L(s) = 1 | + 3.61·3-s − 5·5-s + 7·7-s − 13.9·9-s − 68.4·11-s + 91.8·13-s − 18.0·15-s + 77.1·17-s − 55.5·19-s + 25.2·21-s − 97.8·23-s + 25·25-s − 147.·27-s + 20.3·29-s − 29.7·31-s − 247.·33-s − 35·35-s + 133.·37-s + 331.·39-s + 99.8·41-s + 298.·43-s + 69.6·45-s + 353.·47-s + 49·49-s + 278.·51-s − 501.·53-s + 342.·55-s + ⋯ |
L(s) = 1 | + 0.695·3-s − 0.447·5-s + 0.377·7-s − 0.516·9-s − 1.87·11-s + 1.95·13-s − 0.311·15-s + 1.10·17-s − 0.670·19-s + 0.262·21-s − 0.887·23-s + 0.200·25-s − 1.05·27-s + 0.130·29-s − 0.172·31-s − 1.30·33-s − 0.169·35-s + 0.591·37-s + 1.36·39-s + 0.380·41-s + 1.05·43-s + 0.230·45-s + 1.09·47-s + 0.142·49-s + 0.765·51-s − 1.29·53-s + 0.838·55-s + ⋯ |
Λ(s)=(=(2240s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(2240s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.216336521 |
L(21) |
≈ |
2.216336521 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+5T |
| 7 | 1−7T |
good | 3 | 1−3.61T+27T2 |
| 11 | 1+68.4T+1.33e3T2 |
| 13 | 1−91.8T+2.19e3T2 |
| 17 | 1−77.1T+4.91e3T2 |
| 19 | 1+55.5T+6.85e3T2 |
| 23 | 1+97.8T+1.21e4T2 |
| 29 | 1−20.3T+2.43e4T2 |
| 31 | 1+29.7T+2.97e4T2 |
| 37 | 1−133.T+5.06e4T2 |
| 41 | 1−99.8T+6.89e4T2 |
| 43 | 1−298.T+7.95e4T2 |
| 47 | 1−353.T+1.03e5T2 |
| 53 | 1+501.T+1.48e5T2 |
| 59 | 1+638.T+2.05e5T2 |
| 61 | 1+165.T+2.26e5T2 |
| 67 | 1+480.T+3.00e5T2 |
| 71 | 1−1.03e3T+3.57e5T2 |
| 73 | 1+28.8T+3.89e5T2 |
| 79 | 1+367.T+4.93e5T2 |
| 83 | 1+121.T+5.71e5T2 |
| 89 | 1−1.54e3T+7.04e5T2 |
| 97 | 1+65.1T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.507667473286162476949494898684, −7.894726291570960918054916341539, −7.64897761849668926936454064235, −6.10202227656284747087177086846, −5.69036941496381106886142960759, −4.57312407080089825837674861717, −3.61215436915000769378072472470, −2.93192825938238716012178908439, −1.95375325753614988450958731553, −0.63276309394581083436649328531,
0.63276309394581083436649328531, 1.95375325753614988450958731553, 2.93192825938238716012178908439, 3.61215436915000769378072472470, 4.57312407080089825837674861717, 5.69036941496381106886142960759, 6.10202227656284747087177086846, 7.64897761849668926936454064235, 7.894726291570960918054916341539, 8.507667473286162476949494898684