Properties

Label 225.10.a.x.1.4
Level $225$
Weight $10$
Character 225.1
Self dual yes
Analytic conductor $115.883$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,10,Mod(1,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(115.883063137\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4 x^{7} - 3492 x^{6} + 10490 x^{5} + 3539940 x^{4} - 7097368 x^{3} - 848796093 x^{2} + \cdots + 43654030340 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{8}\cdot 5^{10} \)
Twist minimal: no (minimal twist has level 45)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-7.91265\) of defining polynomial
Character \(\chi\) \(=\) 225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-12.2206 q^{2} -362.657 q^{4} +4342.19 q^{7} +10688.8 q^{8} -36750.7 q^{11} +187538. q^{13} -53064.1 q^{14} +55056.9 q^{16} +3942.12 q^{17} -237154. q^{19} +449115. q^{22} +2.19106e6 q^{23} -2.29183e6 q^{26} -1.57473e6 q^{28} +6.47801e6 q^{29} -4.92268e6 q^{31} -6.14550e6 q^{32} -48175.0 q^{34} +6.61220e6 q^{37} +2.89817e6 q^{38} -2.22036e7 q^{41} +1.25053e7 q^{43} +1.33279e7 q^{44} -2.67760e7 q^{46} -3.42169e7 q^{47} -2.14990e7 q^{49} -6.80121e7 q^{52} -3.09549e7 q^{53} +4.64129e7 q^{56} -7.91651e7 q^{58} -7.50725e7 q^{59} +1.30229e7 q^{61} +6.01580e7 q^{62} +4.69125e7 q^{64} +1.37041e8 q^{67} -1.42964e6 q^{68} +2.12149e8 q^{71} +2.65436e8 q^{73} -8.08050e7 q^{74} +8.60058e7 q^{76} -1.59578e8 q^{77} +2.69754e8 q^{79} +2.71341e8 q^{82} -5.22793e8 q^{83} -1.52822e8 q^{86} -3.92822e8 q^{88} -3.29338e8 q^{89} +8.14326e8 q^{91} -7.94603e8 q^{92} +4.18150e8 q^{94} -1.12881e9 q^{97} +2.62731e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 144 q^{4} - 1009088 q^{16} + 2079872 q^{19} + 12077344 q^{31} - 25286480 q^{34} + 3119840 q^{46} + 174619144 q^{49} - 165845744 q^{61} - 91038464 q^{64} + 1551352896 q^{76} + 1098932768 q^{79} - 1465128000 q^{91}+ \cdots + 4117219360 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −12.2206 −0.540079 −0.270039 0.962849i \(-0.587037\pi\)
−0.270039 + 0.962849i \(0.587037\pi\)
\(3\) 0 0
\(4\) −362.657 −0.708315
\(5\) 0 0
\(6\) 0 0
\(7\) 4342.19 0.683545 0.341773 0.939783i \(-0.388973\pi\)
0.341773 + 0.939783i \(0.388973\pi\)
\(8\) 10688.8 0.922624
\(9\) 0 0
\(10\) 0 0
\(11\) −36750.7 −0.756830 −0.378415 0.925636i \(-0.623531\pi\)
−0.378415 + 0.925636i \(0.623531\pi\)
\(12\) 0 0
\(13\) 187538. 1.82115 0.910573 0.413349i \(-0.135641\pi\)
0.910573 + 0.413349i \(0.135641\pi\)
\(14\) −53064.1 −0.369168
\(15\) 0 0
\(16\) 55056.9 0.210025
\(17\) 3942.12 0.0114475 0.00572374 0.999984i \(-0.498178\pi\)
0.00572374 + 0.999984i \(0.498178\pi\)
\(18\) 0 0
\(19\) −237154. −0.417484 −0.208742 0.977971i \(-0.566937\pi\)
−0.208742 + 0.977971i \(0.566937\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 449115. 0.408748
\(23\) 2.19106e6 1.63260 0.816298 0.577631i \(-0.196023\pi\)
0.816298 + 0.577631i \(0.196023\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −2.29183e6 −0.983562
\(27\) 0 0
\(28\) −1.57473e6 −0.484165
\(29\) 6.47801e6 1.70079 0.850395 0.526145i \(-0.176363\pi\)
0.850395 + 0.526145i \(0.176363\pi\)
\(30\) 0 0
\(31\) −4.92268e6 −0.957357 −0.478679 0.877990i \(-0.658884\pi\)
−0.478679 + 0.877990i \(0.658884\pi\)
\(32\) −6.14550e6 −1.03605
\(33\) 0 0
\(34\) −48175.0 −0.00618254
\(35\) 0 0
\(36\) 0 0
\(37\) 6.61220e6 0.580014 0.290007 0.957025i \(-0.406342\pi\)
0.290007 + 0.957025i \(0.406342\pi\)
\(38\) 2.89817e6 0.225474
\(39\) 0 0
\(40\) 0 0
\(41\) −2.22036e7 −1.22715 −0.613573 0.789638i \(-0.710268\pi\)
−0.613573 + 0.789638i \(0.710268\pi\)
\(42\) 0 0
\(43\) 1.25053e7 0.557808 0.278904 0.960319i \(-0.410029\pi\)
0.278904 + 0.960319i \(0.410029\pi\)
\(44\) 1.33279e7 0.536074
\(45\) 0 0
\(46\) −2.67760e7 −0.881730
\(47\) −3.42169e7 −1.02282 −0.511411 0.859336i \(-0.670877\pi\)
−0.511411 + 0.859336i \(0.670877\pi\)
\(48\) 0 0
\(49\) −2.14990e7 −0.532766
\(50\) 0 0
\(51\) 0 0
\(52\) −6.80121e7 −1.28994
\(53\) −3.09549e7 −0.538875 −0.269438 0.963018i \(-0.586838\pi\)
−0.269438 + 0.963018i \(0.586838\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 4.64129e7 0.630656
\(57\) 0 0
\(58\) −7.91651e7 −0.918560
\(59\) −7.50725e7 −0.806579 −0.403290 0.915072i \(-0.632133\pi\)
−0.403290 + 0.915072i \(0.632133\pi\)
\(60\) 0 0
\(61\) 1.30229e7 0.120427 0.0602136 0.998186i \(-0.480822\pi\)
0.0602136 + 0.998186i \(0.480822\pi\)
\(62\) 6.01580e7 0.517048
\(63\) 0 0
\(64\) 4.69125e7 0.349526
\(65\) 0 0
\(66\) 0 0
\(67\) 1.37041e8 0.830836 0.415418 0.909631i \(-0.363635\pi\)
0.415418 + 0.909631i \(0.363635\pi\)
\(68\) −1.42964e6 −0.00810842
\(69\) 0 0
\(70\) 0 0
\(71\) 2.12149e8 0.990784 0.495392 0.868670i \(-0.335024\pi\)
0.495392 + 0.868670i \(0.335024\pi\)
\(72\) 0 0
\(73\) 2.65436e8 1.09397 0.546987 0.837141i \(-0.315775\pi\)
0.546987 + 0.837141i \(0.315775\pi\)
\(74\) −8.08050e7 −0.313253
\(75\) 0 0
\(76\) 8.60058e7 0.295710
\(77\) −1.59578e8 −0.517328
\(78\) 0 0
\(79\) 2.69754e8 0.779194 0.389597 0.920985i \(-0.372614\pi\)
0.389597 + 0.920985i \(0.372614\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 2.71341e8 0.662755
\(83\) −5.22793e8 −1.20915 −0.604573 0.796550i \(-0.706656\pi\)
−0.604573 + 0.796550i \(0.706656\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.52822e8 −0.301260
\(87\) 0 0
\(88\) −3.92822e8 −0.698270
\(89\) −3.29338e8 −0.556400 −0.278200 0.960523i \(-0.589738\pi\)
−0.278200 + 0.960523i \(0.589738\pi\)
\(90\) 0 0
\(91\) 8.14326e8 1.24484
\(92\) −7.94603e8 −1.15639
\(93\) 0 0
\(94\) 4.18150e8 0.552405
\(95\) 0 0
\(96\) 0 0
\(97\) −1.12881e9 −1.29464 −0.647319 0.762219i \(-0.724110\pi\)
−0.647319 + 0.762219i \(0.724110\pi\)
\(98\) 2.62731e8 0.287735
\(99\) 0 0
\(100\) 0 0
\(101\) −5.08135e8 −0.485884 −0.242942 0.970041i \(-0.578112\pi\)
−0.242942 + 0.970041i \(0.578112\pi\)
\(102\) 0 0
\(103\) −1.62711e7 −0.0142446 −0.00712230 0.999975i \(-0.502267\pi\)
−0.00712230 + 0.999975i \(0.502267\pi\)
\(104\) 2.00456e9 1.68023
\(105\) 0 0
\(106\) 3.78287e8 0.291035
\(107\) −1.55057e9 −1.14357 −0.571787 0.820402i \(-0.693750\pi\)
−0.571787 + 0.820402i \(0.693750\pi\)
\(108\) 0 0
\(109\) 1.46179e9 0.991893 0.495947 0.868353i \(-0.334821\pi\)
0.495947 + 0.868353i \(0.334821\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.39067e8 0.143562
\(113\) 5.32165e8 0.307039 0.153519 0.988146i \(-0.450939\pi\)
0.153519 + 0.988146i \(0.450939\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −2.34930e9 −1.20470
\(117\) 0 0
\(118\) 9.17430e8 0.435616
\(119\) 1.71174e7 0.00782487
\(120\) 0 0
\(121\) −1.00733e9 −0.427208
\(122\) −1.59148e8 −0.0650401
\(123\) 0 0
\(124\) 1.78525e9 0.678110
\(125\) 0 0
\(126\) 0 0
\(127\) 2.55988e9 0.873177 0.436589 0.899661i \(-0.356187\pi\)
0.436589 + 0.899661i \(0.356187\pi\)
\(128\) 2.57320e9 0.847283
\(129\) 0 0
\(130\) 0 0
\(131\) 5.60469e9 1.66276 0.831382 0.555702i \(-0.187550\pi\)
0.831382 + 0.555702i \(0.187550\pi\)
\(132\) 0 0
\(133\) −1.02977e9 −0.285369
\(134\) −1.67473e9 −0.448717
\(135\) 0 0
\(136\) 4.21367e7 0.0105617
\(137\) 5.27039e9 1.27820 0.639102 0.769122i \(-0.279306\pi\)
0.639102 + 0.769122i \(0.279306\pi\)
\(138\) 0 0
\(139\) 7.90257e9 1.79557 0.897784 0.440436i \(-0.145176\pi\)
0.897784 + 0.440436i \(0.145176\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −2.59259e9 −0.535101
\(143\) −6.89216e9 −1.37830
\(144\) 0 0
\(145\) 0 0
\(146\) −3.24379e9 −0.590832
\(147\) 0 0
\(148\) −2.39796e9 −0.410833
\(149\) −8.88302e9 −1.47646 −0.738232 0.674547i \(-0.764339\pi\)
−0.738232 + 0.674547i \(0.764339\pi\)
\(150\) 0 0
\(151\) 4.35498e9 0.681695 0.340847 0.940119i \(-0.389286\pi\)
0.340847 + 0.940119i \(0.389286\pi\)
\(152\) −2.53490e9 −0.385181
\(153\) 0 0
\(154\) 1.95014e9 0.279398
\(155\) 0 0
\(156\) 0 0
\(157\) 2.10491e9 0.276494 0.138247 0.990398i \(-0.455853\pi\)
0.138247 + 0.990398i \(0.455853\pi\)
\(158\) −3.29655e9 −0.420826
\(159\) 0 0
\(160\) 0 0
\(161\) 9.51398e9 1.11595
\(162\) 0 0
\(163\) 7.77003e9 0.862142 0.431071 0.902318i \(-0.358136\pi\)
0.431071 + 0.902318i \(0.358136\pi\)
\(164\) 8.05230e9 0.869206
\(165\) 0 0
\(166\) 6.38884e9 0.653034
\(167\) 1.81537e10 1.80610 0.903048 0.429540i \(-0.141324\pi\)
0.903048 + 0.429540i \(0.141324\pi\)
\(168\) 0 0
\(169\) 2.45661e10 2.31657
\(170\) 0 0
\(171\) 0 0
\(172\) −4.53512e9 −0.395104
\(173\) 8.80586e9 0.747419 0.373710 0.927546i \(-0.378086\pi\)
0.373710 + 0.927546i \(0.378086\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2.02338e9 −0.158953
\(177\) 0 0
\(178\) 4.02470e9 0.300500
\(179\) 7.00851e8 0.0510255 0.0255127 0.999674i \(-0.491878\pi\)
0.0255127 + 0.999674i \(0.491878\pi\)
\(180\) 0 0
\(181\) 1.87883e10 1.30117 0.650586 0.759433i \(-0.274523\pi\)
0.650586 + 0.759433i \(0.274523\pi\)
\(182\) −9.95154e9 −0.672309
\(183\) 0 0
\(184\) 2.34198e10 1.50627
\(185\) 0 0
\(186\) 0 0
\(187\) −1.44876e8 −0.00866380
\(188\) 1.24090e10 0.724481
\(189\) 0 0
\(190\) 0 0
\(191\) −2.71653e10 −1.47695 −0.738473 0.674283i \(-0.764453\pi\)
−0.738473 + 0.674283i \(0.764453\pi\)
\(192\) 0 0
\(193\) −3.36849e10 −1.74754 −0.873771 0.486338i \(-0.838332\pi\)
−0.873771 + 0.486338i \(0.838332\pi\)
\(194\) 1.37947e10 0.699207
\(195\) 0 0
\(196\) 7.79678e9 0.377366
\(197\) 3.52896e8 0.0166936 0.00834678 0.999965i \(-0.497343\pi\)
0.00834678 + 0.999965i \(0.497343\pi\)
\(198\) 0 0
\(199\) 2.79906e10 1.26524 0.632620 0.774463i \(-0.281980\pi\)
0.632620 + 0.774463i \(0.281980\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 6.20970e9 0.262416
\(203\) 2.81287e10 1.16257
\(204\) 0 0
\(205\) 0 0
\(206\) 1.98843e8 0.00769320
\(207\) 0 0
\(208\) 1.03253e10 0.382487
\(209\) 8.71559e9 0.315965
\(210\) 0 0
\(211\) 1.91333e10 0.664536 0.332268 0.943185i \(-0.392186\pi\)
0.332268 + 0.943185i \(0.392186\pi\)
\(212\) 1.12260e10 0.381694
\(213\) 0 0
\(214\) 1.89489e10 0.617620
\(215\) 0 0
\(216\) 0 0
\(217\) −2.13752e10 −0.654397
\(218\) −1.78639e10 −0.535700
\(219\) 0 0
\(220\) 0 0
\(221\) 7.39299e8 0.0208475
\(222\) 0 0
\(223\) 5.66446e10 1.53386 0.766932 0.641728i \(-0.221782\pi\)
0.766932 + 0.641728i \(0.221782\pi\)
\(224\) −2.66849e10 −0.708190
\(225\) 0 0
\(226\) −6.50336e9 −0.165825
\(227\) −3.31522e10 −0.828698 −0.414349 0.910118i \(-0.635991\pi\)
−0.414349 + 0.910118i \(0.635991\pi\)
\(228\) 0 0
\(229\) 1.68693e10 0.405356 0.202678 0.979245i \(-0.435036\pi\)
0.202678 + 0.979245i \(0.435036\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.92423e10 1.56919
\(233\) −5.99796e10 −1.33322 −0.666610 0.745407i \(-0.732255\pi\)
−0.666610 + 0.745407i \(0.732255\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 2.72256e10 0.571312
\(237\) 0 0
\(238\) −2.09185e8 −0.00422605
\(239\) 1.06603e10 0.211339 0.105669 0.994401i \(-0.466301\pi\)
0.105669 + 0.994401i \(0.466301\pi\)
\(240\) 0 0
\(241\) −8.69990e9 −0.166126 −0.0830630 0.996544i \(-0.526470\pi\)
−0.0830630 + 0.996544i \(0.526470\pi\)
\(242\) 1.23102e10 0.230726
\(243\) 0 0
\(244\) −4.72286e9 −0.0853004
\(245\) 0 0
\(246\) 0 0
\(247\) −4.44755e10 −0.760300
\(248\) −5.26177e10 −0.883281
\(249\) 0 0
\(250\) 0 0
\(251\) 6.50269e10 1.03410 0.517049 0.855956i \(-0.327031\pi\)
0.517049 + 0.855956i \(0.327031\pi\)
\(252\) 0 0
\(253\) −8.05229e10 −1.23560
\(254\) −3.12832e10 −0.471584
\(255\) 0 0
\(256\) −5.54652e10 −0.807125
\(257\) −6.68013e9 −0.0955182 −0.0477591 0.998859i \(-0.515208\pi\)
−0.0477591 + 0.998859i \(0.515208\pi\)
\(258\) 0 0
\(259\) 2.87114e10 0.396466
\(260\) 0 0
\(261\) 0 0
\(262\) −6.84925e10 −0.898023
\(263\) 9.64903e10 1.24361 0.621803 0.783174i \(-0.286401\pi\)
0.621803 + 0.783174i \(0.286401\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.25844e10 0.154122
\(267\) 0 0
\(268\) −4.96991e10 −0.588494
\(269\) −7.10118e10 −0.826886 −0.413443 0.910530i \(-0.635674\pi\)
−0.413443 + 0.910530i \(0.635674\pi\)
\(270\) 0 0
\(271\) −4.09389e10 −0.461078 −0.230539 0.973063i \(-0.574049\pi\)
−0.230539 + 0.973063i \(0.574049\pi\)
\(272\) 2.17041e8 0.00240426
\(273\) 0 0
\(274\) −6.44072e10 −0.690331
\(275\) 0 0
\(276\) 0 0
\(277\) 7.44596e10 0.759909 0.379954 0.925005i \(-0.375940\pi\)
0.379954 + 0.925005i \(0.375940\pi\)
\(278\) −9.65740e10 −0.969748
\(279\) 0 0
\(280\) 0 0
\(281\) −1.38658e11 −1.32668 −0.663340 0.748318i \(-0.730862\pi\)
−0.663340 + 0.748318i \(0.730862\pi\)
\(282\) 0 0
\(283\) 5.71956e10 0.530059 0.265029 0.964240i \(-0.414618\pi\)
0.265029 + 0.964240i \(0.414618\pi\)
\(284\) −7.69375e10 −0.701787
\(285\) 0 0
\(286\) 8.42262e10 0.744389
\(287\) −9.64122e10 −0.838810
\(288\) 0 0
\(289\) −1.18572e11 −0.999869
\(290\) 0 0
\(291\) 0 0
\(292\) −9.62624e10 −0.774879
\(293\) 1.09734e11 0.869832 0.434916 0.900471i \(-0.356778\pi\)
0.434916 + 0.900471i \(0.356778\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 7.06767e10 0.535135
\(297\) 0 0
\(298\) 1.08556e11 0.797406
\(299\) 4.10907e11 2.97319
\(300\) 0 0
\(301\) 5.43001e10 0.381287
\(302\) −5.32204e10 −0.368169
\(303\) 0 0
\(304\) −1.30570e10 −0.0876823
\(305\) 0 0
\(306\) 0 0
\(307\) 1.89369e11 1.21670 0.608352 0.793667i \(-0.291831\pi\)
0.608352 + 0.793667i \(0.291831\pi\)
\(308\) 5.78722e10 0.366431
\(309\) 0 0
\(310\) 0 0
\(311\) −1.40583e11 −0.852139 −0.426070 0.904690i \(-0.640102\pi\)
−0.426070 + 0.904690i \(0.640102\pi\)
\(312\) 0 0
\(313\) 1.43754e11 0.846585 0.423292 0.905993i \(-0.360874\pi\)
0.423292 + 0.905993i \(0.360874\pi\)
\(314\) −2.57232e10 −0.149328
\(315\) 0 0
\(316\) −9.78282e10 −0.551915
\(317\) −1.67042e11 −0.929091 −0.464545 0.885549i \(-0.653782\pi\)
−0.464545 + 0.885549i \(0.653782\pi\)
\(318\) 0 0
\(319\) −2.38071e11 −1.28721
\(320\) 0 0
\(321\) 0 0
\(322\) −1.16266e11 −0.602702
\(323\) −9.34892e8 −0.00477914
\(324\) 0 0
\(325\) 0 0
\(326\) −9.49544e10 −0.465624
\(327\) 0 0
\(328\) −2.37331e11 −1.13220
\(329\) −1.48576e11 −0.699145
\(330\) 0 0
\(331\) −1.98423e10 −0.0908587 −0.0454294 0.998968i \(-0.514466\pi\)
−0.0454294 + 0.998968i \(0.514466\pi\)
\(332\) 1.89595e11 0.856456
\(333\) 0 0
\(334\) −2.21849e11 −0.975433
\(335\) 0 0
\(336\) 0 0
\(337\) 6.71805e10 0.283732 0.141866 0.989886i \(-0.454690\pi\)
0.141866 + 0.989886i \(0.454690\pi\)
\(338\) −3.00212e11 −1.25113
\(339\) 0 0
\(340\) 0 0
\(341\) 1.80912e11 0.724557
\(342\) 0 0
\(343\) −2.68576e11 −1.04771
\(344\) 1.33666e11 0.514647
\(345\) 0 0
\(346\) −1.07613e11 −0.403665
\(347\) 2.47932e11 0.918014 0.459007 0.888433i \(-0.348205\pi\)
0.459007 + 0.888433i \(0.348205\pi\)
\(348\) 0 0
\(349\) −1.62415e11 −0.586018 −0.293009 0.956110i \(-0.594657\pi\)
−0.293009 + 0.956110i \(0.594657\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2.25852e11 0.784117
\(353\) 2.36285e11 0.809935 0.404968 0.914331i \(-0.367283\pi\)
0.404968 + 0.914331i \(0.367283\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 1.19437e11 0.394106
\(357\) 0 0
\(358\) −8.56480e9 −0.0275578
\(359\) −4.86202e11 −1.54487 −0.772434 0.635095i \(-0.780961\pi\)
−0.772434 + 0.635095i \(0.780961\pi\)
\(360\) 0 0
\(361\) −2.66445e11 −0.825707
\(362\) −2.29604e11 −0.702735
\(363\) 0 0
\(364\) −2.95321e11 −0.881736
\(365\) 0 0
\(366\) 0 0
\(367\) −6.91679e11 −1.99025 −0.995124 0.0986269i \(-0.968555\pi\)
−0.995124 + 0.0986269i \(0.968555\pi\)
\(368\) 1.20633e11 0.342886
\(369\) 0 0
\(370\) 0 0
\(371\) −1.34412e11 −0.368346
\(372\) 0 0
\(373\) 5.41625e11 1.44880 0.724401 0.689379i \(-0.242116\pi\)
0.724401 + 0.689379i \(0.242116\pi\)
\(374\) 1.77047e9 0.00467913
\(375\) 0 0
\(376\) −3.65738e11 −0.943681
\(377\) 1.21487e12 3.09739
\(378\) 0 0
\(379\) −7.17554e11 −1.78640 −0.893199 0.449662i \(-0.851544\pi\)
−0.893199 + 0.449662i \(0.851544\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 3.31976e11 0.797667
\(383\) 1.81450e11 0.430885 0.215443 0.976516i \(-0.430881\pi\)
0.215443 + 0.976516i \(0.430881\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 4.11649e11 0.943810
\(387\) 0 0
\(388\) 4.09372e11 0.917012
\(389\) −1.56142e11 −0.345737 −0.172868 0.984945i \(-0.555304\pi\)
−0.172868 + 0.984945i \(0.555304\pi\)
\(390\) 0 0
\(391\) 8.63742e9 0.0186891
\(392\) −2.29799e11 −0.491543
\(393\) 0 0
\(394\) −4.31260e9 −0.00901583
\(395\) 0 0
\(396\) 0 0
\(397\) 6.12411e9 0.0123733 0.00618665 0.999981i \(-0.498031\pi\)
0.00618665 + 0.999981i \(0.498031\pi\)
\(398\) −3.42061e11 −0.683329
\(399\) 0 0
\(400\) 0 0
\(401\) 7.63256e11 1.47408 0.737039 0.675851i \(-0.236224\pi\)
0.737039 + 0.675851i \(0.236224\pi\)
\(402\) 0 0
\(403\) −9.23190e11 −1.74349
\(404\) 1.84279e11 0.344159
\(405\) 0 0
\(406\) −3.43749e11 −0.627877
\(407\) −2.43003e11 −0.438972
\(408\) 0 0
\(409\) −2.15366e11 −0.380559 −0.190279 0.981730i \(-0.560939\pi\)
−0.190279 + 0.981730i \(0.560939\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 5.90084e9 0.0100897
\(413\) −3.25979e11 −0.551333
\(414\) 0 0
\(415\) 0 0
\(416\) −1.15252e12 −1.88681
\(417\) 0 0
\(418\) −1.06510e11 −0.170646
\(419\) 5.13491e11 0.813898 0.406949 0.913451i \(-0.366593\pi\)
0.406949 + 0.913451i \(0.366593\pi\)
\(420\) 0 0
\(421\) 4.25812e11 0.660615 0.330308 0.943873i \(-0.392848\pi\)
0.330308 + 0.943873i \(0.392848\pi\)
\(422\) −2.33820e11 −0.358902
\(423\) 0 0
\(424\) −3.30872e11 −0.497180
\(425\) 0 0
\(426\) 0 0
\(427\) 5.65480e10 0.0823174
\(428\) 5.62325e11 0.810010
\(429\) 0 0
\(430\) 0 0
\(431\) −6.11767e11 −0.853962 −0.426981 0.904261i \(-0.640423\pi\)
−0.426981 + 0.904261i \(0.640423\pi\)
\(432\) 0 0
\(433\) 9.75502e10 0.133362 0.0666811 0.997774i \(-0.478759\pi\)
0.0666811 + 0.997774i \(0.478759\pi\)
\(434\) 2.61217e11 0.353426
\(435\) 0 0
\(436\) −5.30128e11 −0.702573
\(437\) −5.19619e11 −0.681583
\(438\) 0 0
\(439\) 1.10090e12 1.41467 0.707337 0.706877i \(-0.249896\pi\)
0.707337 + 0.706877i \(0.249896\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −9.03466e9 −0.0112593
\(443\) 3.39709e11 0.419073 0.209537 0.977801i \(-0.432804\pi\)
0.209537 + 0.977801i \(0.432804\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −6.92230e11 −0.828407
\(447\) 0 0
\(448\) 2.03703e11 0.238917
\(449\) −3.57373e11 −0.414966 −0.207483 0.978239i \(-0.566527\pi\)
−0.207483 + 0.978239i \(0.566527\pi\)
\(450\) 0 0
\(451\) 8.15998e11 0.928741
\(452\) −1.92993e11 −0.217480
\(453\) 0 0
\(454\) 4.05140e11 0.447562
\(455\) 0 0
\(456\) 0 0
\(457\) 1.48293e12 1.59037 0.795184 0.606369i \(-0.207374\pi\)
0.795184 + 0.606369i \(0.207374\pi\)
\(458\) −2.06152e11 −0.218924
\(459\) 0 0
\(460\) 0 0
\(461\) 1.01555e12 1.04724 0.523622 0.851951i \(-0.324580\pi\)
0.523622 + 0.851951i \(0.324580\pi\)
\(462\) 0 0
\(463\) 6.56647e11 0.664076 0.332038 0.943266i \(-0.392264\pi\)
0.332038 + 0.943266i \(0.392264\pi\)
\(464\) 3.56659e11 0.357209
\(465\) 0 0
\(466\) 7.32986e11 0.720044
\(467\) −9.82330e11 −0.955721 −0.477861 0.878436i \(-0.658588\pi\)
−0.477861 + 0.878436i \(0.658588\pi\)
\(468\) 0 0
\(469\) 5.95059e11 0.567914
\(470\) 0 0
\(471\) 0 0
\(472\) −8.02437e11 −0.744170
\(473\) −4.59577e11 −0.422166
\(474\) 0 0
\(475\) 0 0
\(476\) −6.20776e9 −0.00554248
\(477\) 0 0
\(478\) −1.30275e11 −0.114140
\(479\) 1.43057e11 0.124165 0.0620826 0.998071i \(-0.480226\pi\)
0.0620826 + 0.998071i \(0.480226\pi\)
\(480\) 0 0
\(481\) 1.24004e12 1.05629
\(482\) 1.06318e11 0.0897211
\(483\) 0 0
\(484\) 3.65317e11 0.302598
\(485\) 0 0
\(486\) 0 0
\(487\) −1.86986e12 −1.50636 −0.753181 0.657813i \(-0.771482\pi\)
−0.753181 + 0.657813i \(0.771482\pi\)
\(488\) 1.39200e11 0.111109
\(489\) 0 0
\(490\) 0 0
\(491\) −2.39101e11 −0.185658 −0.0928292 0.995682i \(-0.529591\pi\)
−0.0928292 + 0.995682i \(0.529591\pi\)
\(492\) 0 0
\(493\) 2.55371e10 0.0194698
\(494\) 5.43517e11 0.410622
\(495\) 0 0
\(496\) −2.71027e11 −0.201069
\(497\) 9.21191e11 0.677246
\(498\) 0 0
\(499\) 2.13098e12 1.53861 0.769304 0.638883i \(-0.220603\pi\)
0.769304 + 0.638883i \(0.220603\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −7.94667e11 −0.558494
\(503\) 9.25247e11 0.644469 0.322234 0.946660i \(-0.395566\pi\)
0.322234 + 0.946660i \(0.395566\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 9.84037e11 0.667320
\(507\) 0 0
\(508\) −9.28358e11 −0.618485
\(509\) −1.48004e12 −0.977336 −0.488668 0.872470i \(-0.662517\pi\)
−0.488668 + 0.872470i \(0.662517\pi\)
\(510\) 0 0
\(511\) 1.15257e12 0.747781
\(512\) −6.39661e11 −0.411372
\(513\) 0 0
\(514\) 8.16351e10 0.0515873
\(515\) 0 0
\(516\) 0 0
\(517\) 1.25749e12 0.774103
\(518\) −3.50870e11 −0.214123
\(519\) 0 0
\(520\) 0 0
\(521\) 8.54955e11 0.508363 0.254181 0.967157i \(-0.418194\pi\)
0.254181 + 0.967157i \(0.418194\pi\)
\(522\) 0 0
\(523\) −1.34309e12 −0.784960 −0.392480 0.919761i \(-0.628383\pi\)
−0.392480 + 0.919761i \(0.628383\pi\)
\(524\) −2.03258e12 −1.17776
\(525\) 0 0
\(526\) −1.17917e12 −0.671645
\(527\) −1.94058e10 −0.0109593
\(528\) 0 0
\(529\) 2.99958e12 1.66537
\(530\) 0 0
\(531\) 0 0
\(532\) 3.73453e11 0.202131
\(533\) −4.16403e12 −2.23481
\(534\) 0 0
\(535\) 0 0
\(536\) 1.46481e12 0.766549
\(537\) 0 0
\(538\) 8.67806e11 0.446583
\(539\) 7.90104e11 0.403213
\(540\) 0 0
\(541\) 8.64727e11 0.434002 0.217001 0.976171i \(-0.430373\pi\)
0.217001 + 0.976171i \(0.430373\pi\)
\(542\) 5.00298e11 0.249018
\(543\) 0 0
\(544\) −2.42263e10 −0.0118602
\(545\) 0 0
\(546\) 0 0
\(547\) 1.90338e12 0.909041 0.454521 0.890736i \(-0.349811\pi\)
0.454521 + 0.890736i \(0.349811\pi\)
\(548\) −1.91135e12 −0.905371
\(549\) 0 0
\(550\) 0 0
\(551\) −1.53629e12 −0.710053
\(552\) 0 0
\(553\) 1.17132e12 0.532615
\(554\) −9.09939e11 −0.410411
\(555\) 0 0
\(556\) −2.86593e12 −1.27183
\(557\) −1.55326e12 −0.683747 −0.341874 0.939746i \(-0.611061\pi\)
−0.341874 + 0.939746i \(0.611061\pi\)
\(558\) 0 0
\(559\) 2.34521e12 1.01585
\(560\) 0 0
\(561\) 0 0
\(562\) 1.69448e12 0.716512
\(563\) 3.94106e12 1.65320 0.826601 0.562789i \(-0.190272\pi\)
0.826601 + 0.562789i \(0.190272\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −6.98964e11 −0.286273
\(567\) 0 0
\(568\) 2.26763e12 0.914121
\(569\) 1.03063e11 0.0412189 0.0206094 0.999788i \(-0.493439\pi\)
0.0206094 + 0.999788i \(0.493439\pi\)
\(570\) 0 0
\(571\) 2.92191e12 1.15028 0.575141 0.818054i \(-0.304947\pi\)
0.575141 + 0.818054i \(0.304947\pi\)
\(572\) 2.49949e12 0.976269
\(573\) 0 0
\(574\) 1.17821e12 0.453023
\(575\) 0 0
\(576\) 0 0
\(577\) −2.67123e12 −1.00327 −0.501637 0.865078i \(-0.667269\pi\)
−0.501637 + 0.865078i \(0.667269\pi\)
\(578\) 1.44902e12 0.540008
\(579\) 0 0
\(580\) 0 0
\(581\) −2.27007e12 −0.826506
\(582\) 0 0
\(583\) 1.13761e12 0.407837
\(584\) 2.83720e12 1.00933
\(585\) 0 0
\(586\) −1.34101e12 −0.469777
\(587\) −2.14358e12 −0.745191 −0.372596 0.927994i \(-0.621532\pi\)
−0.372596 + 0.927994i \(0.621532\pi\)
\(588\) 0 0
\(589\) 1.16744e12 0.399681
\(590\) 0 0
\(591\) 0 0
\(592\) 3.64047e11 0.121818
\(593\) 2.79629e12 0.928616 0.464308 0.885674i \(-0.346303\pi\)
0.464308 + 0.885674i \(0.346303\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3.22149e12 1.04580
\(597\) 0 0
\(598\) −5.02152e12 −1.60576
\(599\) 5.67415e12 1.80086 0.900430 0.435002i \(-0.143252\pi\)
0.900430 + 0.435002i \(0.143252\pi\)
\(600\) 0 0
\(601\) 3.70560e12 1.15857 0.579287 0.815124i \(-0.303331\pi\)
0.579287 + 0.815124i \(0.303331\pi\)
\(602\) −6.63579e11 −0.205925
\(603\) 0 0
\(604\) −1.57937e12 −0.482855
\(605\) 0 0
\(606\) 0 0
\(607\) −3.05665e12 −0.913894 −0.456947 0.889494i \(-0.651057\pi\)
−0.456947 + 0.889494i \(0.651057\pi\)
\(608\) 1.45743e12 0.432537
\(609\) 0 0
\(610\) 0 0
\(611\) −6.41698e12 −1.86271
\(612\) 0 0
\(613\) −1.97493e12 −0.564911 −0.282456 0.959280i \(-0.591149\pi\)
−0.282456 + 0.959280i \(0.591149\pi\)
\(614\) −2.31419e12 −0.657116
\(615\) 0 0
\(616\) −1.70570e12 −0.477299
\(617\) 3.84845e12 1.06906 0.534531 0.845149i \(-0.320488\pi\)
0.534531 + 0.845149i \(0.320488\pi\)
\(618\) 0 0
\(619\) −4.09595e11 −0.112136 −0.0560682 0.998427i \(-0.517856\pi\)
−0.0560682 + 0.998427i \(0.517856\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 1.71800e12 0.460222
\(623\) −1.43005e12 −0.380324
\(624\) 0 0
\(625\) 0 0
\(626\) −1.75676e12 −0.457222
\(627\) 0 0
\(628\) −7.63361e11 −0.195845
\(629\) 2.60661e10 0.00663970
\(630\) 0 0
\(631\) 2.20647e12 0.554072 0.277036 0.960860i \(-0.410648\pi\)
0.277036 + 0.960860i \(0.410648\pi\)
\(632\) 2.88335e12 0.718904
\(633\) 0 0
\(634\) 2.04135e12 0.501782
\(635\) 0 0
\(636\) 0 0
\(637\) −4.03189e12 −0.970244
\(638\) 2.90937e12 0.695194
\(639\) 0 0
\(640\) 0 0
\(641\) 7.59163e12 1.77613 0.888064 0.459720i \(-0.152050\pi\)
0.888064 + 0.459720i \(0.152050\pi\)
\(642\) 0 0
\(643\) 6.12938e12 1.41406 0.707029 0.707184i \(-0.250035\pi\)
0.707029 + 0.707184i \(0.250035\pi\)
\(644\) −3.45032e12 −0.790446
\(645\) 0 0
\(646\) 1.14249e10 0.00258111
\(647\) −1.67991e12 −0.376893 −0.188446 0.982084i \(-0.560345\pi\)
−0.188446 + 0.982084i \(0.560345\pi\)
\(648\) 0 0
\(649\) 2.75897e12 0.610443
\(650\) 0 0
\(651\) 0 0
\(652\) −2.81786e12 −0.610668
\(653\) 2.09466e12 0.450821 0.225410 0.974264i \(-0.427628\pi\)
0.225410 + 0.974264i \(0.427628\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −1.22246e12 −0.257732
\(657\) 0 0
\(658\) 1.81569e12 0.377594
\(659\) −7.17038e11 −0.148101 −0.0740505 0.997254i \(-0.523593\pi\)
−0.0740505 + 0.997254i \(0.523593\pi\)
\(660\) 0 0
\(661\) 4.83658e12 0.985444 0.492722 0.870187i \(-0.336002\pi\)
0.492722 + 0.870187i \(0.336002\pi\)
\(662\) 2.42485e11 0.0490708
\(663\) 0 0
\(664\) −5.58804e12 −1.11559
\(665\) 0 0
\(666\) 0 0
\(667\) 1.41937e13 2.77670
\(668\) −6.58357e12 −1.27928
\(669\) 0 0
\(670\) 0 0
\(671\) −4.78602e11 −0.0911429
\(672\) 0 0
\(673\) −4.63436e12 −0.870808 −0.435404 0.900235i \(-0.643394\pi\)
−0.435404 + 0.900235i \(0.643394\pi\)
\(674\) −8.20985e11 −0.153238
\(675\) 0 0
\(676\) −8.90907e12 −1.64086
\(677\) 6.94095e12 1.26990 0.634950 0.772553i \(-0.281021\pi\)
0.634950 + 0.772553i \(0.281021\pi\)
\(678\) 0 0
\(679\) −4.90151e12 −0.884944
\(680\) 0 0
\(681\) 0 0
\(682\) −2.21085e12 −0.391318
\(683\) −6.91635e12 −1.21614 −0.608070 0.793883i \(-0.708056\pi\)
−0.608070 + 0.793883i \(0.708056\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 3.28215e12 0.565848
\(687\) 0 0
\(688\) 6.88500e11 0.117154
\(689\) −5.80523e12 −0.981371
\(690\) 0 0
\(691\) 1.45798e12 0.243277 0.121638 0.992574i \(-0.461185\pi\)
0.121638 + 0.992574i \(0.461185\pi\)
\(692\) −3.19351e12 −0.529408
\(693\) 0 0
\(694\) −3.02987e12 −0.495800
\(695\) 0 0
\(696\) 0 0
\(697\) −8.75294e10 −0.0140477
\(698\) 1.98480e12 0.316496
\(699\) 0 0
\(700\) 0 0
\(701\) 5.87637e12 0.919132 0.459566 0.888144i \(-0.348005\pi\)
0.459566 + 0.888144i \(0.348005\pi\)
\(702\) 0 0
\(703\) −1.56811e12 −0.242147
\(704\) −1.72407e12 −0.264531
\(705\) 0 0
\(706\) −2.88754e12 −0.437429
\(707\) −2.20642e12 −0.332124
\(708\) 0 0
\(709\) −7.62910e12 −1.13388 −0.566938 0.823761i \(-0.691872\pi\)
−0.566938 + 0.823761i \(0.691872\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −3.52024e12 −0.513348
\(713\) −1.07859e13 −1.56298
\(714\) 0 0
\(715\) 0 0
\(716\) −2.54169e11 −0.0361421
\(717\) 0 0
\(718\) 5.94167e12 0.834350
\(719\) 2.38732e12 0.333142 0.166571 0.986029i \(-0.446730\pi\)
0.166571 + 0.986029i \(0.446730\pi\)
\(720\) 0 0
\(721\) −7.06523e10 −0.00973682
\(722\) 3.25612e12 0.445947
\(723\) 0 0
\(724\) −6.81373e12 −0.921640
\(725\) 0 0
\(726\) 0 0
\(727\) −5.38271e12 −0.714654 −0.357327 0.933979i \(-0.616312\pi\)
−0.357327 + 0.933979i \(0.616312\pi\)
\(728\) 8.70419e12 1.14852
\(729\) 0 0
\(730\) 0 0
\(731\) 4.92972e10 0.00638549
\(732\) 0 0
\(733\) −7.93743e12 −1.01557 −0.507787 0.861483i \(-0.669536\pi\)
−0.507787 + 0.861483i \(0.669536\pi\)
\(734\) 8.45272e12 1.07489
\(735\) 0 0
\(736\) −1.34652e13 −1.69146
\(737\) −5.03637e12 −0.628801
\(738\) 0 0
\(739\) −2.88800e12 −0.356203 −0.178101 0.984012i \(-0.556996\pi\)
−0.178101 + 0.984012i \(0.556996\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.64259e12 0.198936
\(743\) 9.68056e12 1.16533 0.582667 0.812711i \(-0.302009\pi\)
0.582667 + 0.812711i \(0.302009\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −6.61898e12 −0.782467
\(747\) 0 0
\(748\) 5.25402e10 0.00613670
\(749\) −6.73286e12 −0.781684
\(750\) 0 0
\(751\) 1.55121e12 0.177947 0.0889735 0.996034i \(-0.471641\pi\)
0.0889735 + 0.996034i \(0.471641\pi\)
\(752\) −1.88388e12 −0.214819
\(753\) 0 0
\(754\) −1.48465e13 −1.67283
\(755\) 0 0
\(756\) 0 0
\(757\) −2.05679e12 −0.227646 −0.113823 0.993501i \(-0.536310\pi\)
−0.113823 + 0.993501i \(0.536310\pi\)
\(758\) 8.76893e12 0.964795
\(759\) 0 0
\(760\) 0 0
\(761\) −4.01826e12 −0.434317 −0.217159 0.976136i \(-0.569679\pi\)
−0.217159 + 0.976136i \(0.569679\pi\)
\(762\) 0 0
\(763\) 6.34735e12 0.678004
\(764\) 9.85171e12 1.04614
\(765\) 0 0
\(766\) −2.21742e12 −0.232712
\(767\) −1.40790e13 −1.46890
\(768\) 0 0
\(769\) −7.34878e12 −0.757786 −0.378893 0.925441i \(-0.623695\pi\)
−0.378893 + 0.925441i \(0.623695\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.22161e13 1.23781
\(773\) −7.03720e12 −0.708912 −0.354456 0.935073i \(-0.615334\pi\)
−0.354456 + 0.935073i \(0.615334\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −1.20657e13 −1.19447
\(777\) 0 0
\(778\) 1.90814e12 0.186725
\(779\) 5.26569e12 0.512314
\(780\) 0 0
\(781\) −7.79663e12 −0.749855
\(782\) −1.05554e11 −0.0100936
\(783\) 0 0
\(784\) −1.18367e12 −0.111894
\(785\) 0 0
\(786\) 0 0
\(787\) −3.89415e12 −0.361848 −0.180924 0.983497i \(-0.557909\pi\)
−0.180924 + 0.983497i \(0.557909\pi\)
\(788\) −1.27980e11 −0.0118243
\(789\) 0 0
\(790\) 0 0
\(791\) 2.31076e12 0.209875
\(792\) 0 0
\(793\) 2.44230e12 0.219315
\(794\) −7.48402e10 −0.00668256
\(795\) 0 0
\(796\) −1.01510e13 −0.896188
\(797\) −6.27475e12 −0.550851 −0.275425 0.961322i \(-0.588819\pi\)
−0.275425 + 0.961322i \(0.588819\pi\)
\(798\) 0 0
\(799\) −1.34887e11 −0.0117087
\(800\) 0 0
\(801\) 0 0
\(802\) −9.32743e12 −0.796118
\(803\) −9.75496e12 −0.827953
\(804\) 0 0
\(805\) 0 0
\(806\) 1.12819e13 0.941620
\(807\) 0 0
\(808\) −5.43136e12 −0.448289
\(809\) −8.39256e12 −0.688852 −0.344426 0.938813i \(-0.611926\pi\)
−0.344426 + 0.938813i \(0.611926\pi\)
\(810\) 0 0
\(811\) 4.06885e12 0.330277 0.165138 0.986270i \(-0.447193\pi\)
0.165138 + 0.986270i \(0.447193\pi\)
\(812\) −1.02011e13 −0.823464
\(813\) 0 0
\(814\) 2.96964e12 0.237079
\(815\) 0 0
\(816\) 0 0
\(817\) −2.96568e12 −0.232876
\(818\) 2.63189e12 0.205532
\(819\) 0 0
\(820\) 0 0
\(821\) −1.00927e13 −0.775287 −0.387643 0.921809i \(-0.626711\pi\)
−0.387643 + 0.921809i \(0.626711\pi\)
\(822\) 0 0
\(823\) −1.21960e13 −0.926654 −0.463327 0.886187i \(-0.653344\pi\)
−0.463327 + 0.886187i \(0.653344\pi\)
\(824\) −1.73919e11 −0.0131424
\(825\) 0 0
\(826\) 3.98365e12 0.297763
\(827\) 1.65725e13 1.23201 0.616003 0.787743i \(-0.288751\pi\)
0.616003 + 0.787743i \(0.288751\pi\)
\(828\) 0 0
\(829\) −7.37572e12 −0.542387 −0.271193 0.962525i \(-0.587418\pi\)
−0.271193 + 0.962525i \(0.587418\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 8.79789e12 0.636537
\(833\) −8.47518e10 −0.00609883
\(834\) 0 0
\(835\) 0 0
\(836\) −3.16077e12 −0.223803
\(837\) 0 0
\(838\) −6.27516e12 −0.439569
\(839\) 7.96014e12 0.554615 0.277308 0.960781i \(-0.410558\pi\)
0.277308 + 0.960781i \(0.410558\pi\)
\(840\) 0 0
\(841\) 2.74575e13 1.89269
\(842\) −5.20367e12 −0.356784
\(843\) 0 0
\(844\) −6.93883e12 −0.470701
\(845\) 0 0
\(846\) 0 0
\(847\) −4.37404e12 −0.292016
\(848\) −1.70428e12 −0.113178
\(849\) 0 0
\(850\) 0 0
\(851\) 1.44877e13 0.946928
\(852\) 0 0
\(853\) 7.49408e12 0.484672 0.242336 0.970192i \(-0.422086\pi\)
0.242336 + 0.970192i \(0.422086\pi\)
\(854\) −6.91049e11 −0.0444579
\(855\) 0 0
\(856\) −1.65738e13 −1.05509
\(857\) −2.06124e12 −0.130531 −0.0652656 0.997868i \(-0.520789\pi\)
−0.0652656 + 0.997868i \(0.520789\pi\)
\(858\) 0 0
\(859\) 1.61145e13 1.00983 0.504914 0.863169i \(-0.331524\pi\)
0.504914 + 0.863169i \(0.331524\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 7.47615e12 0.461207
\(863\) −1.14800e13 −0.704521 −0.352261 0.935902i \(-0.614587\pi\)
−0.352261 + 0.935902i \(0.614587\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −1.19212e12 −0.0720260
\(867\) 0 0
\(868\) 7.75187e12 0.463519
\(869\) −9.91364e12 −0.589718
\(870\) 0 0
\(871\) 2.57005e13 1.51307
\(872\) 1.56248e13 0.915145
\(873\) 0 0
\(874\) 6.35005e12 0.368108
\(875\) 0 0
\(876\) 0 0
\(877\) 1.14652e13 0.654460 0.327230 0.944945i \(-0.393885\pi\)
0.327230 + 0.944945i \(0.393885\pi\)
\(878\) −1.34536e13 −0.764035
\(879\) 0 0
\(880\) 0 0
\(881\) 2.36703e13 1.32377 0.661885 0.749605i \(-0.269757\pi\)
0.661885 + 0.749605i \(0.269757\pi\)
\(882\) 0 0
\(883\) 2.01686e13 1.11648 0.558242 0.829678i \(-0.311476\pi\)
0.558242 + 0.829678i \(0.311476\pi\)
\(884\) −2.68112e11 −0.0147666
\(885\) 0 0
\(886\) −4.15144e12 −0.226332
\(887\) 2.58905e13 1.40438 0.702188 0.711992i \(-0.252207\pi\)
0.702188 + 0.711992i \(0.252207\pi\)
\(888\) 0 0
\(889\) 1.11155e13 0.596856
\(890\) 0 0
\(891\) 0 0
\(892\) −2.05426e13 −1.08646
\(893\) 8.11469e12 0.427012
\(894\) 0 0
\(895\) 0 0
\(896\) 1.11733e13 0.579157
\(897\) 0 0
\(898\) 4.36730e12 0.224115
\(899\) −3.18892e13 −1.62826
\(900\) 0 0
\(901\) −1.22028e11 −0.00616877
\(902\) −9.97197e12 −0.501593
\(903\) 0 0
\(904\) 5.68821e12 0.283281
\(905\) 0 0
\(906\) 0 0
\(907\) 2.09156e13 1.02621 0.513107 0.858325i \(-0.328494\pi\)
0.513107 + 0.858325i \(0.328494\pi\)
\(908\) 1.20229e13 0.586979
\(909\) 0 0
\(910\) 0 0
\(911\) −4.47158e12 −0.215094 −0.107547 0.994200i \(-0.534300\pi\)
−0.107547 + 0.994200i \(0.534300\pi\)
\(912\) 0 0
\(913\) 1.92130e13 0.915118
\(914\) −1.81223e13 −0.858923
\(915\) 0 0
\(916\) −6.11776e12 −0.287120
\(917\) 2.43366e13 1.13657
\(918\) 0 0
\(919\) 1.06549e13 0.492753 0.246377 0.969174i \(-0.420760\pi\)
0.246377 + 0.969174i \(0.420760\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −1.24106e13 −0.565594
\(923\) 3.97861e13 1.80436
\(924\) 0 0
\(925\) 0 0
\(926\) −8.02461e12 −0.358653
\(927\) 0 0
\(928\) −3.98106e13 −1.76211
\(929\) 3.87854e13 1.70843 0.854217 0.519917i \(-0.174037\pi\)
0.854217 + 0.519917i \(0.174037\pi\)
\(930\) 0 0
\(931\) 5.09859e12 0.222421
\(932\) 2.17520e13 0.944340
\(933\) 0 0
\(934\) 1.20046e13 0.516165
\(935\) 0 0
\(936\) 0 0
\(937\) 6.15535e11 0.0260870 0.0130435 0.999915i \(-0.495848\pi\)
0.0130435 + 0.999915i \(0.495848\pi\)
\(938\) −7.27197e12 −0.306718
\(939\) 0 0
\(940\) 0 0
\(941\) −3.81077e13 −1.58438 −0.792190 0.610275i \(-0.791059\pi\)
−0.792190 + 0.610275i \(0.791059\pi\)
\(942\) 0 0
\(943\) −4.86494e13 −2.00343
\(944\) −4.13326e12 −0.169402
\(945\) 0 0
\(946\) 5.61629e12 0.228003
\(947\) −2.37836e13 −0.960955 −0.480478 0.877007i \(-0.659537\pi\)
−0.480478 + 0.877007i \(0.659537\pi\)
\(948\) 0 0
\(949\) 4.97794e13 1.99229
\(950\) 0 0
\(951\) 0 0
\(952\) 1.82965e11 0.00721942
\(953\) −4.19004e12 −0.164551 −0.0822755 0.996610i \(-0.526219\pi\)
−0.0822755 + 0.996610i \(0.526219\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −3.86604e12 −0.149694
\(957\) 0 0
\(958\) −1.74824e12 −0.0670589
\(959\) 2.28850e13 0.873710
\(960\) 0 0
\(961\) −2.20685e12 −0.0834675
\(962\) −1.51540e13 −0.570480
\(963\) 0 0
\(964\) 3.15508e12 0.117670
\(965\) 0 0
\(966\) 0 0
\(967\) −2.08426e13 −0.766537 −0.383268 0.923637i \(-0.625202\pi\)
−0.383268 + 0.923637i \(0.625202\pi\)
\(968\) −1.07672e13 −0.394153
\(969\) 0 0
\(970\) 0 0
\(971\) 1.13186e13 0.408606 0.204303 0.978908i \(-0.434507\pi\)
0.204303 + 0.978908i \(0.434507\pi\)
\(972\) 0 0
\(973\) 3.43144e13 1.22735
\(974\) 2.28508e13 0.813554
\(975\) 0 0
\(976\) 7.17002e11 0.0252928
\(977\) −3.51597e13 −1.23458 −0.617291 0.786735i \(-0.711770\pi\)
−0.617291 + 0.786735i \(0.711770\pi\)
\(978\) 0 0
\(979\) 1.21034e13 0.421100
\(980\) 0 0
\(981\) 0 0
\(982\) 2.92195e12 0.100270
\(983\) 2.63427e12 0.0899850 0.0449925 0.998987i \(-0.485674\pi\)
0.0449925 + 0.998987i \(0.485674\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −3.12078e11 −0.0105152
\(987\) 0 0
\(988\) 1.61294e13 0.538532
\(989\) 2.73997e13 0.910674
\(990\) 0 0
\(991\) −9.08136e12 −0.299102 −0.149551 0.988754i \(-0.547783\pi\)
−0.149551 + 0.988754i \(0.547783\pi\)
\(992\) 3.02524e13 0.991874
\(993\) 0 0
\(994\) −1.12575e13 −0.365766
\(995\) 0 0
\(996\) 0 0
\(997\) −3.23962e13 −1.03840 −0.519201 0.854652i \(-0.673771\pi\)
−0.519201 + 0.854652i \(0.673771\pi\)
\(998\) −2.60419e13 −0.830969
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.10.a.x.1.4 8
3.2 odd 2 inner 225.10.a.x.1.6 8
5.2 odd 4 45.10.b.d.19.3 8
5.3 odd 4 45.10.b.d.19.5 yes 8
5.4 even 2 inner 225.10.a.x.1.5 8
15.2 even 4 45.10.b.d.19.6 yes 8
15.8 even 4 45.10.b.d.19.4 yes 8
15.14 odd 2 inner 225.10.a.x.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.10.b.d.19.3 8 5.2 odd 4
45.10.b.d.19.4 yes 8 15.8 even 4
45.10.b.d.19.5 yes 8 5.3 odd 4
45.10.b.d.19.6 yes 8 15.2 even 4
225.10.a.x.1.3 8 15.14 odd 2 inner
225.10.a.x.1.4 8 1.1 even 1 trivial
225.10.a.x.1.5 8 5.4 even 2 inner
225.10.a.x.1.6 8 3.2 odd 2 inner