L(s) = 1 | + (1.36 − 0.366i)3-s + (−0.965 − 0.258i)5-s + (0.707 + 0.707i)7-s + (0.866 − 0.5i)9-s + (0.866 + 0.5i)11-s + (−0.707 − 0.707i)13-s − 1.41·15-s + (−0.5 − 0.866i)19-s + (1.22 + 0.707i)21-s + (0.965 + 0.258i)23-s + (0.866 + 0.499i)25-s + 1.41·29-s + (0.707 − 1.22i)31-s + (1.36 + 0.366i)33-s + (−0.500 − 0.866i)35-s + ⋯ |
L(s) = 1 | + (1.36 − 0.366i)3-s + (−0.965 − 0.258i)5-s + (0.707 + 0.707i)7-s + (0.866 − 0.5i)9-s + (0.866 + 0.5i)11-s + (−0.707 − 0.707i)13-s − 1.41·15-s + (−0.5 − 0.866i)19-s + (1.22 + 0.707i)21-s + (0.965 + 0.258i)23-s + (0.866 + 0.499i)25-s + 1.41·29-s + (0.707 − 1.22i)31-s + (1.36 + 0.366i)33-s + (−0.500 − 0.866i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.956 + 0.290i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.956 + 0.290i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.757123181\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.757123181\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.965 + 0.258i)T \) |
| 7 | \( 1 + (-0.707 - 0.707i)T \) |
good | 3 | \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 17 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.965 - 0.258i)T + (0.866 + 0.5i)T^{2} \) |
| 29 | \( 1 - 1.41T + T^{2} \) |
| 31 | \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.965 - 0.258i)T + (0.866 + 0.5i)T^{2} \) |
| 41 | \( 1 + T + T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (0.258 - 0.965i)T + (-0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 + (0.965 - 0.258i)T + (0.866 - 0.5i)T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 + 1.41T + T^{2} \) |
| 73 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (1 + i)T + iT^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-1 - i)T + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.021011894865317524639829284714, −8.359549087364715266246244973858, −7.80498468971331996058573763493, −7.22650384465936819049157639643, −6.23338213289858797788248847714, −4.82170079110954686252092153632, −4.42940273900140448301864617860, −3.13060545303501495221070449148, −2.58920196728580531845538035283, −1.35544173830992074697060118352,
1.42184147963846898914523592432, 2.75630991348065946169831666608, 3.51710310865447464983579726563, 4.28055493696478398158568074210, 4.80402900896928506494614870743, 6.47066987866771911541175107251, 7.10958264520534036100820567510, 7.929286316013831075788731362543, 8.498454607601325677622236863548, 8.960436201754652682336314167385