Properties

Label 2240.4.a.bq
Level $2240$
Weight $4$
Character orbit 2240.a
Self dual yes
Analytic conductor $132.164$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2240,4,Mod(1,2240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2240.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2240.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.164278413\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.11853.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 30x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 280)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 2) q^{3} - 5 q^{5} + 7 q^{7} + (\beta_{2} - 6 \beta_1 + 3) q^{9} + ( - \beta_{2} - 6 \beta_1 - 18) q^{11} + (4 \beta_{2} + 3 \beta_1 + 8) q^{13} + ( - 5 \beta_1 + 10) q^{15} + (6 \beta_{2} - 7 \beta_1 + 16) q^{17}+ \cdots + (24 \beta_{2} - 10 \beta_1 + 608) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{3} - 15 q^{5} + 21 q^{7} + 9 q^{9} - 54 q^{11} + 24 q^{13} + 30 q^{15} + 48 q^{17} - 132 q^{19} - 42 q^{21} + 144 q^{23} + 75 q^{25} - 294 q^{27} + 12 q^{29} + 180 q^{31} - 390 q^{33} - 105 q^{35}+ \cdots + 1824 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 30x - 7 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} + \nu - 20 ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{2} + 11\nu + 20 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{2} + 11\beta _1 + 80 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.233759
−5.35660
5.59036
0 −8.72637 0 −5.00000 0 7.00000 0 49.1496 0
1.2 0 −0.887801 0 −5.00000 0 7.00000 0 −26.2118 0
1.3 0 3.61417 0 −5.00000 0 7.00000 0 −13.9378 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2240.4.a.bq 3
4.b odd 2 1 2240.4.a.by 3
8.b even 2 1 560.4.a.x 3
8.d odd 2 1 280.4.a.g 3
40.e odd 2 1 1400.4.a.n 3
40.k even 4 2 1400.4.g.m 6
56.e even 2 1 1960.4.a.q 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.4.a.g 3 8.d odd 2 1
560.4.a.x 3 8.b even 2 1
1400.4.a.n 3 40.e odd 2 1
1400.4.g.m 6 40.k even 4 2
1960.4.a.q 3 56.e even 2 1
2240.4.a.bq 3 1.a even 1 1 trivial
2240.4.a.by 3 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2240))\):

\( T_{3}^{3} + 6T_{3}^{2} - 27T_{3} - 28 \) Copy content Toggle raw display
\( T_{11}^{3} + 54T_{11}^{2} - 1023T_{11} - 2420 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 6 T^{2} + \cdots - 28 \) Copy content Toggle raw display
$5$ \( (T + 5)^{3} \) Copy content Toggle raw display
$7$ \( (T - 7)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 54 T^{2} + \cdots - 2420 \) Copy content Toggle raw display
$13$ \( T^{3} - 24 T^{2} + \cdots + 79518 \) Copy content Toggle raw display
$17$ \( T^{3} - 48 T^{2} + \cdots + 959126 \) Copy content Toggle raw display
$19$ \( T^{3} + 132 T^{2} + \cdots - 325648 \) Copy content Toggle raw display
$23$ \( T^{3} - 144 T^{2} + \cdots + 866464 \) Copy content Toggle raw display
$29$ \( T^{3} - 12 T^{2} + \cdots + 282534 \) Copy content Toggle raw display
$31$ \( T^{3} - 180 T^{2} + \cdots + 286720 \) Copy content Toggle raw display
$37$ \( T^{3} - 402 T^{2} + \cdots + 4841128 \) Copy content Toggle raw display
$41$ \( T^{3} + 66 T^{2} + \cdots + 11863712 \) Copy content Toggle raw display
$43$ \( T^{3} + 684 T^{2} + \cdots - 71835312 \) Copy content Toggle raw display
$47$ \( T^{3} - 1074 T^{2} + \cdots - 22845312 \) Copy content Toggle raw display
$53$ \( T^{3} + 126 T^{2} + \cdots + 16752512 \) Copy content Toggle raw display
$59$ \( T^{3} + 36 T^{2} + \cdots + 5320384 \) Copy content Toggle raw display
$61$ \( T^{3} - 750 T^{2} + \cdots + 5580192 \) Copy content Toggle raw display
$67$ \( T^{3} + 1236 T^{2} + \cdots + 6943744 \) Copy content Toggle raw display
$71$ \( T^{3} - 696 T^{2} + \cdots - 26919424 \) Copy content Toggle raw display
$73$ \( T^{3} - 654 T^{2} + \cdots + 2941560 \) Copy content Toggle raw display
$79$ \( T^{3} + 762 T^{2} + \cdots - 417847024 \) Copy content Toggle raw display
$83$ \( T^{3} - 444 T^{2} + \cdots + 7436992 \) Copy content Toggle raw display
$89$ \( T^{3} - 1782 T^{2} + \cdots + 836292576 \) Copy content Toggle raw display
$97$ \( T^{3} - 1560 T^{2} + \cdots + 3281334 \) Copy content Toggle raw display
show more
show less