Properties

Label 2-2240-280.37-c0-0-0
Degree $2$
Conductor $2240$
Sign $-0.985 - 0.167i$
Analytic cond. $1.11790$
Root an. cond. $1.05731$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.366 + 1.36i)3-s + (−0.258 − 0.965i)5-s + (−0.707 − 0.707i)7-s + (−0.866 − 0.5i)9-s + (−0.866 + 0.5i)11-s + (0.707 + 0.707i)13-s + 1.41·15-s + (−0.5 + 0.866i)19-s + (1.22 − 0.707i)21-s + (0.258 + 0.965i)23-s + (−0.866 + 0.499i)25-s − 1.41·29-s + (−0.707 − 1.22i)31-s + (−0.366 − 1.36i)33-s + (−0.500 + 0.866i)35-s + ⋯
L(s)  = 1  + (−0.366 + 1.36i)3-s + (−0.258 − 0.965i)5-s + (−0.707 − 0.707i)7-s + (−0.866 − 0.5i)9-s + (−0.866 + 0.5i)11-s + (0.707 + 0.707i)13-s + 1.41·15-s + (−0.5 + 0.866i)19-s + (1.22 − 0.707i)21-s + (0.258 + 0.965i)23-s + (−0.866 + 0.499i)25-s − 1.41·29-s + (−0.707 − 1.22i)31-s + (−0.366 − 1.36i)33-s + (−0.500 + 0.866i)35-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.985 - 0.167i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.985 - 0.167i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2240\)    =    \(2^{6} \cdot 5 \cdot 7\)
Sign: $-0.985 - 0.167i$
Analytic conductor: \(1.11790\)
Root analytic conductor: \(1.05731\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2240} (737, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2240,\ (\ :0),\ -0.985 - 0.167i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.3698386213\)
\(L(\frac12)\) \(\approx\) \(0.3698386213\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (0.258 + 0.965i)T \)
7 \( 1 + (0.707 + 0.707i)T \)
good3 \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \)
11 \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \)
13 \( 1 + (-0.707 - 0.707i)T + iT^{2} \)
17 \( 1 + (-0.866 - 0.5i)T^{2} \)
19 \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \)
23 \( 1 + (-0.258 - 0.965i)T + (-0.866 + 0.5i)T^{2} \)
29 \( 1 + 1.41T + T^{2} \)
31 \( 1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2} \)
37 \( 1 + (-0.258 - 0.965i)T + (-0.866 + 0.5i)T^{2} \)
41 \( 1 + T + T^{2} \)
43 \( 1 + iT^{2} \)
47 \( 1 + (0.965 - 0.258i)T + (0.866 - 0.5i)T^{2} \)
53 \( 1 + (0.258 - 0.965i)T + (-0.866 - 0.5i)T^{2} \)
59 \( 1 + (-0.5 + 0.866i)T^{2} \)
61 \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \)
67 \( 1 + (-1.36 - 0.366i)T + (0.866 + 0.5i)T^{2} \)
71 \( 1 - 1.41T + T^{2} \)
73 \( 1 + (0.866 + 0.5i)T^{2} \)
79 \( 1 + (0.5 + 0.866i)T^{2} \)
83 \( 1 + (1 + i)T + iT^{2} \)
89 \( 1 + (0.5 + 0.866i)T^{2} \)
97 \( 1 + (-1 - i)T + iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.610890910234444547234817576046, −9.144953298405462217386869556239, −8.095903120840793334319546245679, −7.41631236052104405706900084903, −6.23961695196509959965836089928, −5.45629075672285203425363949333, −4.70734941394789613967535919037, −3.96257200793958262552885570494, −3.47194881373948817634298372959, −1.69723695213501079369647787523, 0.25325610861390715420772487616, 2.00292436188368389246823944022, 2.83729252079276455456521985933, 3.60500853508852761862756964512, 5.25360907277955847660863062351, 5.92045510652989870160672112437, 6.65607606232771766480642519731, 7.08409023644641718941535108853, 8.031831468769821218372520426104, 8.563353529695794333484524921515

Graph of the $Z$-function along the critical line