Properties

Label 2240.1.dl.b.737.1
Level 22402240
Weight 11
Character 2240.737
Analytic conductor 1.1181.118
Analytic rank 00
Dimension 88
Projective image S4S_{4}
CM/RM no
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2240,1,Mod(417,2240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2240, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 6, 3, 8]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2240.417");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2240=2657 2240 = 2^{6} \cdot 5 \cdot 7
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2240.dl (of order 1212, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.117905628301.11790562830
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ12)\Q(\zeta_{12})
Coefficient field: Q(ζ24)\Q(\zeta_{24})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: S4S_{4}
Projective field: Galois closure of 4.2.49000.1

Embedding invariants

Embedding label 737.1
Root 0.965926+0.258819i-0.965926 + 0.258819i of defining polynomial
Character χ\chi == 2240.737
Dual form 2240.1.dl.b.1313.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.366025+1.36603i)q3+(0.2588190.965926i)q5+(0.7071070.707107i)q7+(0.8660250.500000i)q9+(0.866025+0.500000i)q11+(0.707107+0.707107i)q13+1.41421q15+(0.500000+0.866025i)q19+(1.224740.707107i)q21+(0.258819+0.965926i)q23+(0.866025+0.500000i)q251.41421q29+(0.7071071.22474i)q31+(0.3660251.36603i)q33+(0.500000+0.866025i)q35+(0.258819+0.965926i)q37+(1.22474+0.707107i)q391.00000q41+(0.258819+0.965926i)q45+(0.965926+0.258819i)q47+1.00000iq49+(0.258819+0.965926i)q53+(0.707107+0.707107i)q55+(1.000001.00000i)q57+(1.224740.707107i)q61+(0.258819+0.965926i)q63+(0.5000000.866025i)q65+(1.36603+0.366025i)q671.41421q69+1.41421q71+(0.3660251.36603i)q75+(0.965926+0.258819i)q77+(0.5000000.866025i)q81+(1.000001.00000i)q83+(0.5176381.93185i)q871.00000iq91+(1.931850.517638i)q93+(0.965926+0.258819i)q95+(1.00000+1.00000i)q97+1.00000q99+O(q100)q+(-0.366025 + 1.36603i) q^{3} +(-0.258819 - 0.965926i) q^{5} +(-0.707107 - 0.707107i) q^{7} +(-0.866025 - 0.500000i) q^{9} +(-0.866025 + 0.500000i) q^{11} +(0.707107 + 0.707107i) q^{13} +1.41421 q^{15} +(-0.500000 + 0.866025i) q^{19} +(1.22474 - 0.707107i) q^{21} +(0.258819 + 0.965926i) q^{23} +(-0.866025 + 0.500000i) q^{25} -1.41421 q^{29} +(-0.707107 - 1.22474i) q^{31} +(-0.366025 - 1.36603i) q^{33} +(-0.500000 + 0.866025i) q^{35} +(0.258819 + 0.965926i) q^{37} +(-1.22474 + 0.707107i) q^{39} -1.00000 q^{41} +(-0.258819 + 0.965926i) q^{45} +(-0.965926 + 0.258819i) q^{47} +1.00000i q^{49} +(-0.258819 + 0.965926i) q^{53} +(0.707107 + 0.707107i) q^{55} +(-1.00000 - 1.00000i) q^{57} +(-1.22474 - 0.707107i) q^{61} +(0.258819 + 0.965926i) q^{63} +(0.500000 - 0.866025i) q^{65} +(1.36603 + 0.366025i) q^{67} -1.41421 q^{69} +1.41421 q^{71} +(-0.366025 - 1.36603i) q^{75} +(0.965926 + 0.258819i) q^{77} +(-0.500000 - 0.866025i) q^{81} +(-1.00000 - 1.00000i) q^{83} +(0.517638 - 1.93185i) q^{87} -1.00000i q^{91} +(1.93185 - 0.517638i) q^{93} +(0.965926 + 0.258819i) q^{95} +(1.00000 + 1.00000i) q^{97} +1.00000 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+4q34q19+4q334q358q418q57+4q65+4q67+4q754q818q83+8q97+8q99+O(q100) 8 q + 4 q^{3} - 4 q^{19} + 4 q^{33} - 4 q^{35} - 8 q^{41} - 8 q^{57} + 4 q^{65} + 4 q^{67} + 4 q^{75} - 4 q^{81} - 8 q^{83} + 8 q^{97} + 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2240Z)×\left(\mathbb{Z}/2240\mathbb{Z}\right)^\times.

nn 897897 14711471 15411541 19211921
χ(n)\chi(n) e(14)e\left(\frac{1}{4}\right) 11 1-1 e(13)e\left(\frac{1}{3}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 −0.366025 + 1.36603i −0.366025 + 1.36603i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
44 0 0
55 −0.258819 0.965926i −0.258819 0.965926i
66 0 0
77 −0.707107 0.707107i −0.707107 0.707107i
88 0 0
99 −0.866025 0.500000i −0.866025 0.500000i
1010 0 0
1111 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
1212 0 0
1313 0.707107 + 0.707107i 0.707107 + 0.707107i 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
1414 0 0
1515 1.41421 1.41421
1616 0 0
1717 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
1818 0 0
1919 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
2020 0 0
2121 1.22474 0.707107i 1.22474 0.707107i
2222 0 0
2323 0.258819 + 0.965926i 0.258819 + 0.965926i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
2424 0 0
2525 −0.866025 + 0.500000i −0.866025 + 0.500000i
2626 0 0
2727 0 0
2828 0 0
2929 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
3030 0 0
3131 −0.707107 1.22474i −0.707107 1.22474i −0.965926 0.258819i 0.916667π-0.916667\pi
0.258819 0.965926i 0.416667π-0.416667\pi
3232 0 0
3333 −0.366025 1.36603i −0.366025 1.36603i
3434 0 0
3535 −0.500000 + 0.866025i −0.500000 + 0.866025i
3636 0 0
3737 0.258819 + 0.965926i 0.258819 + 0.965926i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
3838 0 0
3939 −1.22474 + 0.707107i −1.22474 + 0.707107i
4040 0 0
4141 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4242 0 0
4343 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
4444 0 0
4545 −0.258819 + 0.965926i −0.258819 + 0.965926i
4646 0 0
4747 −0.965926 + 0.258819i −0.965926 + 0.258819i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
4848 0 0
4949 1.00000i 1.00000i
5050 0 0
5151 0 0
5252 0 0
5353 −0.258819 + 0.965926i −0.258819 + 0.965926i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
5454 0 0
5555 0.707107 + 0.707107i 0.707107 + 0.707107i
5656 0 0
5757 −1.00000 1.00000i −1.00000 1.00000i
5858 0 0
5959 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
6060 0 0
6161 −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i 0.583333π-0.583333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
6262 0 0
6363 0.258819 + 0.965926i 0.258819 + 0.965926i
6464 0 0
6565 0.500000 0.866025i 0.500000 0.866025i
6666 0 0
6767 1.36603 + 0.366025i 1.36603 + 0.366025i 0.866025 0.500000i 0.166667π-0.166667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6868 0 0
6969 −1.41421 −1.41421
7070 0 0
7171 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
7272 0 0
7373 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
7474 0 0
7575 −0.366025 1.36603i −0.366025 1.36603i
7676 0 0
7777 0.965926 + 0.258819i 0.965926 + 0.258819i
7878 0 0
7979 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
8080 0 0
8181 −0.500000 0.866025i −0.500000 0.866025i
8282 0 0
8383 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
8484 0 0
8585 0 0
8686 0 0
8787 0.517638 1.93185i 0.517638 1.93185i
8888 0 0
8989 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
9090 0 0
9191 1.00000i 1.00000i
9292 0 0
9393 1.93185 0.517638i 1.93185 0.517638i
9494 0 0
9595 0.965926 + 0.258819i 0.965926 + 0.258819i
9696 0 0
9797 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
9898 0 0
9999 1.00000 1.00000
100100 0 0
101101 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
102102 0 0
103103 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
104104 0 0
105105 −1.00000 1.00000i −1.00000 1.00000i
106106 0 0
107107 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
108108 0 0
109109 −0.707107 1.22474i −0.707107 1.22474i −0.965926 0.258819i 0.916667π-0.916667\pi
0.258819 0.965926i 0.416667π-0.416667\pi
110110 0 0
111111 −1.41421 −1.41421
112112 0 0
113113 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
114114 0 0
115115 0.866025 0.500000i 0.866025 0.500000i
116116 0 0
117117 −0.258819 0.965926i −0.258819 0.965926i
118118 0 0
119119 0 0
120120 0 0
121121 0 0
122122 0 0
123123 0.366025 1.36603i 0.366025 1.36603i
124124 0 0
125125 0.707107 + 0.707107i 0.707107 + 0.707107i
126126 0 0
127127 0.707107 + 0.707107i 0.707107 + 0.707107i 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
128128 0 0
129129 0 0
130130 0 0
131131 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
132132 0 0
133133 0.965926 0.258819i 0.965926 0.258819i
134134 0 0
135135 0 0
136136 0 0
137137 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
138138 0 0
139139 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
140140 0 0
141141 1.41421i 1.41421i
142142 0 0
143143 −0.965926 0.258819i −0.965926 0.258819i
144144 0 0
145145 0.366025 + 1.36603i 0.366025 + 1.36603i
146146 0 0
147147 −1.36603 0.366025i −1.36603 0.366025i
148148 0 0
149149 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
150150 0 0
151151 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
152152 0 0
153153 0 0
154154 0 0
155155 −1.00000 + 1.00000i −1.00000 + 1.00000i
156156 0 0
157157 0.965926 + 0.258819i 0.965926 + 0.258819i 0.707107 0.707107i 0.250000π-0.250000\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
158158 0 0
159159 −1.22474 0.707107i −1.22474 0.707107i
160160 0 0
161161 0.500000 0.866025i 0.500000 0.866025i
162162 0 0
163163 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
164164 0 0
165165 −1.22474 + 0.707107i −1.22474 + 0.707107i
166166 0 0
167167 −0.707107 0.707107i −0.707107 0.707107i 0.258819 0.965926i 0.416667π-0.416667\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
168168 0 0
169169 0 0
170170 0 0
171171 0.866025 0.500000i 0.866025 0.500000i
172172 0 0
173173 −0.965926 + 0.258819i −0.965926 + 0.258819i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
174174 0 0
175175 0.965926 + 0.258819i 0.965926 + 0.258819i
176176 0 0
177177 0 0
178178 0 0
179179 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 1.41421 1.41421i 1.41421 1.41421i
184184 0 0
185185 0.866025 0.500000i 0.866025 0.500000i
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
192192 0 0
193193 1.36603 + 0.366025i 1.36603 + 0.366025i 0.866025 0.500000i 0.166667π-0.166667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
194194 0 0
195195 1.00000 + 1.00000i 1.00000 + 1.00000i
196196 0 0
197197 0.707107 0.707107i 0.707107 0.707107i −0.258819 0.965926i 0.583333π-0.583333\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
198198 0 0
199199 −1.22474 + 0.707107i −1.22474 + 0.707107i −0.965926 0.258819i 0.916667π-0.916667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
200200 0 0
201201 −1.00000 + 1.73205i −1.00000 + 1.73205i
202202 0 0
203203 1.00000 + 1.00000i 1.00000 + 1.00000i
204204 0 0
205205 0.258819 + 0.965926i 0.258819 + 0.965926i
206206 0 0
207207 0.258819 0.965926i 0.258819 0.965926i
208208 0 0
209209 1.00000i 1.00000i
210210 0 0
211211 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
212212 0 0
213213 −0.517638 + 1.93185i −0.517638 + 1.93185i
214214 0 0
215215 0 0
216216 0 0
217217 −0.366025 + 1.36603i −0.366025 + 1.36603i
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
224224 0 0
225225 1.00000 1.00000
226226 0 0
227227 −1.36603 0.366025i −1.36603 0.366025i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
228228 0 0
229229 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
230230 0 0
231231 −0.707107 + 1.22474i −0.707107 + 1.22474i
232232 0 0
233233 0.366025 + 1.36603i 0.366025 + 1.36603i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
234234 0 0
235235 0.500000 + 0.866025i 0.500000 + 0.866025i
236236 0 0
237237 0 0
238238 0 0
239239 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
240240 0 0
241241 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
242242 0 0
243243 1.36603 0.366025i 1.36603 0.366025i
244244 0 0
245245 0.965926 0.258819i 0.965926 0.258819i
246246 0 0
247247 −0.965926 + 0.258819i −0.965926 + 0.258819i
248248 0 0
249249 1.73205 1.00000i 1.73205 1.00000i
250250 0 0
251251 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
252252 0 0
253253 −0.707107 0.707107i −0.707107 0.707107i
254254 0 0
255255 0 0
256256 0 0
257257 1.36603 0.366025i 1.36603 0.366025i 0.500000 0.866025i 0.333333π-0.333333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
258258 0 0
259259 0.500000 0.866025i 0.500000 0.866025i
260260 0 0
261261 1.22474 + 0.707107i 1.22474 + 0.707107i
262262 0 0
263263 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
264264 0 0
265265 1.00000 1.00000
266266 0 0
267267 0 0
268268 0 0
269269 −0.707107 1.22474i −0.707107 1.22474i −0.965926 0.258819i 0.916667π-0.916667\pi
0.258819 0.965926i 0.416667π-0.416667\pi
270270 0 0
271271 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
272272 0 0
273273 1.36603 + 0.366025i 1.36603 + 0.366025i
274274 0 0
275275 0.500000 0.866025i 0.500000 0.866025i
276276 0 0
277277 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
278278 0 0
279279 1.41421i 1.41421i
280280 0 0
281281 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
282282 0 0
283283 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
284284 0 0
285285 −0.707107 + 1.22474i −0.707107 + 1.22474i
286286 0 0
287287 0.707107 + 0.707107i 0.707107 + 0.707107i
288288 0 0
289289 0.866025 + 0.500000i 0.866025 + 0.500000i
290290 0 0
291291 −1.73205 + 1.00000i −1.73205 + 1.00000i
292292 0 0
293293 −0.707107 0.707107i −0.707107 0.707107i 0.258819 0.965926i 0.416667π-0.416667\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 −0.500000 + 0.866025i −0.500000 + 0.866025i
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 −0.366025 + 1.36603i −0.366025 + 1.36603i
306306 0 0
307307 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
308308 0 0
309309 0 0
310310 0 0
311311 −0.707107 1.22474i −0.707107 1.22474i −0.965926 0.258819i 0.916667π-0.916667\pi
0.258819 0.965926i 0.416667π-0.416667\pi
312312 0 0
313313 −0.366025 1.36603i −0.366025 1.36603i −0.866025 0.500000i 0.833333π-0.833333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
314314 0 0
315315 0.866025 0.500000i 0.866025 0.500000i
316316 0 0
317317 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
318318 0 0
319319 1.22474 0.707107i 1.22474 0.707107i
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 −0.965926 0.258819i −0.965926 0.258819i
326326 0 0
327327 1.93185 0.517638i 1.93185 0.517638i
328328 0 0
329329 0.866025 + 0.500000i 0.866025 + 0.500000i
330330 0 0
331331 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
332332 0 0
333333 0.258819 0.965926i 0.258819 0.965926i
334334 0 0
335335 1.41421i 1.41421i
336336 0 0
337337 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
338338 0 0
339339 −1.00000 1.73205i −1.00000 1.73205i
340340 0 0
341341 1.22474 + 0.707107i 1.22474 + 0.707107i
342342 0 0
343343 0.707107 0.707107i 0.707107 0.707107i
344344 0 0
345345 0.366025 + 1.36603i 0.366025 + 1.36603i
346346 0 0
347347 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
348348 0 0
349349 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
354354 0 0
355355 −0.366025 1.36603i −0.366025 1.36603i
356356 0 0
357357 0 0
358358 0 0
359359 1.22474 + 0.707107i 1.22474 + 0.707107i 0.965926 0.258819i 0.0833333π-0.0833333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
360360 0 0
361361 0 0
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 −0.258819 + 0.965926i −0.258819 + 0.965926i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
368368 0 0
369369 0.866025 + 0.500000i 0.866025 + 0.500000i
370370 0 0
371371 0.866025 0.500000i 0.866025 0.500000i
372372 0 0
373373 −1.93185 + 0.517638i −1.93185 + 0.517638i −0.965926 + 0.258819i 0.916667π0.916667\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
374374 0 0
375375 −1.22474 + 0.707107i −1.22474 + 0.707107i
376376 0 0
377377 −1.00000 1.00000i −1.00000 1.00000i
378378 0 0
379379 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
380380 0 0
381381 −1.22474 + 0.707107i −1.22474 + 0.707107i
382382 0 0
383383 −0.258819 0.965926i −0.258819 0.965926i −0.965926 0.258819i 0.916667π-0.916667\pi
0.707107 0.707107i 0.250000π-0.250000\pi
384384 0 0
385385 1.00000i 1.00000i
386386 0 0
387387 0 0
388388 0 0
389389 0.707107 + 1.22474i 0.707107 + 1.22474i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
390390 0 0
391391 0 0
392392 0 0
393393 −1.00000 + 1.00000i −1.00000 + 1.00000i
394394 0 0
395395 0 0
396396 0 0
397397 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
398398 0 0
399399 1.41421i 1.41421i
400400 0 0
401401 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
402402 0 0
403403 0.366025 1.36603i 0.366025 1.36603i
404404 0 0
405405 −0.707107 + 0.707107i −0.707107 + 0.707107i
406406 0 0
407407 −0.707107 0.707107i −0.707107 0.707107i
408408 0 0
409409 −1.73205 + 1.00000i −1.73205 + 1.00000i −0.866025 + 0.500000i 0.833333π0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 −0.707107 + 1.22474i −0.707107 + 1.22474i
416416 0 0
417417 0 0
418418 0 0
419419 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
420420 0 0
421421 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
422422 0 0
423423 0.965926 + 0.258819i 0.965926 + 0.258819i
424424 0 0
425425 0 0
426426 0 0
427427 0.366025 + 1.36603i 0.366025 + 1.36603i
428428 0 0
429429 0.707107 1.22474i 0.707107 1.22474i
430430 0 0
431431 −0.707107 1.22474i −0.707107 1.22474i −0.965926 0.258819i 0.916667π-0.916667\pi
0.258819 0.965926i 0.416667π-0.416667\pi
432432 0 0
433433 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
434434 0 0
435435 −2.00000 −2.00000
436436 0 0
437437 −0.965926 0.258819i −0.965926 0.258819i
438438 0 0
439439 1.22474 + 0.707107i 1.22474 + 0.707107i 0.965926 0.258819i 0.0833333π-0.0833333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
440440 0 0
441441 0.500000 0.866025i 0.500000 0.866025i
442442 0 0
443443 −1.36603 + 0.366025i −1.36603 + 0.366025i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
450450 0 0
451451 0.866025 0.500000i 0.866025 0.500000i
452452 0 0
453453 0 0
454454 0 0
455455 −0.965926 + 0.258819i −0.965926 + 0.258819i
456456 0 0
457457 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
458458 0 0
459459 0 0
460460 0 0
461461 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
462462 0 0
463463 0.707107 0.707107i 0.707107 0.707107i −0.258819 0.965926i 0.583333π-0.583333\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
464464 0 0
465465 −1.00000 1.73205i −1.00000 1.73205i
466466 0 0
467467 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
468468 0 0
469469 −0.707107 1.22474i −0.707107 1.22474i
470470 0 0
471471 −0.707107 + 1.22474i −0.707107 + 1.22474i
472472 0 0
473473 0 0
474474 0 0
475475 1.00000i 1.00000i
476476 0 0
477477 0.707107 0.707107i 0.707107 0.707107i
478478 0 0
479479 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
480480 0 0
481481 −0.500000 + 0.866025i −0.500000 + 0.866025i
482482 0 0
483483 1.00000 + 1.00000i 1.00000 + 1.00000i
484484 0 0
485485 0.707107 1.22474i 0.707107 1.22474i
486486 0 0
487487 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 1.00000 00
−1.00000 π\pi
492492 0 0
493493 0 0
494494 0 0
495495 −0.258819 0.965926i −0.258819 0.965926i
496496 0 0
497497 −1.00000 1.00000i −1.00000 1.00000i
498498 0 0
499499 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
500500 0 0
501501 1.22474 0.707107i 1.22474 0.707107i
502502 0 0
503503 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0.707107 0.707107i 0.707107 0.707107i
518518 0 0
519519 1.41421i 1.41421i
520520 0 0
521521 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
522522 0 0
523523 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
524524 0 0
525525 −0.707107 + 1.22474i −0.707107 + 1.22474i
526526 0 0
527527 0 0
528528 0 0
529529 0 0
530530 0 0
531531 0 0
532532 0 0
533533 −0.707107 0.707107i −0.707107 0.707107i
534534 0 0
535535 0 0
536536 0 0
537537 1.36603 0.366025i 1.36603 0.366025i
538538 0 0
539539 −0.500000 0.866025i −0.500000 0.866025i
540540 0 0
541541 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
542542 0 0
543543 0 0
544544 0 0
545545 −1.00000 + 1.00000i −1.00000 + 1.00000i
546546 0 0
547547 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
548548 0 0
549549 0.707107 + 1.22474i 0.707107 + 1.22474i
550550 0 0
551551 0.707107 1.22474i 0.707107 1.22474i
552552 0 0
553553 0 0
554554 0 0
555555 0.366025 + 1.36603i 0.366025 + 1.36603i
556556 0 0
557557 0.965926 + 0.258819i 0.965926 + 0.258819i 0.707107 0.707107i 0.250000π-0.250000\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
564564 0 0
565565 1.22474 + 0.707107i 1.22474 + 0.707107i
566566 0 0
567567 −0.258819 + 0.965926i −0.258819 + 0.965926i
568568 0 0
569569 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
570570 0 0
571571 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
572572 0 0
573573 0 0
574574 0 0
575575 −0.707107 0.707107i −0.707107 0.707107i
576576 0 0
577577 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
578578 0 0
579579 −1.00000 + 1.73205i −1.00000 + 1.73205i
580580 0 0
581581 1.41421i 1.41421i
582582 0 0
583583 −0.258819 0.965926i −0.258819 0.965926i
584584 0 0
585585 −0.866025 + 0.500000i −0.866025 + 0.500000i
586586 0 0
587587 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
588588 0 0
589589 1.41421 1.41421
590590 0 0
591591 0.707107 + 1.22474i 0.707107 + 1.22474i
592592 0 0
593593 −0.366025 1.36603i −0.366025 1.36603i −0.866025 0.500000i 0.833333π-0.833333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
594594 0 0
595595 0 0
596596 0 0
597597 −0.517638 1.93185i −0.517638 1.93185i
598598 0 0
599599 −1.22474 + 0.707107i −1.22474 + 0.707107i −0.965926 0.258819i 0.916667π-0.916667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
600600 0 0
601601 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
602602 0 0
603603 −1.00000 1.00000i −1.00000 1.00000i
604604 0 0
605605 0 0
606606 0 0
607607 0.965926 0.258819i 0.965926 0.258819i 0.258819 0.965926i 0.416667π-0.416667\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
608608 0 0
609609 −1.73205 + 1.00000i −1.73205 + 1.00000i
610610 0 0
611611 −0.866025 0.500000i −0.866025 0.500000i
612612 0 0
613613 −0.258819 + 0.965926i −0.258819 + 0.965926i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
614614 0 0
615615 −1.41421 −1.41421
616616 0 0
617617 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
618618 0 0
619619 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0.500000 0.866025i 0.500000 0.866025i
626626 0 0
627627 1.36603 + 0.366025i 1.36603 + 0.366025i
628628 0 0
629629 0 0
630630 0 0
631631 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
632632 0 0
633633 1.36603 + 0.366025i 1.36603 + 0.366025i
634634 0 0
635635 0.500000 0.866025i 0.500000 0.866025i
636636 0 0
637637 −0.707107 + 0.707107i −0.707107 + 0.707107i
638638 0 0
639639 −1.22474 0.707107i −1.22474 0.707107i
640640 0 0
641641 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
642642 0 0
643643 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
644644 0 0
645645 0 0
646646 0 0
647647 −0.258819 + 0.965926i −0.258819 + 0.965926i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
648648 0 0
649649 0 0
650650 0 0
651651 −1.73205 1.00000i −1.73205 1.00000i
652652 0 0
653653 −0.965926 + 0.258819i −0.965926 + 0.258819i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
654654 0 0
655655 0.258819 0.965926i 0.258819 0.965926i
656656 0 0
657657 0 0
658658 0 0
659659 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
660660 0 0
661661 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
662662 0 0
663663 0 0
664664 0 0
665665 −0.500000 0.866025i −0.500000 0.866025i
666666 0 0
667667 −0.366025 1.36603i −0.366025 1.36603i
668668 0 0
669669 0 0
670670 0 0
671671 1.41421 1.41421
672672 0 0
673673 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
674674 0 0
675675 0 0
676676 0 0
677677 0.258819 + 0.965926i 0.258819 + 0.965926i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
678678 0 0
679679 1.41421i 1.41421i
680680 0 0
681681 1.00000 1.73205i 1.00000 1.73205i
682682 0 0
683683 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 −0.866025 + 0.500000i −0.866025 + 0.500000i
690690 0 0
691691 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
692692 0 0
693693 −0.707107 0.707107i −0.707107 0.707107i
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 −2.00000 −2.00000
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 −0.965926 0.258819i −0.965926 0.258819i
704704 0 0
705705 −1.36603 + 0.366025i −1.36603 + 0.366025i
706706 0 0
707707 0 0
708708 0 0
709709 −0.707107 + 1.22474i −0.707107 + 1.22474i 0.258819 + 0.965926i 0.416667π0.416667\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
710710 0 0
711711 0 0
712712 0 0
713713 1.00000 1.00000i 1.00000 1.00000i
714714 0 0
715715 1.00000i 1.00000i
716716 0 0
717717 −1.93185 0.517638i −1.93185 0.517638i
718718 0 0
719719 1.22474 + 0.707107i 1.22474 + 0.707107i 0.965926 0.258819i 0.0833333π-0.0833333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
720720 0 0
721721 0 0
722722 0 0
723723 −1.36603 + 0.366025i −1.36603 + 0.366025i
724724 0 0
725725 1.22474 0.707107i 1.22474 0.707107i
726726 0 0
727727 0.707107 + 0.707107i 0.707107 + 0.707107i 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
728728 0 0
729729 1.00000i 1.00000i
730730 0 0
731731 0 0
732732 0 0
733733 0.965926 0.258819i 0.965926 0.258819i 0.258819 0.965926i 0.416667π-0.416667\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
734734 0 0
735735 1.41421i 1.41421i
736736 0 0
737737 −1.36603 + 0.366025i −1.36603 + 0.366025i
738738 0 0
739739 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
740740 0 0
741741 1.41421i 1.41421i
742742 0 0
743743 −0.707107 + 0.707107i −0.707107 + 0.707107i −0.965926 0.258819i 0.916667π-0.916667\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
744744 0 0
745745 0 0
746746 0 0
747747 0.366025 + 1.36603i 0.366025 + 1.36603i
748748 0 0
749749 0 0
750750 0 0
751751 −0.707107 + 1.22474i −0.707107 + 1.22474i 0.258819 + 0.965926i 0.416667π0.416667\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
752752 0 0
753753 −1.36603 0.366025i −1.36603 0.366025i
754754 0 0
755755 0 0
756756 0 0
757757 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
758758 0 0
759759 1.22474 0.707107i 1.22474 0.707107i
760760 0 0
761761 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
762762 0 0
763763 −0.366025 + 1.36603i −0.366025 + 1.36603i
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
770770 0 0
771771 2.00000i 2.00000i
772772 0 0
773773 0.258819 0.965926i 0.258819 0.965926i −0.707107 0.707107i 0.750000π-0.750000\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
774774 0 0
775775 1.22474 + 0.707107i 1.22474 + 0.707107i
776776 0 0
777777 1.00000 + 1.00000i 1.00000 + 1.00000i
778778 0 0
779779 0.500000 0.866025i 0.500000 0.866025i
780780 0 0
781781 −1.22474 + 0.707107i −1.22474 + 0.707107i
782782 0 0
783783 0 0
784784 0 0
785785 1.00000i 1.00000i
786786 0 0
787787 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
788788 0 0
789789 0 0
790790 0 0
791791 1.41421 1.41421
792792 0 0
793793 −0.366025 1.36603i −0.366025 1.36603i
794794 0 0
795795 −0.366025 + 1.36603i −0.366025 + 1.36603i
796796 0 0
797797 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 −0.965926 0.258819i −0.965926 0.258819i
806806 0 0
807807 1.93185 0.517638i 1.93185 0.517638i
808808 0 0
809809 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
810810 0 0
811811 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 −0.500000 + 0.866025i −0.500000 + 0.866025i
820820 0 0
821821 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
822822 0 0
823823 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
824824 0 0
825825 1.00000 + 1.00000i 1.00000 + 1.00000i
826826 0 0
827827 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
828828 0 0
829829 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 −0.500000 + 0.866025i −0.500000 + 0.866025i
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 1.00000 1.00000
842842 0 0
843843 −0.366025 + 1.36603i −0.366025 + 1.36603i
844844 0 0
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 −0.866025 + 0.500000i −0.866025 + 0.500000i
852852 0 0
853853 0.707107 + 0.707107i 0.707107 + 0.707107i 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
854854 0 0
855855 −0.707107 0.707107i −0.707107 0.707107i
856856 0 0
857857 −0.366025 + 1.36603i −0.366025 + 1.36603i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
858858 0 0
859859 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
860860 0 0
861861 −1.22474 + 0.707107i −1.22474 + 0.707107i
862862 0 0
863863 0.258819 + 0.965926i 0.258819 + 0.965926i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
864864 0 0
865865 0.500000 + 0.866025i 0.500000 + 0.866025i
866866 0 0
867867 −1.00000 + 1.00000i −1.00000 + 1.00000i
868868 0 0
869869 0 0
870870 0 0
871871 0.707107 + 1.22474i 0.707107 + 1.22474i
872872 0 0
873873 −0.366025 1.36603i −0.366025 1.36603i
874874 0 0
875875 1.00000i 1.00000i
876876 0 0
877877 0.258819 + 0.965926i 0.258819 + 0.965926i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
878878 0 0
879879 1.22474 0.707107i 1.22474 0.707107i
880880 0 0
881881 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
882882 0 0
883883 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
888888 0 0
889889 1.00000i 1.00000i
890890 0 0
891891 0.866025 + 0.500000i 0.866025 + 0.500000i
892892 0 0
893893 0.258819 0.965926i 0.258819 0.965926i
894894 0 0
895895 −0.707107 + 0.707107i −0.707107 + 0.707107i
896896 0 0
897897 −1.00000 1.00000i −1.00000 1.00000i
898898 0 0
899899 1.00000 + 1.73205i 1.00000 + 1.73205i
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 −1.36603 0.366025i −1.36603 0.366025i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 1.36603 + 0.366025i 1.36603 + 0.366025i
914914 0 0
915915 −1.73205 1.00000i −1.73205 1.00000i
916916 0 0
917917 −0.258819 0.965926i −0.258819 0.965926i
918918 0 0
919919 −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i 0.583333π-0.583333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
920920 0 0
921921 0 0
922922 0 0
923923 1.00000 + 1.00000i 1.00000 + 1.00000i
924924 0 0
925925 −0.707107 0.707107i −0.707107 0.707107i
926926 0 0
927927 0 0
928928 0 0
929929 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
930930 0 0
931931 −0.866025 0.500000i −0.866025 0.500000i
932932 0 0
933933 1.93185 0.517638i 1.93185 0.517638i
934934 0 0
935935 0 0
936936 0 0
937937 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
938938 0 0
939939 2.00000 2.00000
940940 0 0
941941 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
942942 0 0
943943 −0.258819 0.965926i −0.258819 0.965926i
944944 0 0
945945 0 0
946946 0 0
947947 0.366025 + 1.36603i 0.366025 + 1.36603i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
954954 0 0
955955 0 0
956956 0 0
957957 0.517638 + 1.93185i 0.517638 + 1.93185i
958958 0 0
959959 0 0
960960 0 0
961961 −0.500000 + 0.866025i −0.500000 + 0.866025i
962962 0 0
963963 0 0
964964 0 0
965965 1.41421i 1.41421i
966966 0 0
967967 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
968968 0 0
969969 0 0
970970 0 0
971971 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
972972 0 0
973973 0 0
974974 0 0
975975 0.707107 1.22474i 0.707107 1.22474i
976976 0 0
977977 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
978978 0 0
979979 0 0
980980 0 0
981981 1.41421i 1.41421i
982982 0 0
983983 −0.965926 0.258819i −0.965926 0.258819i −0.258819 0.965926i 0.583333π-0.583333\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
984984 0 0
985985 −0.866025 0.500000i −0.866025 0.500000i
986986 0 0
987987 −1.00000 + 1.00000i −1.00000 + 1.00000i
988988 0 0
989989 0 0
990990 0 0
991991 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
992992 0 0
993993 −1.00000 + 1.00000i −1.00000 + 1.00000i
994994 0 0
995995 1.00000 + 1.00000i 1.00000 + 1.00000i
996996 0 0
997997 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2240.1.dl.b.737.1 yes 8
4.3 odd 2 2240.1.dl.a.737.1 yes 8
5.3 odd 4 2240.1.dl.a.1633.1 yes 8
7.4 even 3 inner 2240.1.dl.b.417.2 yes 8
8.3 odd 2 inner 2240.1.dl.b.737.2 yes 8
8.5 even 2 2240.1.dl.a.737.2 yes 8
20.3 even 4 inner 2240.1.dl.b.1633.1 yes 8
28.11 odd 6 2240.1.dl.a.417.2 yes 8
35.18 odd 12 2240.1.dl.a.1313.2 yes 8
40.3 even 4 2240.1.dl.a.1633.2 yes 8
40.13 odd 4 inner 2240.1.dl.b.1633.2 yes 8
56.11 odd 6 inner 2240.1.dl.b.417.1 yes 8
56.53 even 6 2240.1.dl.a.417.1 8
140.123 even 12 inner 2240.1.dl.b.1313.2 yes 8
280.53 odd 12 inner 2240.1.dl.b.1313.1 yes 8
280.123 even 12 2240.1.dl.a.1313.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2240.1.dl.a.417.1 8 56.53 even 6
2240.1.dl.a.417.2 yes 8 28.11 odd 6
2240.1.dl.a.737.1 yes 8 4.3 odd 2
2240.1.dl.a.737.2 yes 8 8.5 even 2
2240.1.dl.a.1313.1 yes 8 280.123 even 12
2240.1.dl.a.1313.2 yes 8 35.18 odd 12
2240.1.dl.a.1633.1 yes 8 5.3 odd 4
2240.1.dl.a.1633.2 yes 8 40.3 even 4
2240.1.dl.b.417.1 yes 8 56.11 odd 6 inner
2240.1.dl.b.417.2 yes 8 7.4 even 3 inner
2240.1.dl.b.737.1 yes 8 1.1 even 1 trivial
2240.1.dl.b.737.2 yes 8 8.3 odd 2 inner
2240.1.dl.b.1313.1 yes 8 280.53 odd 12 inner
2240.1.dl.b.1313.2 yes 8 140.123 even 12 inner
2240.1.dl.b.1633.1 yes 8 20.3 even 4 inner
2240.1.dl.b.1633.2 yes 8 40.13 odd 4 inner