L(s) = 1 | + (−0.366 + 1.36i)3-s + (−0.258 − 0.965i)5-s + (−0.707 − 0.707i)7-s + (−0.866 − 0.5i)9-s + (−0.866 + 0.5i)11-s + (0.707 + 0.707i)13-s + 1.41·15-s + (−0.5 + 0.866i)19-s + (1.22 − 0.707i)21-s + (0.258 + 0.965i)23-s + (−0.866 + 0.499i)25-s − 1.41·29-s + (−0.707 − 1.22i)31-s + (−0.366 − 1.36i)33-s + (−0.500 + 0.866i)35-s + ⋯ |
L(s) = 1 | + (−0.366 + 1.36i)3-s + (−0.258 − 0.965i)5-s + (−0.707 − 0.707i)7-s + (−0.866 − 0.5i)9-s + (−0.866 + 0.5i)11-s + (0.707 + 0.707i)13-s + 1.41·15-s + (−0.5 + 0.866i)19-s + (1.22 − 0.707i)21-s + (0.258 + 0.965i)23-s + (−0.866 + 0.499i)25-s − 1.41·29-s + (−0.707 − 1.22i)31-s + (−0.366 − 1.36i)33-s + (−0.500 + 0.866i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.985 - 0.167i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.985 - 0.167i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3698386213\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3698386213\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.258 + 0.965i)T \) |
| 7 | \( 1 + (0.707 + 0.707i)T \) |
good | 3 | \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 17 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.258 - 0.965i)T + (-0.866 + 0.5i)T^{2} \) |
| 29 | \( 1 + 1.41T + T^{2} \) |
| 31 | \( 1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.258 - 0.965i)T + (-0.866 + 0.5i)T^{2} \) |
| 41 | \( 1 + T + T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (0.965 - 0.258i)T + (0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 + (0.258 - 0.965i)T + (-0.866 - 0.5i)T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-1.36 - 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 - 1.41T + T^{2} \) |
| 73 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (1 + i)T + iT^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-1 - i)T + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.610890910234444547234817576046, −9.144953298405462217386869556239, −8.095903120840793334319546245679, −7.41631236052104405706900084903, −6.23961695196509959965836089928, −5.45629075672285203425363949333, −4.70734941394789613967535919037, −3.96257200793958262552885570494, −3.47194881373948817634298372959, −1.69723695213501079369647787523,
0.25325610861390715420772487616, 2.00292436188368389246823944022, 2.83729252079276455456521985933, 3.60500853508852761862756964512, 5.25360907277955847660863062351, 5.92045510652989870160672112437, 6.65607606232771766480642519731, 7.08409023644641718941535108853, 8.031831468769821218372520426104, 8.563353529695794333484524921515