Properties

Label 224.2.u.a.85.1
Level $224$
Weight $2$
Character 224.85
Analytic conductor $1.789$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [224,2,Mod(29,224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(224, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("224.29");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 224.u (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.78864900528\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 85.1
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 224.85
Dual form 224.2.u.a.29.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{2} +(-1.00000 + 0.414214i) q^{3} -2.00000i q^{4} +(-0.585786 + 1.41421i) q^{5} +(0.585786 - 1.41421i) q^{6} +(-0.707107 - 0.707107i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-1.29289 + 1.29289i) q^{9} +(-0.828427 - 2.00000i) q^{10} +(-3.70711 - 1.53553i) q^{11} +(0.828427 + 2.00000i) q^{12} +(-1.41421 - 3.41421i) q^{13} +1.41421 q^{14} -1.65685i q^{15} -4.00000 q^{16} -2.58579i q^{18} +(-2.41421 - 5.82843i) q^{19} +(2.82843 + 1.17157i) q^{20} +(1.00000 + 0.414214i) q^{21} +(5.24264 - 2.17157i) q^{22} +(-1.00000 + 1.00000i) q^{23} +(-2.82843 - 1.17157i) q^{24} +(1.87868 + 1.87868i) q^{25} +(4.82843 + 2.00000i) q^{26} +(2.00000 - 4.82843i) q^{27} +(-1.41421 + 1.41421i) q^{28} +(-4.70711 + 1.94975i) q^{29} +(1.65685 + 1.65685i) q^{30} -3.17157 q^{31} +(4.00000 - 4.00000i) q^{32} +4.34315 q^{33} +(1.41421 - 0.585786i) q^{35} +(2.58579 + 2.58579i) q^{36} +(-3.29289 + 7.94975i) q^{37} +(8.24264 + 3.41421i) q^{38} +(2.82843 + 2.82843i) q^{39} +(-4.00000 + 1.65685i) q^{40} +(-0.585786 + 0.585786i) q^{41} +(-1.41421 + 0.585786i) q^{42} +(-6.12132 - 2.53553i) q^{43} +(-3.07107 + 7.41421i) q^{44} +(-1.07107 - 2.58579i) q^{45} -2.00000i q^{46} +3.17157i q^{47} +(4.00000 - 1.65685i) q^{48} +1.00000i q^{49} -3.75736 q^{50} +(-6.82843 + 2.82843i) q^{52} +(9.94975 + 4.12132i) q^{53} +(2.82843 + 6.82843i) q^{54} +(4.34315 - 4.34315i) q^{55} -2.82843i q^{56} +(4.82843 + 4.82843i) q^{57} +(2.75736 - 6.65685i) q^{58} +(-5.00000 + 12.0711i) q^{59} -3.31371 q^{60} +(-6.82843 + 2.82843i) q^{61} +(3.17157 - 3.17157i) q^{62} +1.82843 q^{63} +8.00000i q^{64} +5.65685 q^{65} +(-4.34315 + 4.34315i) q^{66} +(3.29289 - 1.36396i) q^{67} +(0.585786 - 1.41421i) q^{69} +(-0.828427 + 2.00000i) q^{70} +(4.24264 + 4.24264i) q^{71} -5.17157 q^{72} +(8.82843 - 8.82843i) q^{73} +(-4.65685 - 11.2426i) q^{74} +(-2.65685 - 1.10051i) q^{75} +(-11.6569 + 4.82843i) q^{76} +(1.53553 + 3.70711i) q^{77} -5.65685 q^{78} +9.89949i q^{79} +(2.34315 - 5.65685i) q^{80} +0.171573i q^{81} -1.17157i q^{82} +(-5.24264 - 12.6569i) q^{83} +(0.828427 - 2.00000i) q^{84} +(8.65685 - 3.58579i) q^{86} +(3.89949 - 3.89949i) q^{87} +(-4.34315 - 10.4853i) q^{88} +(-10.8284 - 10.8284i) q^{89} +(3.65685 + 1.51472i) q^{90} +(-1.41421 + 3.41421i) q^{91} +(2.00000 + 2.00000i) q^{92} +(3.17157 - 1.31371i) q^{93} +(-3.17157 - 3.17157i) q^{94} +9.65685 q^{95} +(-2.34315 + 5.65685i) q^{96} +6.82843 q^{97} +(-1.00000 - 1.00000i) q^{98} +(6.77817 - 2.80761i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 4 q^{3} - 8 q^{5} + 8 q^{6} + 8 q^{8} - 8 q^{9} + 8 q^{10} - 12 q^{11} - 8 q^{12} - 16 q^{16} - 4 q^{19} + 4 q^{21} + 4 q^{22} - 4 q^{23} + 16 q^{25} + 8 q^{26} + 8 q^{27} - 16 q^{29} - 16 q^{30}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.00000i −0.707107 + 0.707107i
\(3\) −1.00000 + 0.414214i −0.577350 + 0.239146i −0.652198 0.758049i \(-0.726153\pi\)
0.0748477 + 0.997195i \(0.476153\pi\)
\(4\) 2.00000i 1.00000i
\(5\) −0.585786 + 1.41421i −0.261972 + 0.632456i −0.999060 0.0433405i \(-0.986200\pi\)
0.737089 + 0.675796i \(0.236200\pi\)
\(6\) 0.585786 1.41421i 0.239146 0.577350i
\(7\) −0.707107 0.707107i −0.267261 0.267261i
\(8\) 2.00000 + 2.00000i 0.707107 + 0.707107i
\(9\) −1.29289 + 1.29289i −0.430964 + 0.430964i
\(10\) −0.828427 2.00000i −0.261972 0.632456i
\(11\) −3.70711 1.53553i −1.11773 0.462981i −0.254140 0.967167i \(-0.581792\pi\)
−0.863595 + 0.504187i \(0.831792\pi\)
\(12\) 0.828427 + 2.00000i 0.239146 + 0.577350i
\(13\) −1.41421 3.41421i −0.392232 0.946932i −0.989453 0.144855i \(-0.953728\pi\)
0.597221 0.802077i \(-0.296272\pi\)
\(14\) 1.41421 0.377964
\(15\) 1.65685i 0.427798i
\(16\) −4.00000 −1.00000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 2.58579i 0.609476i
\(19\) −2.41421 5.82843i −0.553859 1.33713i −0.914560 0.404451i \(-0.867462\pi\)
0.360701 0.932682i \(-0.382538\pi\)
\(20\) 2.82843 + 1.17157i 0.632456 + 0.261972i
\(21\) 1.00000 + 0.414214i 0.218218 + 0.0903888i
\(22\) 5.24264 2.17157i 1.11773 0.462981i
\(23\) −1.00000 + 1.00000i −0.208514 + 0.208514i −0.803636 0.595121i \(-0.797104\pi\)
0.595121 + 0.803636i \(0.297104\pi\)
\(24\) −2.82843 1.17157i −0.577350 0.239146i
\(25\) 1.87868 + 1.87868i 0.375736 + 0.375736i
\(26\) 4.82843 + 2.00000i 0.946932 + 0.392232i
\(27\) 2.00000 4.82843i 0.384900 0.929231i
\(28\) −1.41421 + 1.41421i −0.267261 + 0.267261i
\(29\) −4.70711 + 1.94975i −0.874088 + 0.362059i −0.774201 0.632940i \(-0.781848\pi\)
−0.0998868 + 0.994999i \(0.531848\pi\)
\(30\) 1.65685 + 1.65685i 0.302499 + 0.302499i
\(31\) −3.17157 −0.569631 −0.284816 0.958582i \(-0.591932\pi\)
−0.284816 + 0.958582i \(0.591932\pi\)
\(32\) 4.00000 4.00000i 0.707107 0.707107i
\(33\) 4.34315 0.756045
\(34\) 0 0
\(35\) 1.41421 0.585786i 0.239046 0.0990160i
\(36\) 2.58579 + 2.58579i 0.430964 + 0.430964i
\(37\) −3.29289 + 7.94975i −0.541348 + 1.30693i 0.382424 + 0.923987i \(0.375090\pi\)
−0.923772 + 0.382943i \(0.874910\pi\)
\(38\) 8.24264 + 3.41421i 1.33713 + 0.553859i
\(39\) 2.82843 + 2.82843i 0.452911 + 0.452911i
\(40\) −4.00000 + 1.65685i −0.632456 + 0.261972i
\(41\) −0.585786 + 0.585786i −0.0914845 + 0.0914845i −0.751368 0.659883i \(-0.770606\pi\)
0.659883 + 0.751368i \(0.270606\pi\)
\(42\) −1.41421 + 0.585786i −0.218218 + 0.0903888i
\(43\) −6.12132 2.53553i −0.933493 0.386665i −0.136490 0.990641i \(-0.543582\pi\)
−0.797002 + 0.603976i \(0.793582\pi\)
\(44\) −3.07107 + 7.41421i −0.462981 + 1.11773i
\(45\) −1.07107 2.58579i −0.159665 0.385466i
\(46\) 2.00000i 0.294884i
\(47\) 3.17157i 0.462621i 0.972880 + 0.231311i \(0.0743014\pi\)
−0.972880 + 0.231311i \(0.925699\pi\)
\(48\) 4.00000 1.65685i 0.577350 0.239146i
\(49\) 1.00000i 0.142857i
\(50\) −3.75736 −0.531371
\(51\) 0 0
\(52\) −6.82843 + 2.82843i −0.946932 + 0.392232i
\(53\) 9.94975 + 4.12132i 1.36670 + 0.566107i 0.940892 0.338705i \(-0.109989\pi\)
0.425810 + 0.904812i \(0.359989\pi\)
\(54\) 2.82843 + 6.82843i 0.384900 + 0.929231i
\(55\) 4.34315 4.34315i 0.585630 0.585630i
\(56\) 2.82843i 0.377964i
\(57\) 4.82843 + 4.82843i 0.639541 + 0.639541i
\(58\) 2.75736 6.65685i 0.362059 0.874088i
\(59\) −5.00000 + 12.0711i −0.650945 + 1.57152i 0.160465 + 0.987041i \(0.448701\pi\)
−0.811410 + 0.584478i \(0.801299\pi\)
\(60\) −3.31371 −0.427798
\(61\) −6.82843 + 2.82843i −0.874291 + 0.362143i −0.774280 0.632843i \(-0.781888\pi\)
−0.100011 + 0.994986i \(0.531888\pi\)
\(62\) 3.17157 3.17157i 0.402790 0.402790i
\(63\) 1.82843 0.230360
\(64\) 8.00000i 1.00000i
\(65\) 5.65685 0.701646
\(66\) −4.34315 + 4.34315i −0.534604 + 0.534604i
\(67\) 3.29289 1.36396i 0.402291 0.166634i −0.172358 0.985034i \(-0.555139\pi\)
0.574649 + 0.818400i \(0.305139\pi\)
\(68\) 0 0
\(69\) 0.585786 1.41421i 0.0705204 0.170251i
\(70\) −0.828427 + 2.00000i −0.0990160 + 0.239046i
\(71\) 4.24264 + 4.24264i 0.503509 + 0.503509i 0.912526 0.409018i \(-0.134129\pi\)
−0.409018 + 0.912526i \(0.634129\pi\)
\(72\) −5.17157 −0.609476
\(73\) 8.82843 8.82843i 1.03329 1.03329i 0.0338627 0.999426i \(-0.489219\pi\)
0.999426 0.0338627i \(-0.0107809\pi\)
\(74\) −4.65685 11.2426i −0.541348 1.30693i
\(75\) −2.65685 1.10051i −0.306787 0.127075i
\(76\) −11.6569 + 4.82843i −1.33713 + 0.553859i
\(77\) 1.53553 + 3.70711i 0.174990 + 0.422464i
\(78\) −5.65685 −0.640513
\(79\) 9.89949i 1.11378i 0.830586 + 0.556890i \(0.188006\pi\)
−0.830586 + 0.556890i \(0.811994\pi\)
\(80\) 2.34315 5.65685i 0.261972 0.632456i
\(81\) 0.171573i 0.0190637i
\(82\) 1.17157i 0.129379i
\(83\) −5.24264 12.6569i −0.575455 1.38927i −0.896854 0.442327i \(-0.854153\pi\)
0.321399 0.946944i \(-0.395847\pi\)
\(84\) 0.828427 2.00000i 0.0903888 0.218218i
\(85\) 0 0
\(86\) 8.65685 3.58579i 0.933493 0.386665i
\(87\) 3.89949 3.89949i 0.418070 0.418070i
\(88\) −4.34315 10.4853i −0.462981 1.11773i
\(89\) −10.8284 10.8284i −1.14781 1.14781i −0.986982 0.160829i \(-0.948583\pi\)
−0.160829 0.986982i \(-0.551417\pi\)
\(90\) 3.65685 + 1.51472i 0.385466 + 0.159665i
\(91\) −1.41421 + 3.41421i −0.148250 + 0.357907i
\(92\) 2.00000 + 2.00000i 0.208514 + 0.208514i
\(93\) 3.17157 1.31371i 0.328877 0.136225i
\(94\) −3.17157 3.17157i −0.327123 0.327123i
\(95\) 9.65685 0.990772
\(96\) −2.34315 + 5.65685i −0.239146 + 0.577350i
\(97\) 6.82843 0.693322 0.346661 0.937991i \(-0.387315\pi\)
0.346661 + 0.937991i \(0.387315\pi\)
\(98\) −1.00000 1.00000i −0.101015 0.101015i
\(99\) 6.77817 2.80761i 0.681232 0.282176i
\(100\) 3.75736 3.75736i 0.375736 0.375736i
\(101\) −0.585786 + 1.41421i −0.0582879 + 0.140720i −0.950340 0.311212i \(-0.899265\pi\)
0.892052 + 0.451932i \(0.149265\pi\)
\(102\) 0 0
\(103\) −1.75736 1.75736i −0.173158 0.173158i 0.615207 0.788365i \(-0.289072\pi\)
−0.788365 + 0.615207i \(0.789072\pi\)
\(104\) 4.00000 9.65685i 0.392232 0.946932i
\(105\) −1.17157 + 1.17157i −0.114334 + 0.114334i
\(106\) −14.0711 + 5.82843i −1.36670 + 0.566107i
\(107\) 10.3640 + 4.29289i 1.00192 + 0.415010i 0.822502 0.568763i \(-0.192578\pi\)
0.179420 + 0.983773i \(0.442578\pi\)
\(108\) −9.65685 4.00000i −0.929231 0.384900i
\(109\) −1.46447 3.53553i −0.140270 0.338643i 0.838096 0.545523i \(-0.183669\pi\)
−0.978366 + 0.206880i \(0.933669\pi\)
\(110\) 8.68629i 0.828205i
\(111\) 9.31371i 0.884018i
\(112\) 2.82843 + 2.82843i 0.267261 + 0.267261i
\(113\) 14.5858i 1.37212i −0.727547 0.686058i \(-0.759340\pi\)
0.727547 0.686058i \(-0.240660\pi\)
\(114\) −9.65685 −0.904447
\(115\) −0.828427 2.00000i −0.0772512 0.186501i
\(116\) 3.89949 + 9.41421i 0.362059 + 0.874088i
\(117\) 6.24264 + 2.58579i 0.577132 + 0.239056i
\(118\) −7.07107 17.0711i −0.650945 1.57152i
\(119\) 0 0
\(120\) 3.31371 3.31371i 0.302499 0.302499i
\(121\) 3.60660 + 3.60660i 0.327873 + 0.327873i
\(122\) 4.00000 9.65685i 0.362143 0.874291i
\(123\) 0.343146 0.828427i 0.0309404 0.0746968i
\(124\) 6.34315i 0.569631i
\(125\) −10.8284 + 4.48528i −0.968524 + 0.401176i
\(126\) −1.82843 + 1.82843i −0.162889 + 0.162889i
\(127\) −18.9706 −1.68337 −0.841683 0.539973i \(-0.818435\pi\)
−0.841683 + 0.539973i \(0.818435\pi\)
\(128\) −8.00000 8.00000i −0.707107 0.707107i
\(129\) 7.17157 0.631422
\(130\) −5.65685 + 5.65685i −0.496139 + 0.496139i
\(131\) −0.414214 + 0.171573i −0.0361900 + 0.0149904i −0.400705 0.916207i \(-0.631235\pi\)
0.364515 + 0.931198i \(0.381235\pi\)
\(132\) 8.68629i 0.756045i
\(133\) −2.41421 + 5.82843i −0.209339 + 0.505389i
\(134\) −1.92893 + 4.65685i −0.166634 + 0.402291i
\(135\) 5.65685 + 5.65685i 0.486864 + 0.486864i
\(136\) 0 0
\(137\) −13.1421 + 13.1421i −1.12281 + 1.12281i −0.131491 + 0.991317i \(0.541976\pi\)
−0.991317 + 0.131491i \(0.958024\pi\)
\(138\) 0.828427 + 2.00000i 0.0705204 + 0.170251i
\(139\) −5.24264 2.17157i −0.444675 0.184190i 0.149099 0.988822i \(-0.452363\pi\)
−0.593774 + 0.804632i \(0.702363\pi\)
\(140\) −1.17157 2.82843i −0.0990160 0.239046i
\(141\) −1.31371 3.17157i −0.110634 0.267095i
\(142\) −8.48528 −0.712069
\(143\) 14.8284i 1.24002i
\(144\) 5.17157 5.17157i 0.430964 0.430964i
\(145\) 7.79899i 0.647671i
\(146\) 17.6569i 1.46129i
\(147\) −0.414214 1.00000i −0.0341638 0.0824786i
\(148\) 15.8995 + 6.58579i 1.30693 + 0.541348i
\(149\) −9.94975 4.12132i −0.815115 0.337632i −0.0641222 0.997942i \(-0.520425\pi\)
−0.750993 + 0.660310i \(0.770425\pi\)
\(150\) 3.75736 1.55635i 0.306787 0.127075i
\(151\) −3.00000 + 3.00000i −0.244137 + 0.244137i −0.818559 0.574422i \(-0.805227\pi\)
0.574422 + 0.818559i \(0.305227\pi\)
\(152\) 6.82843 16.4853i 0.553859 1.33713i
\(153\) 0 0
\(154\) −5.24264 2.17157i −0.422464 0.174990i
\(155\) 1.85786 4.48528i 0.149227 0.360266i
\(156\) 5.65685 5.65685i 0.452911 0.452911i
\(157\) 14.4853 6.00000i 1.15605 0.478852i 0.279493 0.960148i \(-0.409834\pi\)
0.876558 + 0.481296i \(0.159834\pi\)
\(158\) −9.89949 9.89949i −0.787562 0.787562i
\(159\) −11.6569 −0.924449
\(160\) 3.31371 + 8.00000i 0.261972 + 0.632456i
\(161\) 1.41421 0.111456
\(162\) −0.171573 0.171573i −0.0134800 0.0134800i
\(163\) 11.9497 4.94975i 0.935976 0.387694i 0.138034 0.990428i \(-0.455922\pi\)
0.797943 + 0.602733i \(0.205922\pi\)
\(164\) 1.17157 + 1.17157i 0.0914845 + 0.0914845i
\(165\) −2.54416 + 6.14214i −0.198062 + 0.478165i
\(166\) 17.8995 + 7.41421i 1.38927 + 0.575455i
\(167\) 14.2426 + 14.2426i 1.10213 + 1.10213i 0.994154 + 0.107975i \(0.0344367\pi\)
0.107975 + 0.994154i \(0.465563\pi\)
\(168\) 1.17157 + 2.82843i 0.0903888 + 0.218218i
\(169\) −0.464466 + 0.464466i −0.0357282 + 0.0357282i
\(170\) 0 0
\(171\) 10.6569 + 4.41421i 0.814950 + 0.337563i
\(172\) −5.07107 + 12.2426i −0.386665 + 0.933493i
\(173\) −4.24264 10.2426i −0.322562 0.778734i −0.999104 0.0423292i \(-0.986522\pi\)
0.676542 0.736404i \(-0.263478\pi\)
\(174\) 7.79899i 0.591240i
\(175\) 2.65685i 0.200839i
\(176\) 14.8284 + 6.14214i 1.11773 + 0.462981i
\(177\) 14.1421i 1.06299i
\(178\) 21.6569 1.62325
\(179\) −3.46447 8.36396i −0.258946 0.625152i 0.739923 0.672692i \(-0.234862\pi\)
−0.998869 + 0.0475398i \(0.984862\pi\)
\(180\) −5.17157 + 2.14214i −0.385466 + 0.159665i
\(181\) −2.58579 1.07107i −0.192200 0.0796118i 0.284508 0.958674i \(-0.408170\pi\)
−0.476708 + 0.879062i \(0.658170\pi\)
\(182\) −2.00000 4.82843i −0.148250 0.357907i
\(183\) 5.65685 5.65685i 0.418167 0.418167i
\(184\) −4.00000 −0.294884
\(185\) −9.31371 9.31371i −0.684757 0.684757i
\(186\) −1.85786 + 4.48528i −0.136225 + 0.328877i
\(187\) 0 0
\(188\) 6.34315 0.462621
\(189\) −4.82843 + 2.00000i −0.351216 + 0.145479i
\(190\) −9.65685 + 9.65685i −0.700582 + 0.700582i
\(191\) −11.0711 −0.801074 −0.400537 0.916281i \(-0.631176\pi\)
−0.400537 + 0.916281i \(0.631176\pi\)
\(192\) −3.31371 8.00000i −0.239146 0.577350i
\(193\) −1.41421 −0.101797 −0.0508987 0.998704i \(-0.516209\pi\)
−0.0508987 + 0.998704i \(0.516209\pi\)
\(194\) −6.82843 + 6.82843i −0.490252 + 0.490252i
\(195\) −5.65685 + 2.34315i −0.405096 + 0.167796i
\(196\) 2.00000 0.142857
\(197\) −8.60660 + 20.7782i −0.613195 + 1.48038i 0.246276 + 0.969200i \(0.420793\pi\)
−0.859471 + 0.511184i \(0.829207\pi\)
\(198\) −3.97056 + 9.58579i −0.282176 + 0.681232i
\(199\) 15.0711 + 15.0711i 1.06836 + 1.06836i 0.997485 + 0.0708744i \(0.0225790\pi\)
0.0708744 + 0.997485i \(0.477421\pi\)
\(200\) 7.51472i 0.531371i
\(201\) −2.72792 + 2.72792i −0.192413 + 0.192413i
\(202\) −0.828427 2.00000i −0.0582879 0.140720i
\(203\) 4.70711 + 1.94975i 0.330374 + 0.136845i
\(204\) 0 0
\(205\) −0.485281 1.17157i −0.0338935 0.0818262i
\(206\) 3.51472 0.244882
\(207\) 2.58579i 0.179725i
\(208\) 5.65685 + 13.6569i 0.392232 + 0.946932i
\(209\) 25.3137i 1.75099i
\(210\) 2.34315i 0.161692i
\(211\) 0.121320 + 0.292893i 0.00835204 + 0.0201636i 0.928001 0.372579i \(-0.121526\pi\)
−0.919649 + 0.392742i \(0.871526\pi\)
\(212\) 8.24264 19.8995i 0.566107 1.36670i
\(213\) −6.00000 2.48528i −0.411113 0.170289i
\(214\) −14.6569 + 6.07107i −1.00192 + 0.415010i
\(215\) 7.17157 7.17157i 0.489097 0.489097i
\(216\) 13.6569 5.65685i 0.929231 0.384900i
\(217\) 2.24264 + 2.24264i 0.152240 + 0.152240i
\(218\) 5.00000 + 2.07107i 0.338643 + 0.140270i
\(219\) −5.17157 + 12.4853i −0.349463 + 0.843677i
\(220\) −8.68629 8.68629i −0.585630 0.585630i
\(221\) 0 0
\(222\) 9.31371 + 9.31371i 0.625095 + 0.625095i
\(223\) −0.686292 −0.0459575 −0.0229787 0.999736i \(-0.507315\pi\)
−0.0229787 + 0.999736i \(0.507315\pi\)
\(224\) −5.65685 −0.377964
\(225\) −4.85786 −0.323858
\(226\) 14.5858 + 14.5858i 0.970232 + 0.970232i
\(227\) −11.0000 + 4.55635i −0.730096 + 0.302416i −0.716591 0.697493i \(-0.754299\pi\)
−0.0135043 + 0.999909i \(0.504299\pi\)
\(228\) 9.65685 9.65685i 0.639541 0.639541i
\(229\) 8.00000 19.3137i 0.528655 1.27629i −0.403750 0.914869i \(-0.632293\pi\)
0.932405 0.361416i \(-0.117707\pi\)
\(230\) 2.82843 + 1.17157i 0.186501 + 0.0772512i
\(231\) −3.07107 3.07107i −0.202061 0.202061i
\(232\) −13.3137 5.51472i −0.874088 0.362059i
\(233\) 3.82843 3.82843i 0.250809 0.250809i −0.570494 0.821302i \(-0.693248\pi\)
0.821302 + 0.570494i \(0.193248\pi\)
\(234\) −8.82843 + 3.65685i −0.577132 + 0.239056i
\(235\) −4.48528 1.85786i −0.292587 0.121194i
\(236\) 24.1421 + 10.0000i 1.57152 + 0.650945i
\(237\) −4.10051 9.89949i −0.266356 0.643041i
\(238\) 0 0
\(239\) 6.00000i 0.388108i −0.980991 0.194054i \(-0.937836\pi\)
0.980991 0.194054i \(-0.0621637\pi\)
\(240\) 6.62742i 0.427798i
\(241\) 15.7990i 1.01770i −0.860854 0.508851i \(-0.830070\pi\)
0.860854 0.508851i \(-0.169930\pi\)
\(242\) −7.21320 −0.463682
\(243\) 5.92893 + 14.3137i 0.380341 + 0.918225i
\(244\) 5.65685 + 13.6569i 0.362143 + 0.874291i
\(245\) −1.41421 0.585786i −0.0903508 0.0374245i
\(246\) 0.485281 + 1.17157i 0.0309404 + 0.0746968i
\(247\) −16.4853 + 16.4853i −1.04893 + 1.04893i
\(248\) −6.34315 6.34315i −0.402790 0.402790i
\(249\) 10.4853 + 10.4853i 0.664478 + 0.664478i
\(250\) 6.34315 15.3137i 0.401176 0.968524i
\(251\) −8.65685 + 20.8995i −0.546416 + 1.31916i 0.373711 + 0.927545i \(0.378085\pi\)
−0.920127 + 0.391619i \(0.871915\pi\)
\(252\) 3.65685i 0.230360i
\(253\) 5.24264 2.17157i 0.329602 0.136526i
\(254\) 18.9706 18.9706i 1.19032 1.19032i
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 0.142136 0.00886618 0.00443309 0.999990i \(-0.498589\pi\)
0.00443309 + 0.999990i \(0.498589\pi\)
\(258\) −7.17157 + 7.17157i −0.446483 + 0.446483i
\(259\) 7.94975 3.29289i 0.493973 0.204610i
\(260\) 11.3137i 0.701646i
\(261\) 3.56497 8.60660i 0.220666 0.532735i
\(262\) 0.242641 0.585786i 0.0149904 0.0361900i
\(263\) 1.65685 + 1.65685i 0.102166 + 0.102166i 0.756342 0.654176i \(-0.226985\pi\)
−0.654176 + 0.756342i \(0.726985\pi\)
\(264\) 8.68629 + 8.68629i 0.534604 + 0.534604i
\(265\) −11.6569 + 11.6569i −0.716075 + 0.716075i
\(266\) −3.41421 8.24264i −0.209339 0.505389i
\(267\) 15.3137 + 6.34315i 0.937184 + 0.388194i
\(268\) −2.72792 6.58579i −0.166634 0.402291i
\(269\) −5.75736 13.8995i −0.351032 0.847467i −0.996493 0.0836738i \(-0.973335\pi\)
0.645461 0.763793i \(-0.276665\pi\)
\(270\) −11.3137 −0.688530
\(271\) 28.4853i 1.73036i −0.501463 0.865179i \(-0.667205\pi\)
0.501463 0.865179i \(-0.332795\pi\)
\(272\) 0 0
\(273\) 4.00000i 0.242091i
\(274\) 26.2843i 1.58789i
\(275\) −4.07969 9.84924i −0.246015 0.593932i
\(276\) −2.82843 1.17157i −0.170251 0.0705204i
\(277\) 4.36396 + 1.80761i 0.262205 + 0.108609i 0.509913 0.860226i \(-0.329677\pi\)
−0.247708 + 0.968835i \(0.579677\pi\)
\(278\) 7.41421 3.07107i 0.444675 0.184190i
\(279\) 4.10051 4.10051i 0.245491 0.245491i
\(280\) 4.00000 + 1.65685i 0.239046 + 0.0990160i
\(281\) −12.6569 12.6569i −0.755045 0.755045i 0.220371 0.975416i \(-0.429273\pi\)
−0.975416 + 0.220371i \(0.929273\pi\)
\(282\) 4.48528 + 1.85786i 0.267095 + 0.110634i
\(283\) −6.89949 + 16.6569i −0.410132 + 0.990147i 0.574969 + 0.818175i \(0.305014\pi\)
−0.985102 + 0.171972i \(0.944986\pi\)
\(284\) 8.48528 8.48528i 0.503509 0.503509i
\(285\) −9.65685 + 4.00000i −0.572023 + 0.236940i
\(286\) −14.8284 14.8284i −0.876823 0.876823i
\(287\) 0.828427 0.0489005
\(288\) 10.3431i 0.609476i
\(289\) 17.0000 1.00000
\(290\) 7.79899 + 7.79899i 0.457972 + 0.457972i
\(291\) −6.82843 + 2.82843i −0.400289 + 0.165805i
\(292\) −17.6569 17.6569i −1.03329 1.03329i
\(293\) 9.17157 22.1421i 0.535809 1.29356i −0.391816 0.920044i \(-0.628153\pi\)
0.927625 0.373514i \(-0.121847\pi\)
\(294\) 1.41421 + 0.585786i 0.0824786 + 0.0341638i
\(295\) −14.1421 14.1421i −0.823387 0.823387i
\(296\) −22.4853 + 9.31371i −1.30693 + 0.541348i
\(297\) −14.8284 + 14.8284i −0.860433 + 0.860433i
\(298\) 14.0711 5.82843i 0.815115 0.337632i
\(299\) 4.82843 + 2.00000i 0.279235 + 0.115663i
\(300\) −2.20101 + 5.31371i −0.127075 + 0.306787i
\(301\) 2.53553 + 6.12132i 0.146146 + 0.352827i
\(302\) 6.00000i 0.345261i
\(303\) 1.65685i 0.0951838i
\(304\) 9.65685 + 23.3137i 0.553859 + 1.33713i
\(305\) 11.3137i 0.647821i
\(306\) 0 0
\(307\) −0.857864 2.07107i −0.0489609 0.118202i 0.897507 0.441001i \(-0.145376\pi\)
−0.946468 + 0.322799i \(0.895376\pi\)
\(308\) 7.41421 3.07107i 0.422464 0.174990i
\(309\) 2.48528 + 1.02944i 0.141383 + 0.0585626i
\(310\) 2.62742 + 6.34315i 0.149227 + 0.360266i
\(311\) −3.31371 + 3.31371i −0.187903 + 0.187903i −0.794789 0.606886i \(-0.792419\pi\)
0.606886 + 0.794789i \(0.292419\pi\)
\(312\) 11.3137i 0.640513i
\(313\) −19.0711 19.0711i −1.07796 1.07796i −0.996692 0.0812682i \(-0.974103\pi\)
−0.0812682 0.996692i \(-0.525897\pi\)
\(314\) −8.48528 + 20.4853i −0.478852 + 1.15605i
\(315\) −1.07107 + 2.58579i −0.0603478 + 0.145693i
\(316\) 19.7990 1.11378
\(317\) −8.36396 + 3.46447i −0.469767 + 0.194584i −0.604993 0.796231i \(-0.706824\pi\)
0.135226 + 0.990815i \(0.456824\pi\)
\(318\) 11.6569 11.6569i 0.653684 0.653684i
\(319\) 20.4437 1.14462
\(320\) −11.3137 4.68629i −0.632456 0.261972i
\(321\) −12.1421 −0.677708
\(322\) −1.41421 + 1.41421i −0.0788110 + 0.0788110i
\(323\) 0 0
\(324\) 0.343146 0.0190637
\(325\) 3.75736 9.07107i 0.208421 0.503172i
\(326\) −7.00000 + 16.8995i −0.387694 + 0.935976i
\(327\) 2.92893 + 2.92893i 0.161970 + 0.161970i
\(328\) −2.34315 −0.129379
\(329\) 2.24264 2.24264i 0.123641 0.123641i
\(330\) −3.59798 8.68629i −0.198062 0.478165i
\(331\) 0.878680 + 0.363961i 0.0482966 + 0.0200051i 0.406701 0.913561i \(-0.366679\pi\)
−0.358404 + 0.933566i \(0.616679\pi\)
\(332\) −25.3137 + 10.4853i −1.38927 + 0.575455i
\(333\) −6.02082 14.5355i −0.329939 0.796542i
\(334\) −28.4853 −1.55865
\(335\) 5.45584i 0.298085i
\(336\) −4.00000 1.65685i −0.218218 0.0903888i
\(337\) 32.7279i 1.78280i 0.453214 + 0.891402i \(0.350277\pi\)
−0.453214 + 0.891402i \(0.649723\pi\)
\(338\) 0.928932i 0.0505272i
\(339\) 6.04163 + 14.5858i 0.328136 + 0.792191i
\(340\) 0 0
\(341\) 11.7574 + 4.87006i 0.636697 + 0.263728i
\(342\) −15.0711 + 6.24264i −0.814950 + 0.337563i
\(343\) 0.707107 0.707107i 0.0381802 0.0381802i
\(344\) −7.17157 17.3137i −0.386665 0.933493i
\(345\) 1.65685 + 1.65685i 0.0892020 + 0.0892020i
\(346\) 14.4853 + 6.00000i 0.778734 + 0.322562i
\(347\) 2.12132 5.12132i 0.113878 0.274927i −0.856657 0.515887i \(-0.827462\pi\)
0.970535 + 0.240960i \(0.0774624\pi\)
\(348\) −7.79899 7.79899i −0.418070 0.418070i
\(349\) 19.3137 8.00000i 1.03384 0.428230i 0.199742 0.979848i \(-0.435989\pi\)
0.834097 + 0.551618i \(0.185989\pi\)
\(350\) 2.65685 + 2.65685i 0.142015 + 0.142015i
\(351\) −19.3137 −1.03089
\(352\) −20.9706 + 8.68629i −1.11773 + 0.462981i
\(353\) −23.4558 −1.24843 −0.624214 0.781253i \(-0.714581\pi\)
−0.624214 + 0.781253i \(0.714581\pi\)
\(354\) 14.1421 + 14.1421i 0.751646 + 0.751646i
\(355\) −8.48528 + 3.51472i −0.450352 + 0.186542i
\(356\) −21.6569 + 21.6569i −1.14781 + 1.14781i
\(357\) 0 0
\(358\) 11.8284 + 4.89949i 0.625152 + 0.258946i
\(359\) −21.9706 21.9706i −1.15956 1.15956i −0.984570 0.174992i \(-0.944010\pi\)
−0.174992 0.984570i \(-0.555990\pi\)
\(360\) 3.02944 7.31371i 0.159665 0.385466i
\(361\) −14.7071 + 14.7071i −0.774058 + 0.774058i
\(362\) 3.65685 1.51472i 0.192200 0.0796118i
\(363\) −5.10051 2.11270i −0.267707 0.110888i
\(364\) 6.82843 + 2.82843i 0.357907 + 0.148250i
\(365\) 7.31371 + 17.6569i 0.382817 + 0.924202i
\(366\) 11.3137i 0.591377i
\(367\) 4.48528i 0.234130i 0.993124 + 0.117065i \(0.0373486\pi\)
−0.993124 + 0.117065i \(0.962651\pi\)
\(368\) 4.00000 4.00000i 0.208514 0.208514i
\(369\) 1.51472i 0.0788531i
\(370\) 18.6274 0.968393
\(371\) −4.12132 9.94975i −0.213968 0.516565i
\(372\) −2.62742 6.34315i −0.136225 0.328877i
\(373\) 28.6066 + 11.8492i 1.48119 + 0.613531i 0.969380 0.245566i \(-0.0789738\pi\)
0.511814 + 0.859096i \(0.328974\pi\)
\(374\) 0 0
\(375\) 8.97056 8.97056i 0.463238 0.463238i
\(376\) −6.34315 + 6.34315i −0.327123 + 0.327123i
\(377\) 13.3137 + 13.3137i 0.685691 + 0.685691i
\(378\) 2.82843 6.82843i 0.145479 0.351216i
\(379\) 13.2635 32.0208i 0.681298 1.64480i −0.0803173 0.996769i \(-0.525593\pi\)
0.761615 0.648029i \(-0.224407\pi\)
\(380\) 19.3137i 0.990772i
\(381\) 18.9706 7.85786i 0.971891 0.402571i
\(382\) 11.0711 11.0711i 0.566445 0.566445i
\(383\) −7.17157 −0.366450 −0.183225 0.983071i \(-0.558654\pi\)
−0.183225 + 0.983071i \(0.558654\pi\)
\(384\) 11.3137 + 4.68629i 0.577350 + 0.239146i
\(385\) −6.14214 −0.313032
\(386\) 1.41421 1.41421i 0.0719816 0.0719816i
\(387\) 11.1924 4.63604i 0.568941 0.235663i
\(388\) 13.6569i 0.693322i
\(389\) −12.0208 + 29.0208i −0.609480 + 1.47141i 0.254088 + 0.967181i \(0.418225\pi\)
−0.863568 + 0.504233i \(0.831775\pi\)
\(390\) 3.31371 8.00000i 0.167796 0.405096i
\(391\) 0 0
\(392\) −2.00000 + 2.00000i −0.101015 + 0.101015i
\(393\) 0.343146 0.343146i 0.0173094 0.0173094i
\(394\) −12.1716 29.3848i −0.613195 1.48038i
\(395\) −14.0000 5.79899i −0.704416 0.291779i
\(396\) −5.61522 13.5563i −0.282176 0.681232i
\(397\) 9.65685 + 23.3137i 0.484664 + 1.17008i 0.957371 + 0.288862i \(0.0932768\pi\)
−0.472707 + 0.881220i \(0.656723\pi\)
\(398\) −30.1421 −1.51089
\(399\) 6.82843i 0.341849i
\(400\) −7.51472 7.51472i −0.375736 0.375736i
\(401\) 23.7574i 1.18639i −0.805060 0.593193i \(-0.797867\pi\)
0.805060 0.593193i \(-0.202133\pi\)
\(402\) 5.45584i 0.272113i
\(403\) 4.48528 + 10.8284i 0.223428 + 0.539402i
\(404\) 2.82843 + 1.17157i 0.140720 + 0.0582879i
\(405\) −0.242641 0.100505i −0.0120569 0.00499414i
\(406\) −6.65685 + 2.75736i −0.330374 + 0.136845i
\(407\) 24.4142 24.4142i 1.21017 1.21017i
\(408\) 0 0
\(409\) 24.2426 + 24.2426i 1.19872 + 1.19872i 0.974550 + 0.224172i \(0.0719677\pi\)
0.224172 + 0.974550i \(0.428032\pi\)
\(410\) 1.65685 + 0.686292i 0.0818262 + 0.0338935i
\(411\) 7.69848 18.5858i 0.379738 0.916769i
\(412\) −3.51472 + 3.51472i −0.173158 + 0.173158i
\(413\) 12.0711 5.00000i 0.593978 0.246034i
\(414\) 2.58579 + 2.58579i 0.127084 + 0.127084i
\(415\) 20.9706 1.02940
\(416\) −19.3137 8.00000i −0.946932 0.392232i
\(417\) 6.14214 0.300782
\(418\) −25.3137 25.3137i −1.23813 1.23813i
\(419\) −7.24264 + 3.00000i −0.353826 + 0.146560i −0.552515 0.833503i \(-0.686332\pi\)
0.198689 + 0.980063i \(0.436332\pi\)
\(420\) 2.34315 + 2.34315i 0.114334 + 0.114334i
\(421\) 2.39340 5.77817i 0.116647 0.281611i −0.854763 0.519018i \(-0.826298\pi\)
0.971410 + 0.237407i \(0.0762976\pi\)
\(422\) −0.414214 0.171573i −0.0201636 0.00835204i
\(423\) −4.10051 4.10051i −0.199373 0.199373i
\(424\) 11.6569 + 28.1421i 0.566107 + 1.36670i
\(425\) 0 0
\(426\) 8.48528 3.51472i 0.411113 0.170289i
\(427\) 6.82843 + 2.82843i 0.330451 + 0.136877i
\(428\) 8.58579 20.7279i 0.415010 1.00192i
\(429\) −6.14214 14.8284i −0.296545 0.715923i
\(430\) 14.3431i 0.691688i
\(431\) 10.3431i 0.498212i −0.968476 0.249106i \(-0.919863\pi\)
0.968476 0.249106i \(-0.0801367\pi\)
\(432\) −8.00000 + 19.3137i −0.384900 + 0.929231i
\(433\) 32.2843i 1.55148i 0.631051 + 0.775742i \(0.282624\pi\)
−0.631051 + 0.775742i \(0.717376\pi\)
\(434\) −4.48528 −0.215300
\(435\) 3.23045 + 7.79899i 0.154888 + 0.373933i
\(436\) −7.07107 + 2.92893i −0.338643 + 0.140270i
\(437\) 8.24264 + 3.41421i 0.394299 + 0.163324i
\(438\) −7.31371 17.6569i −0.349463 0.843677i
\(439\) −18.0000 + 18.0000i −0.859093 + 0.859093i −0.991231 0.132138i \(-0.957816\pi\)
0.132138 + 0.991231i \(0.457816\pi\)
\(440\) 17.3726 0.828205
\(441\) −1.29289 1.29289i −0.0615663 0.0615663i
\(442\) 0 0
\(443\) −4.19239 + 10.1213i −0.199186 + 0.480878i −0.991637 0.129057i \(-0.958805\pi\)
0.792451 + 0.609936i \(0.208805\pi\)
\(444\) −18.6274 −0.884018
\(445\) 21.6569 8.97056i 1.02663 0.425245i
\(446\) 0.686292 0.686292i 0.0324968 0.0324968i
\(447\) 11.6569 0.551350
\(448\) 5.65685 5.65685i 0.267261 0.267261i
\(449\) 17.4558 0.823792 0.411896 0.911231i \(-0.364867\pi\)
0.411896 + 0.911231i \(0.364867\pi\)
\(450\) 4.85786 4.85786i 0.229002 0.229002i
\(451\) 3.07107 1.27208i 0.144611 0.0598998i
\(452\) −29.1716 −1.37212
\(453\) 1.75736 4.24264i 0.0825679 0.199337i
\(454\) 6.44365 15.5563i 0.302416 0.730096i
\(455\) −4.00000 4.00000i −0.187523 0.187523i
\(456\) 19.3137i 0.904447i
\(457\) 8.00000 8.00000i 0.374224 0.374224i −0.494789 0.869013i \(-0.664755\pi\)
0.869013 + 0.494789i \(0.164755\pi\)
\(458\) 11.3137 + 27.3137i 0.528655 + 1.27629i
\(459\) 0 0
\(460\) −4.00000 + 1.65685i −0.186501 + 0.0772512i
\(461\) 8.48528 + 20.4853i 0.395199 + 0.954095i 0.988788 + 0.149326i \(0.0477105\pi\)
−0.593589 + 0.804768i \(0.702290\pi\)
\(462\) 6.14214 0.285758
\(463\) 20.0416i 0.931414i −0.884939 0.465707i \(-0.845800\pi\)
0.884939 0.465707i \(-0.154200\pi\)
\(464\) 18.8284 7.79899i 0.874088 0.362059i
\(465\) 5.25483i 0.243687i
\(466\) 7.65685i 0.354697i
\(467\) 14.6569 + 35.3848i 0.678238 + 1.63741i 0.767224 + 0.641379i \(0.221637\pi\)
−0.0889857 + 0.996033i \(0.528363\pi\)
\(468\) 5.17157 12.4853i 0.239056 0.577132i
\(469\) −3.29289 1.36396i −0.152052 0.0629819i
\(470\) 6.34315 2.62742i 0.292587 0.121194i
\(471\) −12.0000 + 12.0000i −0.552931 + 0.552931i
\(472\) −34.1421 + 14.1421i −1.57152 + 0.650945i
\(473\) 18.7990 + 18.7990i 0.864378 + 0.864378i
\(474\) 14.0000 + 5.79899i 0.643041 + 0.266356i
\(475\) 6.41421 15.4853i 0.294304 0.710513i
\(476\) 0 0
\(477\) −18.1924 + 7.53553i −0.832972 + 0.345028i
\(478\) 6.00000 + 6.00000i 0.274434 + 0.274434i
\(479\) −6.68629 −0.305504 −0.152752 0.988265i \(-0.548814\pi\)
−0.152752 + 0.988265i \(0.548814\pi\)
\(480\) −6.62742 6.62742i −0.302499 0.302499i
\(481\) 31.7990 1.44991
\(482\) 15.7990 + 15.7990i 0.719624 + 0.719624i
\(483\) −1.41421 + 0.585786i −0.0643489 + 0.0266542i
\(484\) 7.21320 7.21320i 0.327873 0.327873i
\(485\) −4.00000 + 9.65685i −0.181631 + 0.438495i
\(486\) −20.2426 8.38478i −0.918225 0.380341i
\(487\) −29.1421 29.1421i −1.32056 1.32056i −0.913325 0.407231i \(-0.866494\pi\)
−0.407231 0.913325i \(-0.633506\pi\)
\(488\) −19.3137 8.00000i −0.874291 0.362143i
\(489\) −9.89949 + 9.89949i −0.447671 + 0.447671i
\(490\) 2.00000 0.828427i 0.0903508 0.0374245i
\(491\) 13.5355 + 5.60660i 0.610850 + 0.253022i 0.666592 0.745423i \(-0.267752\pi\)
−0.0557418 + 0.998445i \(0.517752\pi\)
\(492\) −1.65685 0.686292i −0.0746968 0.0309404i
\(493\) 0 0
\(494\) 32.9706i 1.48342i
\(495\) 11.2304i 0.504771i
\(496\) 12.6863 0.569631
\(497\) 6.00000i 0.269137i
\(498\) −20.9706 −0.939713
\(499\) 7.46447 + 18.0208i 0.334155 + 0.806722i 0.998253 + 0.0590770i \(0.0188157\pi\)
−0.664098 + 0.747646i \(0.731184\pi\)
\(500\) 8.97056 + 21.6569i 0.401176 + 0.968524i
\(501\) −20.1421 8.34315i −0.899884 0.372744i
\(502\) −12.2426 29.5563i −0.546416 1.31916i
\(503\) 10.8284 10.8284i 0.482816 0.482816i −0.423214 0.906030i \(-0.639098\pi\)
0.906030 + 0.423214i \(0.139098\pi\)
\(504\) 3.65685 + 3.65685i 0.162889 + 0.162889i
\(505\) −1.65685 1.65685i −0.0737290 0.0737290i
\(506\) −3.07107 + 7.41421i −0.136526 + 0.329602i
\(507\) 0.272078 0.656854i 0.0120834 0.0291719i
\(508\) 37.9411i 1.68337i
\(509\) −19.3137 + 8.00000i −0.856065 + 0.354594i −0.767167 0.641447i \(-0.778334\pi\)
−0.0888977 + 0.996041i \(0.528334\pi\)
\(510\) 0 0
\(511\) −12.4853 −0.552316
\(512\) −16.0000 + 16.0000i −0.707107 + 0.707107i
\(513\) −32.9706 −1.45569
\(514\) −0.142136 + 0.142136i −0.00626933 + 0.00626933i
\(515\) 3.51472 1.45584i 0.154877 0.0641522i
\(516\) 14.3431i 0.631422i
\(517\) 4.87006 11.7574i 0.214185 0.517088i
\(518\) −4.65685 + 11.2426i −0.204610 + 0.493973i
\(519\) 8.48528 + 8.48528i 0.372463 + 0.372463i
\(520\) 11.3137 + 11.3137i 0.496139 + 0.496139i
\(521\) 8.72792 8.72792i 0.382377 0.382377i −0.489581 0.871958i \(-0.662850\pi\)
0.871958 + 0.489581i \(0.162850\pi\)
\(522\) 5.04163 + 12.1716i 0.220666 + 0.532735i
\(523\) −1.00000 0.414214i −0.0437269 0.0181123i 0.360713 0.932677i \(-0.382533\pi\)
−0.404440 + 0.914565i \(0.632533\pi\)
\(524\) 0.343146 + 0.828427i 0.0149904 + 0.0361900i
\(525\) 1.10051 + 2.65685i 0.0480300 + 0.115955i
\(526\) −3.31371 −0.144485
\(527\) 0 0
\(528\) −17.3726 −0.756045
\(529\) 21.0000i 0.913043i
\(530\) 23.3137i 1.01268i
\(531\) −9.14214 22.0711i −0.396735 0.957803i
\(532\) 11.6569 + 4.82843i 0.505389 + 0.209339i
\(533\) 2.82843 + 1.17157i 0.122513 + 0.0507465i
\(534\) −21.6569 + 8.97056i −0.937184 + 0.388194i
\(535\) −12.1421 + 12.1421i −0.524950 + 0.524950i
\(536\) 9.31371 + 3.85786i 0.402291 + 0.166634i
\(537\) 6.92893 + 6.92893i 0.299005 + 0.299005i
\(538\) 19.6569 + 8.14214i 0.847467 + 0.351032i
\(539\) 1.53553 3.70711i 0.0661401 0.159676i
\(540\) 11.3137 11.3137i 0.486864 0.486864i
\(541\) 9.12132 3.77817i 0.392156 0.162436i −0.177887 0.984051i \(-0.556926\pi\)
0.570044 + 0.821614i \(0.306926\pi\)
\(542\) 28.4853 + 28.4853i 1.22355 + 1.22355i
\(543\) 3.02944 0.130006
\(544\) 0 0
\(545\) 5.85786 0.250923
\(546\) 4.00000 + 4.00000i 0.171184 + 0.171184i
\(547\) 8.77817 3.63604i 0.375328 0.155466i −0.187042 0.982352i \(-0.559890\pi\)
0.562369 + 0.826886i \(0.309890\pi\)
\(548\) 26.2843 + 26.2843i 1.12281 + 1.12281i
\(549\) 5.17157 12.4853i 0.220717 0.532859i
\(550\) 13.9289 + 5.76955i 0.593932 + 0.246015i
\(551\) 22.7279 + 22.7279i 0.968242 + 0.968242i
\(552\) 4.00000 1.65685i 0.170251 0.0705204i
\(553\) 7.00000 7.00000i 0.297670 0.297670i
\(554\) −6.17157 + 2.55635i −0.262205 + 0.108609i
\(555\) 13.1716 + 5.45584i 0.559102 + 0.231588i
\(556\) −4.34315 + 10.4853i −0.184190 + 0.444675i
\(557\) 1.80761 + 4.36396i 0.0765910 + 0.184907i 0.957537 0.288309i \(-0.0930930\pi\)
−0.880946 + 0.473216i \(0.843093\pi\)
\(558\) 8.20101i 0.347176i
\(559\) 24.4853i 1.03562i
\(560\) −5.65685 + 2.34315i −0.239046 + 0.0990160i
\(561\) 0 0
\(562\) 25.3137 1.06779
\(563\) −8.31371 20.0711i −0.350381 0.845895i −0.996573 0.0827196i \(-0.973639\pi\)
0.646192 0.763175i \(-0.276361\pi\)
\(564\) −6.34315 + 2.62742i −0.267095 + 0.110634i
\(565\) 20.6274 + 8.54416i 0.867802 + 0.359455i
\(566\) −9.75736 23.5563i −0.410132 0.990147i
\(567\) 0.121320 0.121320i 0.00509498 0.00509498i
\(568\) 16.9706i 0.712069i
\(569\) −19.7990 19.7990i −0.830017 0.830017i 0.157502 0.987519i \(-0.449656\pi\)
−0.987519 + 0.157502i \(0.949656\pi\)
\(570\) 5.65685 13.6569i 0.236940 0.572023i
\(571\) −12.1213 + 29.2635i −0.507261 + 1.22464i 0.438192 + 0.898881i \(0.355619\pi\)
−0.945454 + 0.325756i \(0.894381\pi\)
\(572\) 29.6569 1.24002
\(573\) 11.0711 4.58579i 0.462500 0.191574i
\(574\) −0.828427 + 0.828427i −0.0345779 + 0.0345779i
\(575\) −3.75736 −0.156693
\(576\) −10.3431 10.3431i −0.430964 0.430964i
\(577\) −24.1421 −1.00505 −0.502525 0.864563i \(-0.667596\pi\)
−0.502525 + 0.864563i \(0.667596\pi\)
\(578\) −17.0000 + 17.0000i −0.707107 + 0.707107i
\(579\) 1.41421 0.585786i 0.0587727 0.0243445i
\(580\) −15.5980 −0.647671
\(581\) −5.24264 + 12.6569i −0.217501 + 0.525095i
\(582\) 4.00000 9.65685i 0.165805 0.400289i
\(583\) −30.5563 30.5563i −1.26551 1.26551i
\(584\) 35.3137 1.46129
\(585\) −7.31371 + 7.31371i −0.302385 + 0.302385i
\(586\) 12.9706 + 31.3137i 0.535809 + 1.29356i
\(587\) −23.2426 9.62742i −0.959326 0.397366i −0.152598 0.988288i \(-0.548764\pi\)
−0.806728 + 0.590922i \(0.798764\pi\)
\(588\) −2.00000 + 0.828427i −0.0824786 + 0.0341638i
\(589\) 7.65685 + 18.4853i 0.315495 + 0.761673i
\(590\) 28.2843 1.16445
\(591\) 24.3431i 1.00134i
\(592\) 13.1716 31.7990i 0.541348 1.30693i
\(593\) 28.8284i 1.18384i 0.805996 + 0.591921i \(0.201630\pi\)
−0.805996 + 0.591921i \(0.798370\pi\)
\(594\) 29.6569i 1.21684i
\(595\) 0 0
\(596\) −8.24264 + 19.8995i −0.337632 + 0.815115i
\(597\) −21.3137 8.82843i −0.872312 0.361323i
\(598\) −6.82843 + 2.82843i −0.279235 + 0.115663i
\(599\) 3.31371 3.31371i 0.135394 0.135394i −0.636161 0.771556i \(-0.719479\pi\)
0.771556 + 0.636161i \(0.219479\pi\)
\(600\) −3.11270 7.51472i −0.127075 0.306787i
\(601\) −21.3137 21.3137i −0.869404 0.869404i 0.123002 0.992406i \(-0.460748\pi\)
−0.992406 + 0.123002i \(0.960748\pi\)
\(602\) −8.65685 3.58579i −0.352827 0.146146i
\(603\) −2.49390 + 6.02082i −0.101560 + 0.245187i
\(604\) 6.00000 + 6.00000i 0.244137 + 0.244137i
\(605\) −7.21320 + 2.98781i −0.293258 + 0.121472i
\(606\) 1.65685 + 1.65685i 0.0673051 + 0.0673051i
\(607\) −37.6569 −1.52844 −0.764222 0.644953i \(-0.776877\pi\)
−0.764222 + 0.644953i \(0.776877\pi\)
\(608\) −32.9706 13.6569i −1.33713 0.553859i
\(609\) −5.51472 −0.223468
\(610\) 11.3137 + 11.3137i 0.458079 + 0.458079i
\(611\) 10.8284 4.48528i 0.438071 0.181455i
\(612\) 0 0
\(613\) 15.7487 38.0208i 0.636086 1.53565i −0.195768 0.980650i \(-0.562720\pi\)
0.831853 0.554996i \(-0.187280\pi\)
\(614\) 2.92893 + 1.21320i 0.118202 + 0.0489609i
\(615\) 0.970563 + 0.970563i 0.0391369 + 0.0391369i
\(616\) −4.34315 + 10.4853i −0.174990 + 0.422464i
\(617\) 26.9706 26.9706i 1.08579 1.08579i 0.0898375 0.995956i \(-0.471365\pi\)
0.995956 0.0898375i \(-0.0286348\pi\)
\(618\) −3.51472 + 1.45584i −0.141383 + 0.0585626i
\(619\) −16.8995 7.00000i −0.679248 0.281354i 0.0162645 0.999868i \(-0.494823\pi\)
−0.695513 + 0.718514i \(0.744823\pi\)
\(620\) −8.97056 3.71573i −0.360266 0.149227i
\(621\) 2.82843 + 6.82843i 0.113501 + 0.274015i
\(622\) 6.62742i 0.265735i
\(623\) 15.3137i 0.613531i
\(624\) −11.3137 11.3137i −0.452911 0.452911i
\(625\) 4.65685i 0.186274i
\(626\) 38.1421 1.52447
\(627\) −10.4853 25.3137i −0.418742 1.01093i
\(628\) −12.0000 28.9706i −0.478852 1.15605i
\(629\) 0 0
\(630\) −1.51472 3.65685i −0.0603478 0.145693i
\(631\) −20.2426 + 20.2426i −0.805847 + 0.805847i −0.984002 0.178156i \(-0.942987\pi\)
0.178156 + 0.984002i \(0.442987\pi\)
\(632\) −19.7990 + 19.7990i −0.787562 + 0.787562i
\(633\) −0.242641 0.242641i −0.00964410 0.00964410i
\(634\) 4.89949 11.8284i 0.194584 0.469767i
\(635\) 11.1127 26.8284i 0.440994 1.06465i
\(636\) 23.3137i 0.924449i
\(637\) 3.41421 1.41421i 0.135276 0.0560332i
\(638\) −20.4437 + 20.4437i −0.809372 + 0.809372i
\(639\) −10.9706 −0.433989
\(640\) 16.0000 6.62742i 0.632456 0.261972i
\(641\) −38.1838 −1.50817 −0.754084 0.656778i \(-0.771919\pi\)
−0.754084 + 0.656778i \(0.771919\pi\)
\(642\) 12.1421 12.1421i 0.479212 0.479212i
\(643\) −18.5563 + 7.68629i −0.731791 + 0.303118i −0.717288 0.696777i \(-0.754617\pi\)
−0.0145032 + 0.999895i \(0.504617\pi\)
\(644\) 2.82843i 0.111456i
\(645\) −4.20101 + 10.1421i −0.165415 + 0.399346i
\(646\) 0 0
\(647\) −11.5563 11.5563i −0.454327 0.454327i 0.442461 0.896788i \(-0.354106\pi\)
−0.896788 + 0.442461i \(0.854106\pi\)
\(648\) −0.343146 + 0.343146i −0.0134800 + 0.0134800i
\(649\) 37.0711 37.0711i 1.45517 1.45517i
\(650\) 5.31371 + 12.8284i 0.208421 + 0.503172i
\(651\) −3.17157 1.31371i −0.124304 0.0514883i
\(652\) −9.89949 23.8995i −0.387694 0.935976i
\(653\) 6.77817 + 16.3640i 0.265250 + 0.640371i 0.999248 0.0387812i \(-0.0123475\pi\)
−0.733997 + 0.679152i \(0.762348\pi\)
\(654\) −5.85786 −0.229061
\(655\) 0.686292i 0.0268156i
\(656\) 2.34315 2.34315i 0.0914845 0.0914845i
\(657\) 22.8284i 0.890622i
\(658\) 4.48528i 0.174854i
\(659\) 1.43503 + 3.46447i 0.0559008 + 0.134956i 0.949362 0.314183i \(-0.101731\pi\)
−0.893462 + 0.449140i \(0.851731\pi\)
\(660\) 12.2843 + 5.08831i 0.478165 + 0.198062i
\(661\) −40.8701 16.9289i −1.58966 0.658459i −0.599755 0.800184i \(-0.704735\pi\)
−0.989906 + 0.141725i \(0.954735\pi\)
\(662\) −1.24264 + 0.514719i −0.0482966 + 0.0200051i
\(663\) 0 0
\(664\) 14.8284 35.7990i 0.575455 1.38927i
\(665\) −6.82843 6.82843i −0.264795 0.264795i
\(666\) 20.5563 + 8.51472i 0.796542 + 0.329939i
\(667\) 2.75736 6.65685i 0.106765 0.257754i
\(668\) 28.4853 28.4853i 1.10213 1.10213i
\(669\) 0.686292 0.284271i 0.0265336 0.0109906i
\(670\) −5.45584 5.45584i −0.210778 0.210778i
\(671\) 29.6569 1.14489
\(672\) 5.65685 2.34315i 0.218218 0.0903888i
\(673\) −25.4558 −0.981251 −0.490625 0.871371i \(-0.663232\pi\)
−0.490625 + 0.871371i \(0.663232\pi\)
\(674\) −32.7279 32.7279i −1.26063 1.26063i
\(675\) 12.8284 5.31371i 0.493766 0.204525i
\(676\) 0.928932 + 0.928932i 0.0357282 + 0.0357282i
\(677\) −0.627417 + 1.51472i −0.0241136 + 0.0582154i −0.935478 0.353386i \(-0.885030\pi\)
0.911364 + 0.411601i \(0.135030\pi\)
\(678\) −20.6274 8.54416i −0.792191 0.328136i
\(679\) −4.82843 4.82843i −0.185298 0.185298i
\(680\) 0 0
\(681\) 9.11270 9.11270i 0.349199 0.349199i
\(682\) −16.6274 + 6.88730i −0.636697 + 0.263728i
\(683\) −16.3640 6.77817i −0.626150 0.259360i 0.0469665 0.998896i \(-0.485045\pi\)
−0.673116 + 0.739537i \(0.735045\pi\)
\(684\) 8.82843 21.3137i 0.337563 0.814950i
\(685\) −10.8873 26.2843i −0.415982 1.00427i
\(686\) 1.41421i 0.0539949i
\(687\) 22.6274i 0.863290i
\(688\) 24.4853 + 10.1421i 0.933493 + 0.386665i
\(689\) 39.7990i 1.51622i
\(690\) −3.31371 −0.126151
\(691\) 16.8995 + 40.7990i 0.642887 + 1.55207i 0.822767 + 0.568378i \(0.192429\pi\)
−0.179880 + 0.983689i \(0.557571\pi\)
\(692\) −20.4853 + 8.48528i −0.778734 + 0.322562i
\(693\) −6.77817 2.80761i −0.257482 0.106652i
\(694\) 3.00000 + 7.24264i 0.113878 + 0.274927i
\(695\) 6.14214 6.14214i 0.232984 0.232984i
\(696\) 15.5980 0.591240
\(697\) 0 0
\(698\) −11.3137 + 27.3137i −0.428230 + 1.03384i
\(699\) −2.24264 + 5.41421i −0.0848245 + 0.204784i
\(700\) −5.31371 −0.200839
\(701\) −18.7782 + 7.77817i −0.709242 + 0.293778i −0.707991 0.706222i \(-0.750398\pi\)
−0.00125103 + 0.999999i \(0.500398\pi\)
\(702\) 19.3137 19.3137i 0.728949 0.728949i
\(703\) 54.2843 2.04737
\(704\) 12.2843 29.6569i 0.462981 1.11773i
\(705\) 5.25483 0.197908
\(706\) 23.4558 23.4558i 0.882772 0.882772i
\(707\) 1.41421 0.585786i 0.0531870 0.0220308i
\(708\) −28.2843 −1.06299
\(709\) −16.5355 + 39.9203i −0.621005 + 1.49924i 0.229520 + 0.973304i \(0.426284\pi\)
−0.850525 + 0.525935i \(0.823716\pi\)
\(710\) 4.97056 12.0000i 0.186542 0.450352i
\(711\) −12.7990 12.7990i −0.480000 0.480000i
\(712\) 43.3137i 1.62325i
\(713\) 3.17157 3.17157i 0.118776 0.118776i
\(714\) 0 0
\(715\) −20.9706 8.68629i −0.784255 0.324849i
\(716\) −16.7279 + 6.92893i −0.625152 + 0.258946i
\(717\) 2.48528 + 6.00000i 0.0928145 + 0.224074i
\(718\) 43.9411 1.63987
\(719\) 33.3137i 1.24239i 0.783655 + 0.621196i \(0.213353\pi\)
−0.783655 + 0.621196i \(0.786647\pi\)
\(720\) 4.28427 + 10.3431i 0.159665 + 0.385466i
\(721\) 2.48528i 0.0925567i
\(722\) 29.4142i 1.09468i
\(723\) 6.54416 + 15.7990i 0.243380 + 0.587571i
\(724\) −2.14214 + 5.17157i −0.0796118 + 0.192200i
\(725\) −12.5061 5.18019i −0.464465 0.192388i
\(726\) 7.21320 2.98781i 0.267707 0.110888i
\(727\) 19.2132 19.2132i 0.712578 0.712578i −0.254496 0.967074i \(-0.581909\pi\)
0.967074 + 0.254496i \(0.0819095\pi\)
\(728\) −9.65685 + 4.00000i −0.357907 + 0.148250i
\(729\) −12.2218 12.2218i −0.452660 0.452660i
\(730\) −24.9706 10.3431i −0.924202 0.382817i
\(731\) 0 0
\(732\) −11.3137 11.3137i −0.418167 0.418167i
\(733\) −32.1421 + 13.3137i −1.18720 + 0.491753i −0.886841 0.462074i \(-0.847105\pi\)
−0.300356 + 0.953827i \(0.597105\pi\)
\(734\) −4.48528 4.48528i −0.165555 0.165555i
\(735\) 1.65685 0.0611140
\(736\) 8.00000i 0.294884i
\(737\) −14.3015 −0.526803
\(738\) 1.51472 + 1.51472i 0.0557576 + 0.0557576i
\(739\) 2.19239 0.908117i 0.0806483 0.0334056i −0.341995 0.939702i \(-0.611102\pi\)
0.422643 + 0.906296i \(0.361102\pi\)
\(740\) −18.6274 + 18.6274i −0.684757 + 0.684757i
\(741\) 9.65685 23.3137i 0.354753 0.856450i
\(742\) 14.0711 + 5.82843i 0.516565 + 0.213968i
\(743\) 15.4853 + 15.4853i 0.568100 + 0.568100i 0.931596 0.363496i \(-0.118417\pi\)
−0.363496 + 0.931596i \(0.618417\pi\)
\(744\) 8.97056 + 3.71573i 0.328877 + 0.136225i
\(745\) 11.6569 11.6569i 0.427074 0.427074i
\(746\) −40.4558 + 16.7574i −1.48119 + 0.613531i
\(747\) 23.1421 + 9.58579i 0.846726 + 0.350726i
\(748\) 0 0
\(749\) −4.29289 10.3640i −0.156859 0.378691i
\(750\) 17.9411i 0.655117i
\(751\) 30.2843i 1.10509i −0.833483 0.552544i \(-0.813657\pi\)
0.833483 0.552544i \(-0.186343\pi\)
\(752\) 12.6863i 0.462621i
\(753\) 24.4853i 0.892293i
\(754\) −26.6274 −0.969713
\(755\) −2.48528 6.00000i −0.0904487 0.218362i
\(756\) 4.00000 + 9.65685i 0.145479 + 0.351216i
\(757\) 10.5355 + 4.36396i 0.382920 + 0.158611i 0.565836 0.824518i \(-0.308554\pi\)
−0.182916 + 0.983129i \(0.558554\pi\)
\(758\) 18.7574 + 45.2843i 0.681298 + 1.64480i
\(759\) −4.34315 + 4.34315i −0.157646 + 0.157646i
\(760\) 19.3137 + 19.3137i 0.700582 + 0.700582i
\(761\) −4.58579 4.58579i −0.166235 0.166235i 0.619087 0.785322i \(-0.287503\pi\)
−0.785322 + 0.619087i \(0.787503\pi\)
\(762\) −11.1127 + 26.8284i −0.402571 + 0.971891i
\(763\) −1.46447 + 3.53553i −0.0530172 + 0.127995i
\(764\) 22.1421i 0.801074i
\(765\) 0 0
\(766\) 7.17157 7.17157i 0.259119 0.259119i
\(767\) 48.2843 1.74344
\(768\) −16.0000 + 6.62742i −0.577350 + 0.239146i
\(769\) −21.9411 −0.791217 −0.395609 0.918419i \(-0.629466\pi\)
−0.395609 + 0.918419i \(0.629466\pi\)
\(770\) 6.14214 6.14214i 0.221347 0.221347i
\(771\) −0.142136 + 0.0588745i −0.00511889 + 0.00212031i
\(772\) 2.82843i 0.101797i
\(773\) 4.82843 11.6569i 0.173666 0.419268i −0.812948 0.582336i \(-0.802139\pi\)
0.986615 + 0.163068i \(0.0521389\pi\)
\(774\) −6.55635 + 15.8284i −0.235663 + 0.568941i
\(775\) −5.95837 5.95837i −0.214031 0.214031i
\(776\) 13.6569 + 13.6569i 0.490252 + 0.490252i
\(777\) −6.58579 + 6.58579i −0.236264 + 0.236264i
\(778\) −17.0000 41.0416i −0.609480 1.47141i
\(779\) 4.82843 + 2.00000i 0.172996 + 0.0716574i
\(780\) 4.68629 + 11.3137i 0.167796 + 0.405096i
\(781\) −9.21320 22.2426i −0.329674 0.795904i
\(782\) 0 0
\(783\) 26.6274i 0.951586i
\(784\) 4.00000i 0.142857i
\(785\) 24.0000i 0.856597i
\(786\) 0.686292i 0.0244792i
\(787\) −3.24264 7.82843i −0.115588 0.279053i 0.855489 0.517821i \(-0.173257\pi\)
−0.971077 + 0.238768i \(0.923257\pi\)
\(788\) 41.5563 + 17.2132i 1.48038 + 0.613195i
\(789\) −2.34315 0.970563i −0.0834182 0.0345529i
\(790\) 19.7990 8.20101i 0.704416 0.291779i
\(791\) −10.3137 + 10.3137i −0.366713 + 0.366713i
\(792\) 19.1716 + 7.94113i 0.681232 + 0.282176i
\(793\) 19.3137 + 19.3137i 0.685850 + 0.685850i
\(794\) −32.9706 13.6569i −1.17008 0.484664i
\(795\) 6.82843 16.4853i 0.242179 0.584673i
\(796\) 30.1421 30.1421i 1.06836 1.06836i
\(797\) 11.5563 4.78680i 0.409347 0.169557i −0.168501 0.985701i \(-0.553893\pi\)
0.577848 + 0.816144i \(0.303893\pi\)
\(798\) 6.82843 + 6.82843i 0.241724 + 0.241724i
\(799\) 0 0
\(800\) 15.0294 0.531371
\(801\) 28.0000 0.989331
\(802\) 23.7574 + 23.7574i 0.838902 + 0.838902i
\(803\) −46.2843 + 19.1716i −1.63334 + 0.676550i
\(804\) 5.45584 + 5.45584i 0.192413 + 0.192413i
\(805\) −0.828427 + 2.00000i −0.0291982 + 0.0704907i
\(806\) −15.3137 6.34315i −0.539402 0.223428i
\(807\) 11.5147 + 11.5147i 0.405337 + 0.405337i
\(808\) −4.00000 + 1.65685i −0.140720 + 0.0582879i
\(809\) 25.4558 25.4558i 0.894980 0.894980i −0.100007 0.994987i \(-0.531886\pi\)
0.994987 + 0.100007i \(0.0318865\pi\)
\(810\) 0.343146 0.142136i 0.0120569 0.00499414i
\(811\) −17.3848 7.20101i −0.610462 0.252862i 0.0559640 0.998433i \(-0.482177\pi\)
−0.666426 + 0.745571i \(0.732177\pi\)
\(812\) 3.89949 9.41421i 0.136845 0.330374i
\(813\) 11.7990 + 28.4853i 0.413809 + 0.999022i
\(814\) 48.8284i 1.71144i
\(815\) 19.7990i 0.693528i
\(816\) 0 0
\(817\) 41.7990i 1.46236i
\(818\) −48.4853 −1.69525
\(819\) −2.58579 6.24264i −0.0903547 0.218136i
\(820\) −2.34315 + 0.970563i −0.0818262 + 0.0338935i
\(821\) −12.6066 5.22183i −0.439973 0.182243i 0.151690 0.988428i \(-0.451529\pi\)
−0.591663 + 0.806185i \(0.701529\pi\)
\(822\) 10.8873 + 26.2843i 0.379738 + 0.916769i
\(823\) −35.1127 + 35.1127i −1.22395 + 1.22395i −0.257736 + 0.966215i \(0.582977\pi\)
−0.966215 + 0.257736i \(0.917023\pi\)
\(824\) 7.02944i 0.244882i
\(825\) 8.15938 + 8.15938i 0.284073 + 0.284073i
\(826\) −7.07107 + 17.0711i −0.246034 + 0.593978i
\(827\) −2.53553 + 6.12132i −0.0881692 + 0.212859i −0.961813 0.273706i \(-0.911750\pi\)
0.873644 + 0.486565i \(0.161750\pi\)
\(828\) −5.17157 −0.179725
\(829\) 3.07107 1.27208i 0.106663 0.0441811i −0.328714 0.944430i \(-0.606615\pi\)
0.435377 + 0.900248i \(0.356615\pi\)
\(830\) −20.9706 + 20.9706i −0.727899 + 0.727899i
\(831\) −5.11270 −0.177358
\(832\) 27.3137 11.3137i 0.946932 0.392232i
\(833\) 0 0
\(834\) −6.14214 + 6.14214i −0.212685 + 0.212685i
\(835\) −28.4853 + 11.7990i −0.985774 + 0.408321i
\(836\) 50.6274 1.75099
\(837\) −6.34315 + 15.3137i −0.219251 + 0.529319i
\(838\) 4.24264 10.2426i 0.146560 0.353826i
\(839\) 31.4142 + 31.4142i 1.08454 + 1.08454i 0.996080 + 0.0884593i \(0.0281943\pi\)
0.0884593 + 0.996080i \(0.471806\pi\)
\(840\) −4.68629 −0.161692
\(841\) −2.15076 + 2.15076i −0.0741641 + 0.0741641i
\(842\) 3.38478 + 8.17157i 0.116647 + 0.281611i
\(843\) 17.8995 + 7.41421i 0.616491 + 0.255359i
\(844\) 0.585786 0.242641i 0.0201636 0.00835204i
\(845\) −0.384776 0.928932i −0.0132367 0.0319562i
\(846\) 8.20101 0.281957
\(847\) 5.10051i 0.175255i
\(848\) −39.7990 16.4853i −1.36670 0.566107i
\(849\) 19.5147i 0.669743i
\(850\) 0 0
\(851\) −4.65685 11.2426i −0.159635 0.385393i
\(852\) −4.97056 + 12.0000i −0.170289 + 0.411113i
\(853\) −43.3137 17.9411i −1.48303 0.614292i −0.513245 0.858242i \(-0.671557\pi\)
−0.969788 + 0.243950i \(0.921557\pi\)
\(854\) −9.65685 + 4.00000i −0.330451 + 0.136877i
\(855\) −12.4853 + 12.4853i −0.426988 + 0.426988i
\(856\) 12.1421 + 29.3137i 0.415010 + 1.00192i
\(857\) 4.38478 + 4.38478i 0.149781 + 0.149781i 0.778020 0.628239i \(-0.216224\pi\)
−0.628239 + 0.778020i \(0.716224\pi\)
\(858\) 20.9706 + 8.68629i 0.715923 + 0.296545i
\(859\) 16.4142 39.6274i 0.560046 1.35207i −0.349683 0.936868i \(-0.613711\pi\)
0.909729 0.415202i \(-0.136289\pi\)
\(860\) −14.3431 14.3431i −0.489097 0.489097i
\(861\) −0.828427 + 0.343146i −0.0282327 + 0.0116944i
\(862\) 10.3431 + 10.3431i 0.352289 + 0.352289i
\(863\) 29.6985 1.01095 0.505474 0.862842i \(-0.331318\pi\)
0.505474 + 0.862842i \(0.331318\pi\)
\(864\) −11.3137 27.3137i −0.384900 0.929231i
\(865\) 16.9706 0.577016
\(866\) −32.2843 32.2843i −1.09706 1.09706i
\(867\) −17.0000 + 7.04163i −0.577350 + 0.239146i
\(868\) 4.48528 4.48528i 0.152240 0.152240i
\(869\) 15.2010 36.6985i 0.515659 1.24491i
\(870\) −11.0294 4.56854i −0.373933 0.154888i
\(871\) −9.31371 9.31371i −0.315583 0.315583i
\(872\) 4.14214 10.0000i 0.140270 0.338643i
\(873\) −8.82843 + 8.82843i −0.298797 + 0.298797i
\(874\) −11.6569 + 4.82843i −0.394299 + 0.163324i
\(875\) 10.8284 + 4.48528i 0.366068 + 0.151630i
\(876\) 24.9706 + 10.3431i 0.843677 + 0.349463i
\(877\) 15.1924 + 36.6777i 0.513010 + 1.23852i 0.942123 + 0.335266i \(0.108826\pi\)
−0.429113 + 0.903251i \(0.641174\pi\)
\(878\) 36.0000i 1.21494i
\(879\) 25.9411i 0.874972i
\(880\) −17.3726 + 17.3726i −0.585630 + 0.585630i
\(881\) 27.4558i 0.925011i −0.886616 0.462505i \(-0.846951\pi\)
0.886616 0.462505i \(-0.153049\pi\)
\(882\) 2.58579 0.0870680
\(883\) 15.3345 + 37.0208i 0.516048 + 1.24585i 0.940313 + 0.340312i \(0.110533\pi\)
−0.424265 + 0.905538i \(0.639467\pi\)
\(884\) 0 0
\(885\) 20.0000 + 8.28427i 0.672293 + 0.278473i
\(886\) −5.92893 14.3137i −0.199186 0.480878i
\(887\) 40.7279 40.7279i 1.36751 1.36751i 0.503535 0.863975i \(-0.332033\pi\)
0.863975 0.503535i \(-0.167967\pi\)
\(888\) 18.6274 18.6274i 0.625095 0.625095i
\(889\) 13.4142 + 13.4142i 0.449898 + 0.449898i
\(890\) −12.6863 + 30.6274i −0.425245 + 1.02663i
\(891\) 0.263456 0.636039i 0.00882611 0.0213081i
\(892\) 1.37258i 0.0459575i
\(893\) 18.4853 7.65685i 0.618586 0.256227i
\(894\) −11.6569 + 11.6569i −0.389864 + 0.389864i
\(895\) 13.8579 0.463217
\(896\) 11.3137i 0.377964i
\(897\) −5.65685 −0.188877
\(898\) −17.4558 + 17.4558i −0.582509 + 0.582509i
\(899\) 14.9289 6.18377i 0.497908 0.206240i
\(900\) 9.71573i 0.323858i
\(901\) 0 0
\(902\) −1.79899 + 4.34315i −0.0598998 + 0.144611i
\(903\) −5.07107 5.07107i −0.168755 0.168755i
\(904\) 29.1716 29.1716i 0.970232 0.970232i
\(905\) 3.02944 3.02944i 0.100702 0.100702i
\(906\) 2.48528 + 6.00000i 0.0825679 + 0.199337i
\(907\) −8.77817 3.63604i −0.291475 0.120733i 0.232155 0.972679i \(-0.425422\pi\)
−0.523629 + 0.851946i \(0.675422\pi\)
\(908\) 9.11270 + 22.0000i 0.302416 + 0.730096i
\(909\) −1.07107 2.58579i −0.0355251 0.0857651i
\(910\) 8.00000 0.265197
\(911\) 18.6863i 0.619104i 0.950882 + 0.309552i \(0.100179\pi\)
−0.950882 + 0.309552i \(0.899821\pi\)
\(912\) −19.3137 19.3137i −0.639541 0.639541i
\(913\) 54.9706i 1.81926i
\(914\) 16.0000i 0.529233i
\(915\) 4.68629 + 11.3137i 0.154924 + 0.374020i
\(916\) −38.6274 16.0000i −1.27629 0.528655i
\(917\) 0.414214 + 0.171573i 0.0136785 + 0.00566584i
\(918\) 0 0
\(919\) −8.92893 + 8.92893i −0.294538 + 0.294538i −0.838870 0.544332i \(-0.816783\pi\)
0.544332 + 0.838870i \(0.316783\pi\)
\(920\) 2.34315 5.65685i 0.0772512 0.186501i
\(921\) 1.71573 + 1.71573i 0.0565352 + 0.0565352i
\(922\) −28.9706 12.0000i −0.954095 0.395199i
\(923\) 8.48528 20.4853i 0.279296 0.674281i
\(924\) −6.14214 + 6.14214i −0.202061 + 0.202061i
\(925\) −21.1213 + 8.74874i −0.694465 + 0.287657i
\(926\) 20.0416 + 20.0416i 0.658609 + 0.658609i
\(927\) 4.54416 0.149250
\(928\) −11.0294 + 26.6274i −0.362059 + 0.874088i
\(929\) 41.9411 1.37604 0.688022 0.725690i \(-0.258479\pi\)
0.688022 + 0.725690i \(0.258479\pi\)
\(930\) −5.25483 5.25483i −0.172313 0.172313i
\(931\) 5.82843 2.41421i 0.191019 0.0791227i
\(932\) −7.65685 7.65685i −0.250809 0.250809i
\(933\) 1.94113 4.68629i 0.0635496 0.153422i
\(934\) −50.0416 20.7279i −1.63741 0.678238i
\(935\) 0 0
\(936\) 7.31371 + 17.6569i 0.239056 + 0.577132i
\(937\) 20.1421 20.1421i 0.658015 0.658015i −0.296895 0.954910i \(-0.595951\pi\)
0.954910 + 0.296895i \(0.0959512\pi\)
\(938\) 4.65685 1.92893i 0.152052 0.0629819i
\(939\) 26.9706 + 11.1716i 0.880151 + 0.364571i
\(940\) −3.71573 + 8.97056i −0.121194 + 0.292587i
\(941\) 0.970563 + 2.34315i 0.0316394 + 0.0763844i 0.938910 0.344164i \(-0.111838\pi\)
−0.907270 + 0.420548i \(0.861838\pi\)
\(942\) 24.0000i 0.781962i
\(943\) 1.17157i 0.0381517i
\(944\) 20.0000 48.2843i 0.650945 1.57152i
\(945\) 8.00000i 0.260240i
\(946\) −37.5980 −1.22242
\(947\) −10.7487 25.9497i −0.349287 0.843253i −0.996705 0.0811179i \(-0.974151\pi\)
0.647417 0.762136i \(-0.275849\pi\)
\(948\) −19.7990 + 8.20101i −0.643041 + 0.266356i
\(949\) −42.6274 17.6569i −1.38374 0.573166i
\(950\) 9.07107 + 21.8995i 0.294304 + 0.710513i
\(951\) 6.92893 6.92893i 0.224686 0.224686i
\(952\) 0 0
\(953\) −5.97056 5.97056i −0.193405 0.193405i 0.603760 0.797166i \(-0.293668\pi\)
−0.797166 + 0.603760i \(0.793668\pi\)
\(954\) 10.6569 25.7279i 0.345028 0.832972i
\(955\) 6.48528 15.6569i 0.209859 0.506644i
\(956\) −12.0000 −0.388108
\(957\) −20.4437 + 8.46804i −0.660849 + 0.273733i
\(958\) 6.68629 6.68629i 0.216024 0.216024i
\(959\) 18.5858 0.600166
\(960\) 13.2548 0.427798
\(961\) −20.9411 −0.675520
\(962\) −31.7990 + 31.7990i −1.02524 + 1.02524i
\(963\) −18.9497 + 7.84924i −0.610647 + 0.252938i
\(964\) −31.5980 −1.01770
\(965\) 0.828427 2.00000i 0.0266680 0.0643823i
\(966\) 0.828427 2.00000i 0.0266542 0.0643489i
\(967\) 7.34315 + 7.34315i 0.236140 + 0.236140i 0.815250 0.579110i \(-0.196600\pi\)
−0.579110 + 0.815250i \(0.696600\pi\)
\(968\) 14.4264i 0.463682i
\(969\) 0 0
\(970\) −5.65685 13.6569i −0.181631 0.438495i
\(971\) −26.5563 11.0000i −0.852234 0.353007i −0.0865684 0.996246i \(-0.527590\pi\)
−0.765665 + 0.643239i \(0.777590\pi\)
\(972\) 28.6274 11.8579i 0.918225 0.380341i
\(973\) 2.17157 + 5.24264i 0.0696174 + 0.168071i
\(974\) 58.2843 1.86755
\(975\) 10.6274i 0.340350i
\(976\) 27.3137 11.3137i 0.874291 0.362143i
\(977\) 53.1716i 1.70111i −0.525887 0.850555i \(-0.676266\pi\)
0.525887 0.850555i \(-0.323734\pi\)
\(978\) 19.7990i 0.633102i
\(979\) 23.5147 + 56.7696i 0.751534 + 1.81436i
\(980\) −1.17157 + 2.82843i −0.0374245 + 0.0903508i
\(981\) 6.46447 + 2.67767i 0.206395 + 0.0854914i
\(982\) −19.1421 + 7.92893i −0.610850 + 0.253022i
\(983\) −0.585786 + 0.585786i −0.0186837 + 0.0186837i −0.716387 0.697703i \(-0.754205\pi\)
0.697703 + 0.716387i \(0.254205\pi\)
\(984\) 2.34315 0.970563i 0.0746968 0.0309404i
\(985\) −24.3431 24.3431i −0.775637 0.775637i
\(986\) 0 0
\(987\) −1.31371 + 3.17157i −0.0418158 + 0.100952i
\(988\) 32.9706 + 32.9706i 1.04893 + 1.04893i
\(989\) 8.65685 3.58579i 0.275272 0.114021i
\(990\) −11.2304 11.2304i −0.356927 0.356927i
\(991\) 50.1838 1.59414 0.797070 0.603887i \(-0.206382\pi\)
0.797070 + 0.603887i \(0.206382\pi\)
\(992\) −12.6863 + 12.6863i −0.402790 + 0.402790i
\(993\) −1.02944 −0.0326682
\(994\) 6.00000 + 6.00000i 0.190308 + 0.190308i
\(995\) −30.1421 + 12.4853i −0.955570 + 0.395810i
\(996\) 20.9706 20.9706i 0.664478 0.664478i
\(997\) −14.7279 + 35.5563i −0.466438 + 1.12608i 0.499269 + 0.866447i \(0.333602\pi\)
−0.965707 + 0.259634i \(0.916398\pi\)
\(998\) −25.4853 10.5563i −0.806722 0.334155i
\(999\) 31.7990 + 31.7990i 1.00608 + 1.00608i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 224.2.u.a.85.1 yes 4
4.3 odd 2 896.2.u.a.561.1 4
32.3 odd 8 896.2.u.a.337.1 4
32.29 even 8 inner 224.2.u.a.29.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
224.2.u.a.29.1 4 32.29 even 8 inner
224.2.u.a.85.1 yes 4 1.1 even 1 trivial
896.2.u.a.337.1 4 32.3 odd 8
896.2.u.a.561.1 4 4.3 odd 2