Properties

Label 2-15e2-1.1-c9-0-19
Degree $2$
Conductor $225$
Sign $1$
Analytic cond. $115.883$
Root an. cond. $10.7648$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12.2·2-s − 362.·4-s + 4.34e3·7-s + 1.06e4·8-s − 3.67e4·11-s + 1.87e5·13-s − 5.30e4·14-s + 5.50e4·16-s + 3.94e3·17-s − 2.37e5·19-s + 4.49e5·22-s + 2.19e6·23-s − 2.29e6·26-s − 1.57e6·28-s + 6.47e6·29-s − 4.92e6·31-s − 6.14e6·32-s − 4.81e4·34-s + 6.61e6·37-s + 2.89e6·38-s − 2.22e7·41-s + 1.25e7·43-s + 1.33e7·44-s − 2.67e7·46-s − 3.42e7·47-s − 2.14e7·49-s − 6.80e7·52-s + ⋯
L(s)  = 1  − 0.540·2-s − 0.708·4-s + 0.683·7-s + 0.922·8-s − 0.756·11-s + 1.82·13-s − 0.369·14-s + 0.210·16-s + 0.0114·17-s − 0.417·19-s + 0.408·22-s + 1.63·23-s − 0.983·26-s − 0.484·28-s + 1.70·29-s − 0.957·31-s − 1.03·32-s − 0.00618·34-s + 0.580·37-s + 0.225·38-s − 1.22·41-s + 0.557·43-s + 0.536·44-s − 0.881·46-s − 1.02·47-s − 0.532·49-s − 1.28·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(115.883\)
Root analytic conductor: \(10.7648\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(1.574037800\)
\(L(\frac12)\) \(\approx\) \(1.574037800\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 + 12.2T + 512T^{2} \)
7 \( 1 - 4.34e3T + 4.03e7T^{2} \)
11 \( 1 + 3.67e4T + 2.35e9T^{2} \)
13 \( 1 - 1.87e5T + 1.06e10T^{2} \)
17 \( 1 - 3.94e3T + 1.18e11T^{2} \)
19 \( 1 + 2.37e5T + 3.22e11T^{2} \)
23 \( 1 - 2.19e6T + 1.80e12T^{2} \)
29 \( 1 - 6.47e6T + 1.45e13T^{2} \)
31 \( 1 + 4.92e6T + 2.64e13T^{2} \)
37 \( 1 - 6.61e6T + 1.29e14T^{2} \)
41 \( 1 + 2.22e7T + 3.27e14T^{2} \)
43 \( 1 - 1.25e7T + 5.02e14T^{2} \)
47 \( 1 + 3.42e7T + 1.11e15T^{2} \)
53 \( 1 + 3.09e7T + 3.29e15T^{2} \)
59 \( 1 + 7.50e7T + 8.66e15T^{2} \)
61 \( 1 - 1.30e7T + 1.16e16T^{2} \)
67 \( 1 - 1.37e8T + 2.72e16T^{2} \)
71 \( 1 - 2.12e8T + 4.58e16T^{2} \)
73 \( 1 - 2.65e8T + 5.88e16T^{2} \)
79 \( 1 - 2.69e8T + 1.19e17T^{2} \)
83 \( 1 + 5.22e8T + 1.86e17T^{2} \)
89 \( 1 + 3.29e8T + 3.50e17T^{2} \)
97 \( 1 + 1.12e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.72801199555240978410343419263, −9.525622457838628768623687199829, −8.487386242841374210375010902961, −8.114368576185101031539979492644, −6.72637016074206998332222346499, −5.37168466998929960798680358683, −4.49216914509691840709037334163, −3.24770887955911828910721223498, −1.58758374434184062309557544418, −0.69627322067405062860873231768, 0.69627322067405062860873231768, 1.58758374434184062309557544418, 3.24770887955911828910721223498, 4.49216914509691840709037334163, 5.37168466998929960798680358683, 6.72637016074206998332222346499, 8.114368576185101031539979492644, 8.487386242841374210375010902961, 9.525622457838628768623687199829, 10.72801199555240978410343419263

Graph of the $Z$-function along the critical line