L(s) = 1 | − 4·2-s − 4·3-s + 8·4-s − 8·5-s + 16·6-s − 8·8-s + 4·9-s + 32·10-s − 12·11-s − 32·12-s + 32·15-s − 4·16-s − 16·18-s − 4·19-s − 64·20-s + 48·22-s − 4·23-s + 32·24-s + 40·25-s + 4·27-s − 16·29-s − 128·30-s − 24·31-s + 32·32-s + 48·33-s + 32·36-s − 16·37-s + ⋯ |
L(s) = 1 | − 2.82·2-s − 2.30·3-s + 4·4-s − 3.57·5-s + 6.53·6-s − 2.82·8-s + 4/3·9-s + 10.1·10-s − 3.61·11-s − 9.23·12-s + 8.26·15-s − 16-s − 3.77·18-s − 0.917·19-s − 14.3·20-s + 10.2·22-s − 0.834·23-s + 6.53·24-s + 8·25-s + 0.769·27-s − 2.97·29-s − 23.3·30-s − 4.31·31-s + 5.65·32-s + 8.35·33-s + 16/3·36-s − 2.63·37-s + ⋯ |
Λ(s)=(=((220⋅74)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((220⋅74)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
220⋅74
|
Sign: |
1
|
Analytic conductor: |
10.2352 |
Root analytic conductor: |
1.33740 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
4
|
Selberg data: |
(8, 220⋅74, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | (1+pT+pT2)2 |
| 7 | C22 | 1+T4 |
good | 3 | D4×C2 | 1+4T+4pT2+28T3+56T4+28pT5+4p3T6+4p3T7+p4T8 |
| 5 | D4×C2 | 1+8T+24T2+32T3+32T4+32pT5+24p2T6+8p3T7+p4T8 |
| 11 | D4×C2 | 1+12T+86T2+428T3+1634T4+428pT5+86p2T6+12p3T7+p4T8 |
| 13 | D4×C2 | 1+8T2+72T3+32T4+72pT5+8p2T6+p4T8 |
| 17 | C2 | (1−pT2)4 |
| 19 | D4×C2 | 1+4T+36T2+196T3+920T4+196pT5+36p2T6+4p3T7+p4T8 |
| 23 | C22 | (1+2T+2T2+2pT3+p2T4)2 |
| 29 | D4×C2 | 1+16T+162T2+1216T3+7490T4+1216pT5+162p2T6+16p3T7+p4T8 |
| 31 | D4 | (1+12T+90T2+12pT3+p2T4)2 |
| 37 | D4×C2 | 1+16T+162T2+1312T3+9026T4+1312pT5+162p2T6+16p3T7+p4T8 |
| 41 | D4×C2 | 1+8T+32T2+360T3+4034T4+360pT5+32p2T6+8p3T7+p4T8 |
| 43 | D4×C2 | 1+16T+114T2+632T3+3810T4+632pT5+114p2T6+16p3T7+p4T8 |
| 47 | D4×C2 | 1−100T2+5766T4−100p2T6+p4T8 |
| 53 | D4×C2 | 1−20T+118T2+412T3−8478T4+412pT5+118p2T6−20p3T7+p4T8 |
| 59 | D4×C2 | 1+20T+300T2+3180T3+28600T4+3180pT5+300p2T6+20p3T7+p4T8 |
| 61 | D4×C2 | 1+16T+96T2+256T3+512T4+256pT5+96p2T6+16p3T7+p4T8 |
| 67 | D4×C2 | 1−16T+226T2−2456T3+23362T4−2456pT5+226p2T6−16p3T7+p4T8 |
| 71 | C23 | 1+1154T4+p4T8 |
| 73 | D4×C2 | 1−24T+288T2−3096T3+30146T4−3096pT5+288p2T6−24p3T7+p4T8 |
| 79 | C22 | (1−60T2+p2T4)2 |
| 83 | D4×C2 | 1+4T+132T2+1236T3+11608T4+1236pT5+132p2T6+4p3T7+p4T8 |
| 89 | D4×C2 | 1+32T+512T2+6432T3+68258T4+6432pT5+512p2T6+32p3T7+p4T8 |
| 97 | D4 | (1−8T+202T2−8pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.476213480338880563508409335678, −8.957861858034234570810244812229, −8.846134160901408277104581993178, −8.773808095506330094418033374357, −8.203221857541121846376713502020, −8.153882298323288257339066305161, −7.83958791277833236794267892183, −7.81945012662596335823302185270, −7.66736408639700318581125906583, −7.06858680240611138633294870478, −7.00839530588096599093699724654, −6.97711291655205444164352179646, −6.64860267540627262234622253763, −5.74970298381492036367853470277, −5.65424998802923106598365758339, −5.25860399477540022808461512775, −5.23259133295239489655345610239, −4.94061853535647076738824538356, −4.52918745644796550103106267128, −3.81927197185510651802505405975, −3.79388063117807347582304027346, −3.40735467730031703534106433827, −2.82810455494575849020957114256, −2.09573197158845129667852700435, −1.73567312311397554560939721570, 0, 0, 0, 0,
1.73567312311397554560939721570, 2.09573197158845129667852700435, 2.82810455494575849020957114256, 3.40735467730031703534106433827, 3.79388063117807347582304027346, 3.81927197185510651802505405975, 4.52918745644796550103106267128, 4.94061853535647076738824538356, 5.23259133295239489655345610239, 5.25860399477540022808461512775, 5.65424998802923106598365758339, 5.74970298381492036367853470277, 6.64860267540627262234622253763, 6.97711291655205444164352179646, 7.00839530588096599093699724654, 7.06858680240611138633294870478, 7.66736408639700318581125906583, 7.81945012662596335823302185270, 7.83958791277833236794267892183, 8.153882298323288257339066305161, 8.203221857541121846376713502020, 8.773808095506330094418033374357, 8.846134160901408277104581993178, 8.957861858034234570810244812229, 9.476213480338880563508409335678