.e.e 12 56.m even 6 1
1568.2.q.g 12 7.b odd 2 1
1568.2.q.g 12 7.c even 3 1
1568.2.q.g 12 56.e even 2 1
1568.2.q.g 12 56.k odd 6 1
2016.2.bs.a 12 3.b odd 2 1
2016.2.bs.a 12 21.g even 6 1
2016.2.bs.a 12 24.f even 2 1
2016.2.bs.a 12 168.be odd 6 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(224, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \) Copy content Toggle raw display
$3$ \( (T^{6} - 3 T^{5} + 9 T^{3} + \cdots + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{12} + 15 T^{10} + \cdots + 441 \) Copy content Toggle raw display
$7$ \( T^{12} + 6 T^{10} + \cdots + 117649 \) Copy content Toggle raw display
$11$ \( (T^{6} - 3 T^{5} + 12 T^{4} + \cdots + 49)^{2} \) Copy content Toggle raw display
$13$ \( (T^{6} - 36 T^{4} + \cdots - 336)^{2} \) Copy content Toggle raw display
$17$ \( (T^{6} + 3 T^{5} + \cdots + 1083)^{2} \) Copy content Toggle raw display
$19$ \( (T^{6} - 3 T^{5} + \cdots + 147)^{2} \) Copy content Toggle raw display
$23$ \( T^{12} - 69 T^{10} + \cdots + 45252529 \) Copy content Toggle raw display
$29$ \( (T^{6} + 48 T^{4} + \cdots + 112)^{2} \) Copy content Toggle raw display
$31$ \( T^{12} + 99 T^{10} + \cdots + 441 \) Copy content Toggle raw display
$37$ \( T^{12} + \cdots + 3074369809 \) Copy content Toggle raw display
$41$ \( (T^{6} + 144 T^{4} + \cdots + 52272)^{2} \) Copy content Toggle raw display
$43$ \( T^{12} \) Copy content Toggle raw display
$47$ \( T^{12} + 123 T^{10} + \cdots + 6456681 \) Copy content Toggle raw display
$53$ \( T^{12} + \cdots + 108651322129 \) Copy content Toggle raw display
$59$ \( (T^{6} + 21 T^{5} + \cdots + 133563)^{2} \) Copy content Toggle raw display
$61$ \( T^{12} + \cdots + 42362284041 \) Copy content Toggle raw display
$67$ \( (T^{6} + 15 T^{5} + \cdots + 52441)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 28)^{6} \) Copy content Toggle raw display
$73$ \( (T^{6} - 9 T^{5} + \cdots + 1323)^{2} \) Copy content Toggle raw display
$79$ \( T^{12} + \cdots + 31317319089 \) Copy content Toggle raw display
$83$ \( (T^{6} + 228 T^{4} + \cdots + 192)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 3 T + 3)^{6} \) Copy content Toggle raw display
$97$ \( (T^{6} + 360 T^{4} + \cdots + 134832)^{2} \) Copy content Toggle raw display
show more
show less