L(s) = 1 | + (−0.366 + 1.36i)3-s + (−0.258 − 0.965i)5-s + (−0.707 − 0.707i)7-s + (−0.866 − 0.5i)9-s + (−0.866 + 0.5i)11-s + (0.707 + 0.707i)13-s + 1.41·15-s + (−0.5 + 0.866i)19-s + (1.22 − 0.707i)21-s + (0.258 + 0.965i)23-s + (−0.866 + 0.499i)25-s − 1.41·29-s + (−0.707 − 1.22i)31-s + (−0.366 − 1.36i)33-s + (−0.500 + 0.866i)35-s + ⋯ |
L(s) = 1 | + (−0.366 + 1.36i)3-s + (−0.258 − 0.965i)5-s + (−0.707 − 0.707i)7-s + (−0.866 − 0.5i)9-s + (−0.866 + 0.5i)11-s + (0.707 + 0.707i)13-s + 1.41·15-s + (−0.5 + 0.866i)19-s + (1.22 − 0.707i)21-s + (0.258 + 0.965i)23-s + (−0.866 + 0.499i)25-s − 1.41·29-s + (−0.707 − 1.22i)31-s + (−0.366 − 1.36i)33-s + (−0.500 + 0.866i)35-s + ⋯ |
Λ(s)=(=(2240s/2ΓC(s)L(s)(−0.985−0.167i)Λ(1−s)
Λ(s)=(=(2240s/2ΓC(s)L(s)(−0.985−0.167i)Λ(1−s)
Degree: |
2 |
Conductor: |
2240
= 26⋅5⋅7
|
Sign: |
−0.985−0.167i
|
Analytic conductor: |
1.11790 |
Root analytic conductor: |
1.05731 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2240(737,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2240, ( :0), −0.985−0.167i)
|
Particular Values
L(21) |
≈ |
0.3698386213 |
L(21) |
≈ |
0.3698386213 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.258+0.965i)T |
| 7 | 1+(0.707+0.707i)T |
good | 3 | 1+(0.366−1.36i)T+(−0.866−0.5i)T2 |
| 11 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 13 | 1+(−0.707−0.707i)T+iT2 |
| 17 | 1+(−0.866−0.5i)T2 |
| 19 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 23 | 1+(−0.258−0.965i)T+(−0.866+0.5i)T2 |
| 29 | 1+1.41T+T2 |
| 31 | 1+(0.707+1.22i)T+(−0.5+0.866i)T2 |
| 37 | 1+(−0.258−0.965i)T+(−0.866+0.5i)T2 |
| 41 | 1+T+T2 |
| 43 | 1+iT2 |
| 47 | 1+(0.965−0.258i)T+(0.866−0.5i)T2 |
| 53 | 1+(0.258−0.965i)T+(−0.866−0.5i)T2 |
| 59 | 1+(−0.5+0.866i)T2 |
| 61 | 1+(1.22+0.707i)T+(0.5+0.866i)T2 |
| 67 | 1+(−1.36−0.366i)T+(0.866+0.5i)T2 |
| 71 | 1−1.41T+T2 |
| 73 | 1+(0.866+0.5i)T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1+(1+i)T+iT2 |
| 89 | 1+(0.5+0.866i)T2 |
| 97 | 1+(−1−i)T+iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.610890910234444547234817576046, −9.144953298405462217386869556239, −8.095903120840793334319546245679, −7.41631236052104405706900084903, −6.23961695196509959965836089928, −5.45629075672285203425363949333, −4.70734941394789613967535919037, −3.96257200793958262552885570494, −3.47194881373948817634298372959, −1.69723695213501079369647787523,
0.25325610861390715420772487616, 2.00292436188368389246823944022, 2.83729252079276455456521985933, 3.60500853508852761862756964512, 5.25360907277955847660863062351, 5.92045510652989870160672112437, 6.65607606232771766480642519731, 7.08409023644641718941535108853, 8.031831468769821218372520426104, 8.563353529695794333484524921515