Properties

Label 8-224e4-1.1-c1e4-0-6
Degree $8$
Conductor $2517630976$
Sign $1$
Analytic cond. $10.2352$
Root an. cond. $1.33740$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 4·3-s + 8·4-s − 8·5-s + 16·6-s − 8·8-s + 4·9-s + 32·10-s − 12·11-s − 32·12-s + 32·15-s − 4·16-s − 16·18-s − 4·19-s − 64·20-s + 48·22-s − 4·23-s + 32·24-s + 40·25-s + 4·27-s − 16·29-s − 128·30-s − 24·31-s + 32·32-s + 48·33-s + 32·36-s − 16·37-s + ⋯
L(s)  = 1  − 2.82·2-s − 2.30·3-s + 4·4-s − 3.57·5-s + 6.53·6-s − 2.82·8-s + 4/3·9-s + 10.1·10-s − 3.61·11-s − 9.23·12-s + 8.26·15-s − 16-s − 3.77·18-s − 0.917·19-s − 14.3·20-s + 10.2·22-s − 0.834·23-s + 6.53·24-s + 8·25-s + 0.769·27-s − 2.97·29-s − 23.3·30-s − 4.31·31-s + 5.65·32-s + 8.35·33-s + 16/3·36-s − 2.63·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(10.2352\)
Root analytic conductor: \(1.33740\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 2^{20} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + p T + p T^{2} )^{2} \)
7$C_2^2$ \( 1 + T^{4} \)
good3$D_4\times C_2$ \( 1 + 4 T + 4 p T^{2} + 28 T^{3} + 56 T^{4} + 28 p T^{5} + 4 p^{3} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
5$D_4\times C_2$ \( 1 + 8 T + 24 T^{2} + 32 T^{3} + 32 T^{4} + 32 p T^{5} + 24 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
11$D_4\times C_2$ \( 1 + 12 T + 86 T^{2} + 428 T^{3} + 1634 T^{4} + 428 p T^{5} + 86 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
13$D_4\times C_2$ \( 1 + 8 T^{2} + 72 T^{3} + 32 T^{4} + 72 p T^{5} + 8 p^{2} T^{6} + p^{4} T^{8} \)
17$C_2$ \( ( 1 - p T^{2} )^{4} \)
19$D_4\times C_2$ \( 1 + 4 T + 36 T^{2} + 196 T^{3} + 920 T^{4} + 196 p T^{5} + 36 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
23$C_2^2$ \( ( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
29$D_4\times C_2$ \( 1 + 16 T + 162 T^{2} + 1216 T^{3} + 7490 T^{4} + 1216 p T^{5} + 162 p^{2} T^{6} + 16 p^{3} T^{7} + p^{4} T^{8} \)
31$D_{4}$ \( ( 1 + 12 T + 90 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 + 16 T + 162 T^{2} + 1312 T^{3} + 9026 T^{4} + 1312 p T^{5} + 162 p^{2} T^{6} + 16 p^{3} T^{7} + p^{4} T^{8} \)
41$D_4\times C_2$ \( 1 + 8 T + 32 T^{2} + 360 T^{3} + 4034 T^{4} + 360 p T^{5} + 32 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 + 16 T + 114 T^{2} + 632 T^{3} + 3810 T^{4} + 632 p T^{5} + 114 p^{2} T^{6} + 16 p^{3} T^{7} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 100 T^{2} + 5766 T^{4} - 100 p^{2} T^{6} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 20 T + 118 T^{2} + 412 T^{3} - 8478 T^{4} + 412 p T^{5} + 118 p^{2} T^{6} - 20 p^{3} T^{7} + p^{4} T^{8} \)
59$D_4\times C_2$ \( 1 + 20 T + 300 T^{2} + 3180 T^{3} + 28600 T^{4} + 3180 p T^{5} + 300 p^{2} T^{6} + 20 p^{3} T^{7} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 + 16 T + 96 T^{2} + 256 T^{3} + 512 T^{4} + 256 p T^{5} + 96 p^{2} T^{6} + 16 p^{3} T^{7} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 - 16 T + 226 T^{2} - 2456 T^{3} + 23362 T^{4} - 2456 p T^{5} + 226 p^{2} T^{6} - 16 p^{3} T^{7} + p^{4} T^{8} \)
71$C_2^3$ \( 1 + 1154 T^{4} + p^{4} T^{8} \)
73$D_4\times C_2$ \( 1 - 24 T + 288 T^{2} - 3096 T^{3} + 30146 T^{4} - 3096 p T^{5} + 288 p^{2} T^{6} - 24 p^{3} T^{7} + p^{4} T^{8} \)
79$C_2^2$ \( ( 1 - 60 T^{2} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 + 4 T + 132 T^{2} + 1236 T^{3} + 11608 T^{4} + 1236 p T^{5} + 132 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
89$D_4\times C_2$ \( 1 + 32 T + 512 T^{2} + 6432 T^{3} + 68258 T^{4} + 6432 p T^{5} + 512 p^{2} T^{6} + 32 p^{3} T^{7} + p^{4} T^{8} \)
97$D_{4}$ \( ( 1 - 8 T + 202 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.476213480338880563508409335678, −8.957861858034234570810244812229, −8.846134160901408277104581993178, −8.773808095506330094418033374357, −8.203221857541121846376713502020, −8.153882298323288257339066305161, −7.83958791277833236794267892183, −7.81945012662596335823302185270, −7.66736408639700318581125906583, −7.06858680240611138633294870478, −7.00839530588096599093699724654, −6.97711291655205444164352179646, −6.64860267540627262234622253763, −5.74970298381492036367853470277, −5.65424998802923106598365758339, −5.25860399477540022808461512775, −5.23259133295239489655345610239, −4.94061853535647076738824538356, −4.52918745644796550103106267128, −3.81927197185510651802505405975, −3.79388063117807347582304027346, −3.40735467730031703534106433827, −2.82810455494575849020957114256, −2.09573197158845129667852700435, −1.73567312311397554560939721570, 0, 0, 0, 0, 1.73567312311397554560939721570, 2.09573197158845129667852700435, 2.82810455494575849020957114256, 3.40735467730031703534106433827, 3.79388063117807347582304027346, 3.81927197185510651802505405975, 4.52918745644796550103106267128, 4.94061853535647076738824538356, 5.23259133295239489655345610239, 5.25860399477540022808461512775, 5.65424998802923106598365758339, 5.74970298381492036367853470277, 6.64860267540627262234622253763, 6.97711291655205444164352179646, 7.00839530588096599093699724654, 7.06858680240611138633294870478, 7.66736408639700318581125906583, 7.81945012662596335823302185270, 7.83958791277833236794267892183, 8.153882298323288257339066305161, 8.203221857541121846376713502020, 8.773808095506330094418033374357, 8.846134160901408277104581993178, 8.957861858034234570810244812229, 9.476213480338880563508409335678

Graph of the $Z$-function along the critical line