Properties

Label 45.10.b.d.19.6
Level $45$
Weight $10$
Character 45.19
Analytic conductor $23.177$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,10,Mod(19,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.19");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 45.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.1766126274\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 774x^{6} - 2822x^{5} + 257730x^{4} + 2421892x^{3} - 2488179x^{2} - 34986488x + 335502416 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{8}\cdot 5^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.6
Root \(3.09348 + 3.05515i\) of defining polynomial
Character \(\chi\) \(=\) 45.19
Dual form 45.10.b.d.19.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+12.2206i q^{2} +362.657 q^{4} +(1143.76 - 803.080i) q^{5} +4342.19i q^{7} +10688.8i q^{8} +(9814.11 + 13977.4i) q^{10} +36750.7 q^{11} -187538. i q^{13} -53064.1 q^{14} +55056.9 q^{16} -3942.12i q^{17} +237154. q^{19} +(414793. - 291243. i) q^{20} +449115. i q^{22} +2.19106e6i q^{23} +(663249. - 1.83706e6i) q^{25} +2.29183e6 q^{26} +1.57473e6i q^{28} +6.47801e6 q^{29} -4.92268e6 q^{31} +6.14550e6i q^{32} +48175.0 q^{34} +(3.48712e6 + 4.96642e6i) q^{35} +6.61220e6i q^{37} +2.89817e6i q^{38} +(8.58398e6 + 1.22254e7i) q^{40} +2.22036e7 q^{41} -1.25053e7i q^{43} +1.33279e7 q^{44} -2.67760e7 q^{46} +3.42169e7i q^{47} +2.14990e7 q^{49} +(2.24500e7 + 8.10529e6i) q^{50} -6.80121e7i q^{52} -3.09549e7i q^{53} +(4.20340e7 - 2.95138e7i) q^{55} -4.64129e7 q^{56} +7.91651e7i q^{58} -7.50725e7 q^{59} +1.30229e7 q^{61} -6.01580e7i q^{62} -4.69125e7 q^{64} +(-1.50608e8 - 2.14499e8i) q^{65} +1.37041e8i q^{67} -1.42964e6i q^{68} +(-6.06925e7 + 4.26147e7i) q^{70} -2.12149e8 q^{71} -2.65436e8i q^{73} -8.08050e7 q^{74} +8.60058e7 q^{76} +1.59578e8i q^{77} -2.69754e8 q^{79} +(6.29719e7 - 4.42151e7i) q^{80} +2.71341e8i q^{82} -5.22793e8i q^{83} +(-3.16584e6 - 4.50884e6i) q^{85} +1.52822e8 q^{86} +3.92822e8i q^{88} -3.29338e8 q^{89} +8.14326e8 q^{91} +7.94603e8i q^{92} -4.18150e8 q^{94} +(2.71248e8 - 1.90454e8i) q^{95} -1.12881e9i q^{97} +2.62731e8i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 144 q^{4} - 102680 q^{10} - 1009088 q^{16} - 2079872 q^{19} - 595720 q^{25} + 12077344 q^{31} + 25286480 q^{34} + 18248480 q^{40} + 3119840 q^{46} - 174619144 q^{49} - 105991200 q^{55} - 165845744 q^{61}+ \cdots - 4117219360 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 12.2206i 0.540079i 0.962849 + 0.270039i \(0.0870367\pi\)
−0.962849 + 0.270039i \(0.912963\pi\)
\(3\) 0 0
\(4\) 362.657 0.708315
\(5\) 1143.76 803.080i 0.818408 0.574638i
\(6\) 0 0
\(7\) 4342.19i 0.683545i 0.939783 + 0.341773i \(0.111027\pi\)
−0.939783 + 0.341773i \(0.888973\pi\)
\(8\) 10688.8i 0.922624i
\(9\) 0 0
\(10\) 9814.11 + 13977.4i 0.310349 + 0.442005i
\(11\) 36750.7 0.756830 0.378415 0.925636i \(-0.376469\pi\)
0.378415 + 0.925636i \(0.376469\pi\)
\(12\) 0 0
\(13\) 187538.i 1.82115i −0.413349 0.910573i \(-0.635641\pi\)
0.413349 0.910573i \(-0.364359\pi\)
\(14\) −53064.1 −0.369168
\(15\) 0 0
\(16\) 55056.9 0.210025
\(17\) 3942.12i 0.0114475i −0.999984 0.00572374i \(-0.998178\pi\)
0.999984 0.00572374i \(-0.00182193\pi\)
\(18\) 0 0
\(19\) 237154. 0.417484 0.208742 0.977971i \(-0.433063\pi\)
0.208742 + 0.977971i \(0.433063\pi\)
\(20\) 414793. 291243.i 0.579691 0.407024i
\(21\) 0 0
\(22\) 449115.i 0.408748i
\(23\) 2.19106e6i 1.63260i 0.577631 + 0.816298i \(0.303977\pi\)
−0.577631 + 0.816298i \(0.696023\pi\)
\(24\) 0 0
\(25\) 663249. 1.83706e6i 0.339583 0.940576i
\(26\) 2.29183e6 0.983562
\(27\) 0 0
\(28\) 1.57473e6i 0.484165i
\(29\) 6.47801e6 1.70079 0.850395 0.526145i \(-0.176363\pi\)
0.850395 + 0.526145i \(0.176363\pi\)
\(30\) 0 0
\(31\) −4.92268e6 −0.957357 −0.478679 0.877990i \(-0.658884\pi\)
−0.478679 + 0.877990i \(0.658884\pi\)
\(32\) 6.14550e6i 1.03605i
\(33\) 0 0
\(34\) 48175.0 0.00618254
\(35\) 3.48712e6 + 4.96642e6i 0.392791 + 0.559419i
\(36\) 0 0
\(37\) 6.61220e6i 0.580014i 0.957025 + 0.290007i \(0.0936576\pi\)
−0.957025 + 0.290007i \(0.906342\pi\)
\(38\) 2.89817e6i 0.225474i
\(39\) 0 0
\(40\) 8.58398e6 + 1.22254e7i 0.530175 + 0.755083i
\(41\) 2.22036e7 1.22715 0.613573 0.789638i \(-0.289732\pi\)
0.613573 + 0.789638i \(0.289732\pi\)
\(42\) 0 0
\(43\) 1.25053e7i 0.557808i −0.960319 0.278904i \(-0.910029\pi\)
0.960319 0.278904i \(-0.0899711\pi\)
\(44\) 1.33279e7 0.536074
\(45\) 0 0
\(46\) −2.67760e7 −0.881730
\(47\) 3.42169e7i 1.02282i 0.859336 + 0.511411i \(0.170877\pi\)
−0.859336 + 0.511411i \(0.829123\pi\)
\(48\) 0 0
\(49\) 2.14990e7 0.532766
\(50\) 2.24500e7 + 8.10529e6i 0.507985 + 0.183402i
\(51\) 0 0
\(52\) 6.80121e7i 1.28994i
\(53\) 3.09549e7i 0.538875i −0.963018 0.269438i \(-0.913162\pi\)
0.963018 0.269438i \(-0.0868378\pi\)
\(54\) 0 0
\(55\) 4.20340e7 2.95138e7i 0.619396 0.434903i
\(56\) −4.64129e7 −0.630656
\(57\) 0 0
\(58\) 7.91651e7i 0.918560i
\(59\) −7.50725e7 −0.806579 −0.403290 0.915072i \(-0.632133\pi\)
−0.403290 + 0.915072i \(0.632133\pi\)
\(60\) 0 0
\(61\) 1.30229e7 0.120427 0.0602136 0.998186i \(-0.480822\pi\)
0.0602136 + 0.998186i \(0.480822\pi\)
\(62\) 6.01580e7i 0.517048i
\(63\) 0 0
\(64\) −4.69125e7 −0.349526
\(65\) −1.50608e8 2.14499e8i −1.04650 1.49044i
\(66\) 0 0
\(67\) 1.37041e8i 0.830836i 0.909631 + 0.415418i \(0.136365\pi\)
−0.909631 + 0.415418i \(0.863635\pi\)
\(68\) 1.42964e6i 0.00810842i
\(69\) 0 0
\(70\) −6.06925e7 + 4.26147e7i −0.302130 + 0.212138i
\(71\) −2.12149e8 −0.990784 −0.495392 0.868670i \(-0.664976\pi\)
−0.495392 + 0.868670i \(0.664976\pi\)
\(72\) 0 0
\(73\) 2.65436e8i 1.09397i −0.837141 0.546987i \(-0.815775\pi\)
0.837141 0.546987i \(-0.184225\pi\)
\(74\) −8.08050e7 −0.313253
\(75\) 0 0
\(76\) 8.60058e7 0.295710
\(77\) 1.59578e8i 0.517328i
\(78\) 0 0
\(79\) −2.69754e8 −0.779194 −0.389597 0.920985i \(-0.627386\pi\)
−0.389597 + 0.920985i \(0.627386\pi\)
\(80\) 6.29719e7 4.42151e7i 0.171886 0.120688i
\(81\) 0 0
\(82\) 2.71341e8i 0.662755i
\(83\) 5.22793e8i 1.20915i −0.796550 0.604573i \(-0.793344\pi\)
0.796550 0.604573i \(-0.206656\pi\)
\(84\) 0 0
\(85\) −3.16584e6 4.50884e6i −0.00657815 0.00936871i
\(86\) 1.52822e8 0.301260
\(87\) 0 0
\(88\) 3.92822e8i 0.698270i
\(89\) −3.29338e8 −0.556400 −0.278200 0.960523i \(-0.589738\pi\)
−0.278200 + 0.960523i \(0.589738\pi\)
\(90\) 0 0
\(91\) 8.14326e8 1.24484
\(92\) 7.94603e8i 1.15639i
\(93\) 0 0
\(94\) −4.18150e8 −0.552405
\(95\) 2.71248e8 1.90454e8i 0.341672 0.239902i
\(96\) 0 0
\(97\) 1.12881e9i 1.29464i −0.762219 0.647319i \(-0.775890\pi\)
0.762219 0.647319i \(-0.224110\pi\)
\(98\) 2.62731e8i 0.287735i
\(99\) 0 0
\(100\) 2.40532e8 6.66224e8i 0.240532 0.666224i
\(101\) 5.08135e8 0.485884 0.242942 0.970041i \(-0.421888\pi\)
0.242942 + 0.970041i \(0.421888\pi\)
\(102\) 0 0
\(103\) 1.62711e7i 0.0142446i 0.999975 + 0.00712230i \(0.00226712\pi\)
−0.999975 + 0.00712230i \(0.997733\pi\)
\(104\) 2.00456e9 1.68023
\(105\) 0 0
\(106\) 3.78287e8 0.291035
\(107\) 1.55057e9i 1.14357i 0.820402 + 0.571787i \(0.193750\pi\)
−0.820402 + 0.571787i \(0.806250\pi\)
\(108\) 0 0
\(109\) −1.46179e9 −0.991893 −0.495947 0.868353i \(-0.665179\pi\)
−0.495947 + 0.868353i \(0.665179\pi\)
\(110\) 3.60675e8 + 5.13680e8i 0.234882 + 0.334522i
\(111\) 0 0
\(112\) 2.39067e8i 0.143562i
\(113\) 5.32165e8i 0.307039i 0.988146 + 0.153519i \(0.0490607\pi\)
−0.988146 + 0.153519i \(0.950939\pi\)
\(114\) 0 0
\(115\) 1.75960e9 + 2.50604e9i 0.938151 + 1.33613i
\(116\) 2.34930e9 1.20470
\(117\) 0 0
\(118\) 9.17430e8i 0.435616i
\(119\) 1.71174e7 0.00782487
\(120\) 0 0
\(121\) −1.00733e9 −0.427208
\(122\) 1.59148e8i 0.0650401i
\(123\) 0 0
\(124\) −1.78525e9 −0.678110
\(125\) −7.16711e8 2.63380e9i −0.262572 0.964912i
\(126\) 0 0
\(127\) 2.55988e9i 0.873177i 0.899661 + 0.436589i \(0.143813\pi\)
−0.899661 + 0.436589i \(0.856187\pi\)
\(128\) 2.57320e9i 0.847283i
\(129\) 0 0
\(130\) 2.62130e9 1.84052e9i 0.804955 0.565192i
\(131\) −5.60469e9 −1.66276 −0.831382 0.555702i \(-0.812450\pi\)
−0.831382 + 0.555702i \(0.812450\pi\)
\(132\) 0 0
\(133\) 1.02977e9i 0.285369i
\(134\) −1.67473e9 −0.448717
\(135\) 0 0
\(136\) 4.21367e7 0.0105617
\(137\) 5.27039e9i 1.27820i −0.769122 0.639102i \(-0.779306\pi\)
0.769122 0.639102i \(-0.220694\pi\)
\(138\) 0 0
\(139\) −7.90257e9 −1.79557 −0.897784 0.440436i \(-0.854824\pi\)
−0.897784 + 0.440436i \(0.854824\pi\)
\(140\) 1.26463e9 + 1.80111e9i 0.278220 + 0.396245i
\(141\) 0 0
\(142\) 2.59259e9i 0.535101i
\(143\) 6.89216e9i 1.37830i
\(144\) 0 0
\(145\) 7.40929e9 5.20236e9i 1.39194 0.977338i
\(146\) 3.24379e9 0.590832
\(147\) 0 0
\(148\) 2.39796e9i 0.410833i
\(149\) −8.88302e9 −1.47646 −0.738232 0.674547i \(-0.764339\pi\)
−0.738232 + 0.674547i \(0.764339\pi\)
\(150\) 0 0
\(151\) 4.35498e9 0.681695 0.340847 0.940119i \(-0.389286\pi\)
0.340847 + 0.940119i \(0.389286\pi\)
\(152\) 2.53490e9i 0.385181i
\(153\) 0 0
\(154\) −1.95014e9 −0.279398
\(155\) −5.63036e9 + 3.95331e9i −0.783509 + 0.550133i
\(156\) 0 0
\(157\) 2.10491e9i 0.276494i 0.990398 + 0.138247i \(0.0441467\pi\)
−0.990398 + 0.138247i \(0.955853\pi\)
\(158\) 3.29655e9i 0.420826i
\(159\) 0 0
\(160\) 4.93533e9 + 7.02898e9i 0.595356 + 0.847915i
\(161\) −9.51398e9 −1.11595
\(162\) 0 0
\(163\) 7.77003e9i 0.862142i −0.902318 0.431071i \(-0.858136\pi\)
0.902318 0.431071i \(-0.141864\pi\)
\(164\) 8.05230e9 0.869206
\(165\) 0 0
\(166\) 6.38884e9 0.653034
\(167\) 1.81537e10i 1.80610i −0.429540 0.903048i \(-0.641324\pi\)
0.429540 0.903048i \(-0.358676\pi\)
\(168\) 0 0
\(169\) −2.45661e10 −2.31657
\(170\) 5.51007e7 3.86884e7i 0.00505984 0.00355272i
\(171\) 0 0
\(172\) 4.53512e9i 0.395104i
\(173\) 8.80586e9i 0.747419i 0.927546 + 0.373710i \(0.121914\pi\)
−0.927546 + 0.373710i \(0.878086\pi\)
\(174\) 0 0
\(175\) 7.97687e9 + 2.87995e9i 0.642926 + 0.232121i
\(176\) 2.02338e9 0.158953
\(177\) 0 0
\(178\) 4.02470e9i 0.300500i
\(179\) 7.00851e8 0.0510255 0.0255127 0.999674i \(-0.491878\pi\)
0.0255127 + 0.999674i \(0.491878\pi\)
\(180\) 0 0
\(181\) 1.87883e10 1.30117 0.650586 0.759433i \(-0.274523\pi\)
0.650586 + 0.759433i \(0.274523\pi\)
\(182\) 9.95154e9i 0.672309i
\(183\) 0 0
\(184\) −2.34198e10 −1.50627
\(185\) 5.31013e9 + 7.56277e9i 0.333298 + 0.474688i
\(186\) 0 0
\(187\) 1.44876e8i 0.00866380i
\(188\) 1.24090e10i 0.724481i
\(189\) 0 0
\(190\) 2.32746e9 + 3.31481e9i 0.129566 + 0.184530i
\(191\) 2.71653e10 1.47695 0.738473 0.674283i \(-0.235547\pi\)
0.738473 + 0.674283i \(0.235547\pi\)
\(192\) 0 0
\(193\) 3.36849e10i 1.74754i 0.486338 + 0.873771i \(0.338332\pi\)
−0.486338 + 0.873771i \(0.661668\pi\)
\(194\) 1.37947e10 0.699207
\(195\) 0 0
\(196\) 7.79678e9 0.377366
\(197\) 3.52896e8i 0.0166936i −0.999965 0.00834678i \(-0.997343\pi\)
0.999965 0.00834678i \(-0.00265689\pi\)
\(198\) 0 0
\(199\) −2.79906e10 −1.26524 −0.632620 0.774463i \(-0.718020\pi\)
−0.632620 + 0.774463i \(0.718020\pi\)
\(200\) 1.96360e10 + 7.08935e9i 0.867798 + 0.313308i
\(201\) 0 0
\(202\) 6.20970e9i 0.262416i
\(203\) 2.81287e10i 1.16257i
\(204\) 0 0
\(205\) 2.53956e10 1.78313e10i 1.00431 0.705164i
\(206\) −1.98843e8 −0.00769320
\(207\) 0 0
\(208\) 1.03253e10i 0.382487i
\(209\) 8.71559e9 0.315965
\(210\) 0 0
\(211\) 1.91333e10 0.664536 0.332268 0.943185i \(-0.392186\pi\)
0.332268 + 0.943185i \(0.392186\pi\)
\(212\) 1.12260e10i 0.381694i
\(213\) 0 0
\(214\) −1.89489e10 −0.617620
\(215\) −1.00427e10 1.43030e10i −0.320537 0.456514i
\(216\) 0 0
\(217\) 2.13752e10i 0.654397i
\(218\) 1.78639e10i 0.535700i
\(219\) 0 0
\(220\) 1.52439e10 1.07034e10i 0.438727 0.308048i
\(221\) −7.39299e8 −0.0208475
\(222\) 0 0
\(223\) 5.66446e10i 1.53386i −0.641728 0.766932i \(-0.721782\pi\)
0.641728 0.766932i \(-0.278218\pi\)
\(224\) −2.66849e10 −0.708190
\(225\) 0 0
\(226\) −6.50336e9 −0.165825
\(227\) 3.31522e10i 0.828698i 0.910118 + 0.414349i \(0.135991\pi\)
−0.910118 + 0.414349i \(0.864009\pi\)
\(228\) 0 0
\(229\) −1.68693e10 −0.405356 −0.202678 0.979245i \(-0.564964\pi\)
−0.202678 + 0.979245i \(0.564964\pi\)
\(230\) −3.06253e10 + 2.15033e10i −0.721615 + 0.506675i
\(231\) 0 0
\(232\) 6.92423e10i 1.56919i
\(233\) 5.99796e10i 1.33322i −0.745407 0.666610i \(-0.767745\pi\)
0.745407 0.666610i \(-0.232255\pi\)
\(234\) 0 0
\(235\) 2.74789e10 + 3.91359e10i 0.587752 + 0.837086i
\(236\) −2.72256e10 −0.571312
\(237\) 0 0
\(238\) 2.09185e8i 0.00422605i
\(239\) 1.06603e10 0.211339 0.105669 0.994401i \(-0.466301\pi\)
0.105669 + 0.994401i \(0.466301\pi\)
\(240\) 0 0
\(241\) −8.69990e9 −0.166126 −0.0830630 0.996544i \(-0.526470\pi\)
−0.0830630 + 0.996544i \(0.526470\pi\)
\(242\) 1.23102e10i 0.230726i
\(243\) 0 0
\(244\) 4.72286e9 0.0853004
\(245\) 2.45897e10 1.72654e10i 0.436020 0.306147i
\(246\) 0 0
\(247\) 4.44755e10i 0.760300i
\(248\) 5.26177e10i 0.883281i
\(249\) 0 0
\(250\) 3.21866e10 8.75863e9i 0.521128 0.141810i
\(251\) −6.50269e10 −1.03410 −0.517049 0.855956i \(-0.672969\pi\)
−0.517049 + 0.855956i \(0.672969\pi\)
\(252\) 0 0
\(253\) 8.05229e10i 1.23560i
\(254\) −3.12832e10 −0.471584
\(255\) 0 0
\(256\) −5.54652e10 −0.807125
\(257\) 6.68013e9i 0.0955182i 0.998859 + 0.0477591i \(0.0152080\pi\)
−0.998859 + 0.0477591i \(0.984792\pi\)
\(258\) 0 0
\(259\) −2.87114e10 −0.396466
\(260\) −5.46192e10 7.77895e10i −0.741251 1.05570i
\(261\) 0 0
\(262\) 6.84925e10i 0.898023i
\(263\) 9.64903e10i 1.24361i 0.783174 + 0.621803i \(0.213599\pi\)
−0.783174 + 0.621803i \(0.786401\pi\)
\(264\) 0 0
\(265\) −2.48593e10 3.54050e10i −0.309658 0.441020i
\(266\) −1.25844e10 −0.154122
\(267\) 0 0
\(268\) 4.96991e10i 0.588494i
\(269\) −7.10118e10 −0.826886 −0.413443 0.910530i \(-0.635674\pi\)
−0.413443 + 0.910530i \(0.635674\pi\)
\(270\) 0 0
\(271\) −4.09389e10 −0.461078 −0.230539 0.973063i \(-0.574049\pi\)
−0.230539 + 0.973063i \(0.574049\pi\)
\(272\) 2.17041e8i 0.00240426i
\(273\) 0 0
\(274\) 6.44072e10 0.690331
\(275\) 2.43749e10 6.75133e10i 0.257007 0.711856i
\(276\) 0 0
\(277\) 7.44596e10i 0.759909i 0.925005 + 0.379954i \(0.124060\pi\)
−0.925005 + 0.379954i \(0.875940\pi\)
\(278\) 9.65740e10i 0.969748i
\(279\) 0 0
\(280\) −5.30852e10 + 3.72733e10i −0.516134 + 0.362398i
\(281\) 1.38658e11 1.32668 0.663340 0.748318i \(-0.269138\pi\)
0.663340 + 0.748318i \(0.269138\pi\)
\(282\) 0 0
\(283\) 5.71956e10i 0.530059i −0.964240 0.265029i \(-0.914618\pi\)
0.964240 0.265029i \(-0.0853816\pi\)
\(284\) −7.69375e10 −0.701787
\(285\) 0 0
\(286\) 8.42262e10 0.744389
\(287\) 9.64122e10i 0.838810i
\(288\) 0 0
\(289\) 1.18572e11 0.999869
\(290\) 6.35759e10 + 9.05458e10i 0.527839 + 0.751757i
\(291\) 0 0
\(292\) 9.62624e10i 0.774879i
\(293\) 1.09734e11i 0.869832i 0.900471 + 0.434916i \(0.143222\pi\)
−0.900471 + 0.434916i \(0.856778\pi\)
\(294\) 0 0
\(295\) −8.58649e10 + 6.02893e10i −0.660111 + 0.463491i
\(296\) −7.06767e10 −0.535135
\(297\) 0 0
\(298\) 1.08556e11i 0.797406i
\(299\) 4.10907e11 2.97319
\(300\) 0 0
\(301\) 5.43001e10 0.381287
\(302\) 5.32204e10i 0.368169i
\(303\) 0 0
\(304\) 1.30570e10 0.0876823
\(305\) 1.48951e10 1.04585e10i 0.0985585 0.0692020i
\(306\) 0 0
\(307\) 1.89369e11i 1.21670i 0.793667 + 0.608352i \(0.208169\pi\)
−0.793667 + 0.608352i \(0.791831\pi\)
\(308\) 5.78722e10i 0.366431i
\(309\) 0 0
\(310\) −4.83117e10 6.88063e10i −0.297115 0.423156i
\(311\) 1.40583e11 0.852139 0.426070 0.904690i \(-0.359898\pi\)
0.426070 + 0.904690i \(0.359898\pi\)
\(312\) 0 0
\(313\) 1.43754e11i 0.846585i −0.905993 0.423292i \(-0.860874\pi\)
0.905993 0.423292i \(-0.139126\pi\)
\(314\) −2.57232e10 −0.149328
\(315\) 0 0
\(316\) −9.78282e10 −0.551915
\(317\) 1.67042e11i 0.929091i 0.885549 + 0.464545i \(0.153782\pi\)
−0.885549 + 0.464545i \(0.846218\pi\)
\(318\) 0 0
\(319\) 2.38071e11 1.28721
\(320\) −5.36567e10 + 3.76745e10i −0.286055 + 0.200851i
\(321\) 0 0
\(322\) 1.16266e11i 0.602702i
\(323\) 9.34892e8i 0.00477914i
\(324\) 0 0
\(325\) −3.44519e11 1.24385e11i −1.71293 0.618431i
\(326\) 9.49544e10 0.465624
\(327\) 0 0
\(328\) 2.37331e11i 1.13220i
\(329\) −1.48576e11 −0.699145
\(330\) 0 0
\(331\) −1.98423e10 −0.0908587 −0.0454294 0.998968i \(-0.514466\pi\)
−0.0454294 + 0.998968i \(0.514466\pi\)
\(332\) 1.89595e11i 0.856456i
\(333\) 0 0
\(334\) 2.21849e11 0.975433
\(335\) 1.10055e11 + 1.56742e11i 0.477429 + 0.679963i
\(336\) 0 0
\(337\) 6.71805e10i 0.283732i 0.989886 + 0.141866i \(0.0453102\pi\)
−0.989886 + 0.141866i \(0.954690\pi\)
\(338\) 3.00212e11i 1.25113i
\(339\) 0 0
\(340\) −1.14812e9 1.63516e9i −0.00465941 0.00663600i
\(341\) −1.80912e11 −0.724557
\(342\) 0 0
\(343\) 2.68576e11i 1.04771i
\(344\) 1.33666e11 0.514647
\(345\) 0 0
\(346\) −1.07613e11 −0.403665
\(347\) 2.47932e11i 0.918014i −0.888433 0.459007i \(-0.848205\pi\)
0.888433 0.459007i \(-0.151795\pi\)
\(348\) 0 0
\(349\) 1.62415e11 0.586018 0.293009 0.956110i \(-0.405343\pi\)
0.293009 + 0.956110i \(0.405343\pi\)
\(350\) −3.51947e10 + 9.74820e10i −0.125363 + 0.347231i
\(351\) 0 0
\(352\) 2.25852e11i 0.784117i
\(353\) 2.36285e11i 0.809935i 0.914331 + 0.404968i \(0.132717\pi\)
−0.914331 + 0.404968i \(0.867283\pi\)
\(354\) 0 0
\(355\) −2.42648e11 + 1.70373e11i −0.810865 + 0.569342i
\(356\) −1.19437e11 −0.394106
\(357\) 0 0
\(358\) 8.56480e9i 0.0275578i
\(359\) −4.86202e11 −1.54487 −0.772434 0.635095i \(-0.780961\pi\)
−0.772434 + 0.635095i \(0.780961\pi\)
\(360\) 0 0
\(361\) −2.66445e11 −0.825707
\(362\) 2.29604e11i 0.702735i
\(363\) 0 0
\(364\) 2.95321e11 0.881736
\(365\) −2.13167e11 3.03595e11i −0.628639 0.895318i
\(366\) 0 0
\(367\) 6.91679e11i 1.99025i −0.0986269 0.995124i \(-0.531445\pi\)
0.0986269 0.995124i \(-0.468555\pi\)
\(368\) 1.20633e11i 0.342886i
\(369\) 0 0
\(370\) −9.24215e10 + 6.48929e10i −0.256369 + 0.180007i
\(371\) 1.34412e11 0.368346
\(372\) 0 0
\(373\) 5.41625e11i 1.44880i −0.689379 0.724401i \(-0.742116\pi\)
0.689379 0.724401i \(-0.257884\pi\)
\(374\) 1.77047e9 0.00467913
\(375\) 0 0
\(376\) −3.65738e11 −0.943681
\(377\) 1.21487e12i 3.09739i
\(378\) 0 0
\(379\) 7.17554e11 1.78640 0.893199 0.449662i \(-0.148456\pi\)
0.893199 + 0.449662i \(0.148456\pi\)
\(380\) 9.83700e10 6.90696e10i 0.242012 0.169926i
\(381\) 0 0
\(382\) 3.31976e11i 0.797667i
\(383\) 1.81450e11i 0.430885i 0.976516 + 0.215443i \(0.0691195\pi\)
−0.976516 + 0.215443i \(0.930881\pi\)
\(384\) 0 0
\(385\) 1.28154e11 + 1.82519e11i 0.297276 + 0.423385i
\(386\) −4.11649e11 −0.943810
\(387\) 0 0
\(388\) 4.09372e11i 0.917012i
\(389\) −1.56142e11 −0.345737 −0.172868 0.984945i \(-0.555304\pi\)
−0.172868 + 0.984945i \(0.555304\pi\)
\(390\) 0 0
\(391\) 8.63742e9 0.0186891
\(392\) 2.29799e11i 0.491543i
\(393\) 0 0
\(394\) 4.31260e9 0.00901583
\(395\) −3.08534e11 + 2.16634e11i −0.637699 + 0.447754i
\(396\) 0 0
\(397\) 6.12411e9i 0.0123733i 0.999981 + 0.00618665i \(0.00196929\pi\)
−0.999981 + 0.00618665i \(0.998031\pi\)
\(398\) 3.42061e11i 0.683329i
\(399\) 0 0
\(400\) 3.65164e10 1.01143e11i 0.0713211 0.197545i
\(401\) −7.63256e11 −1.47408 −0.737039 0.675851i \(-0.763776\pi\)
−0.737039 + 0.675851i \(0.763776\pi\)
\(402\) 0 0
\(403\) 9.23190e11i 1.74349i
\(404\) 1.84279e11 0.344159
\(405\) 0 0
\(406\) −3.43749e11 −0.627877
\(407\) 2.43003e11i 0.438972i
\(408\) 0 0
\(409\) 2.15366e11 0.380559 0.190279 0.981730i \(-0.439061\pi\)
0.190279 + 0.981730i \(0.439061\pi\)
\(410\) 2.17909e11 + 3.10349e11i 0.380844 + 0.542404i
\(411\) 0 0
\(412\) 5.90084e9i 0.0100897i
\(413\) 3.25979e11i 0.551333i
\(414\) 0 0
\(415\) −4.19845e11 5.97950e11i −0.694820 0.989574i
\(416\) 1.15252e12 1.88681
\(417\) 0 0
\(418\) 1.06510e11i 0.170646i
\(419\) 5.13491e11 0.813898 0.406949 0.913451i \(-0.366593\pi\)
0.406949 + 0.913451i \(0.366593\pi\)
\(420\) 0 0
\(421\) 4.25812e11 0.660615 0.330308 0.943873i \(-0.392848\pi\)
0.330308 + 0.943873i \(0.392848\pi\)
\(422\) 2.33820e11i 0.358902i
\(423\) 0 0
\(424\) 3.30872e11 0.497180
\(425\) −7.24193e9 2.61461e9i −0.0107672 0.00388738i
\(426\) 0 0
\(427\) 5.65480e10i 0.0823174i
\(428\) 5.62325e11i 0.810010i
\(429\) 0 0
\(430\) 1.74791e11 1.22728e11i 0.246554 0.173115i
\(431\) 6.11767e11 0.853962 0.426981 0.904261i \(-0.359577\pi\)
0.426981 + 0.904261i \(0.359577\pi\)
\(432\) 0 0
\(433\) 9.75502e10i 0.133362i −0.997774 0.0666811i \(-0.978759\pi\)
0.997774 0.0666811i \(-0.0212410\pi\)
\(434\) 2.61217e11 0.353426
\(435\) 0 0
\(436\) −5.30128e11 −0.702573
\(437\) 5.19619e11i 0.681583i
\(438\) 0 0
\(439\) −1.10090e12 −1.41467 −0.707337 0.706877i \(-0.750104\pi\)
−0.707337 + 0.706877i \(0.750104\pi\)
\(440\) 3.15467e11 + 4.49294e11i 0.401252 + 0.571470i
\(441\) 0 0
\(442\) 9.03466e9i 0.0112593i
\(443\) 3.39709e11i 0.419073i 0.977801 + 0.209537i \(0.0671955\pi\)
−0.977801 + 0.209537i \(0.932804\pi\)
\(444\) 0 0
\(445\) −3.76684e11 + 2.64485e11i −0.455362 + 0.319728i
\(446\) 6.92230e11 0.828407
\(447\) 0 0
\(448\) 2.03703e11i 0.238917i
\(449\) −3.57373e11 −0.414966 −0.207483 0.978239i \(-0.566527\pi\)
−0.207483 + 0.978239i \(0.566527\pi\)
\(450\) 0 0
\(451\) 8.15998e11 0.928741
\(452\) 1.92993e11i 0.217480i
\(453\) 0 0
\(454\) −4.05140e11 −0.447562
\(455\) 9.31393e11 6.53969e11i 1.01878 0.715329i
\(456\) 0 0
\(457\) 1.48293e12i 1.59037i 0.606369 + 0.795184i \(0.292626\pi\)
−0.606369 + 0.795184i \(0.707374\pi\)
\(458\) 2.06152e11i 0.218924i
\(459\) 0 0
\(460\) 6.38130e11 + 9.08835e11i 0.664506 + 0.946401i
\(461\) −1.01555e12 −1.04724 −0.523622 0.851951i \(-0.675420\pi\)
−0.523622 + 0.851951i \(0.675420\pi\)
\(462\) 0 0
\(463\) 6.56647e11i 0.664076i −0.943266 0.332038i \(-0.892264\pi\)
0.943266 0.332038i \(-0.107736\pi\)
\(464\) 3.56659e11 0.357209
\(465\) 0 0
\(466\) 7.32986e11 0.720044
\(467\) 9.82330e11i 0.955721i 0.878436 + 0.477861i \(0.158588\pi\)
−0.878436 + 0.477861i \(0.841412\pi\)
\(468\) 0 0
\(469\) −5.95059e11 −0.567914
\(470\) −4.78264e11 + 3.35808e11i −0.452092 + 0.317432i
\(471\) 0 0
\(472\) 8.02437e11i 0.744170i
\(473\) 4.59577e11i 0.422166i
\(474\) 0 0
\(475\) 1.57292e11 4.35668e11i 0.141771 0.392676i
\(476\) 6.20776e9 0.00554248
\(477\) 0 0
\(478\) 1.30275e11i 0.114140i
\(479\) 1.43057e11 0.124165 0.0620826 0.998071i \(-0.480226\pi\)
0.0620826 + 0.998071i \(0.480226\pi\)
\(480\) 0 0
\(481\) 1.24004e12 1.05629
\(482\) 1.06318e11i 0.0897211i
\(483\) 0 0
\(484\) −3.65317e11 −0.302598
\(485\) −9.06526e11 1.29109e12i −0.743948 1.05954i
\(486\) 0 0
\(487\) 1.86986e12i 1.50636i −0.657813 0.753181i \(-0.728518\pi\)
0.657813 0.753181i \(-0.271482\pi\)
\(488\) 1.39200e11i 0.111109i
\(489\) 0 0
\(490\) 2.10994e11 + 3.00501e11i 0.165344 + 0.235485i
\(491\) 2.39101e11 0.185658 0.0928292 0.995682i \(-0.470409\pi\)
0.0928292 + 0.995682i \(0.470409\pi\)
\(492\) 0 0
\(493\) 2.55371e10i 0.0194698i
\(494\) 5.43517e11 0.410622
\(495\) 0 0
\(496\) −2.71027e11 −0.201069
\(497\) 9.21191e11i 0.677246i
\(498\) 0 0
\(499\) −2.13098e12 −1.53861 −0.769304 0.638883i \(-0.779397\pi\)
−0.769304 + 0.638883i \(0.779397\pi\)
\(500\) −2.59921e11 9.55167e11i −0.185984 0.683462i
\(501\) 0 0
\(502\) 7.94667e11i 0.558494i
\(503\) 9.25247e11i 0.644469i 0.946660 + 0.322234i \(0.104434\pi\)
−0.946660 + 0.322234i \(0.895566\pi\)
\(504\) 0 0
\(505\) 5.81184e11 4.08073e11i 0.397651 0.279207i
\(506\) −9.84037e11 −0.667320
\(507\) 0 0
\(508\) 9.28358e11i 0.618485i
\(509\) −1.48004e12 −0.977336 −0.488668 0.872470i \(-0.662517\pi\)
−0.488668 + 0.872470i \(0.662517\pi\)
\(510\) 0 0
\(511\) 1.15257e12 0.747781
\(512\) 6.39661e11i 0.411372i
\(513\) 0 0
\(514\) −8.16351e10 −0.0515873
\(515\) 1.30670e10 + 1.86103e10i 0.00818548 + 0.0116579i
\(516\) 0 0
\(517\) 1.25749e12i 0.774103i
\(518\) 3.50870e11i 0.214123i
\(519\) 0 0
\(520\) 2.29274e12 1.60982e12i 1.37512 0.965525i
\(521\) −8.54955e11 −0.508363 −0.254181 0.967157i \(-0.581806\pi\)
−0.254181 + 0.967157i \(0.581806\pi\)
\(522\) 0 0
\(523\) 1.34309e12i 0.784960i 0.919761 + 0.392480i \(0.128383\pi\)
−0.919761 + 0.392480i \(0.871617\pi\)
\(524\) −2.03258e12 −1.17776
\(525\) 0 0
\(526\) −1.17917e12 −0.671645
\(527\) 1.94058e10i 0.0109593i
\(528\) 0 0
\(529\) −2.99958e12 −1.66537
\(530\) 4.32670e11 3.03795e11i 0.238185 0.167240i
\(531\) 0 0
\(532\) 3.73453e11i 0.202131i
\(533\) 4.16403e12i 2.23481i
\(534\) 0 0
\(535\) 1.24523e12 + 1.77348e12i 0.657140 + 0.935910i
\(536\) −1.46481e12 −0.766549
\(537\) 0 0
\(538\) 8.67806e11i 0.446583i
\(539\) 7.90104e11 0.403213
\(540\) 0 0
\(541\) 8.64727e11 0.434002 0.217001 0.976171i \(-0.430373\pi\)
0.217001 + 0.976171i \(0.430373\pi\)
\(542\) 5.00298e11i 0.249018i
\(543\) 0 0
\(544\) 2.42263e10 0.0118602
\(545\) −1.67193e12 + 1.17393e12i −0.811773 + 0.569979i
\(546\) 0 0
\(547\) 1.90338e12i 0.909041i 0.890736 + 0.454521i \(0.150189\pi\)
−0.890736 + 0.454521i \(0.849811\pi\)
\(548\) 1.91135e12i 0.905371i
\(549\) 0 0
\(550\) 8.25052e11 + 2.97875e11i 0.384458 + 0.138804i
\(551\) 1.53629e12 0.710053
\(552\) 0 0
\(553\) 1.17132e12i 0.532615i
\(554\) −9.09939e11 −0.410411
\(555\) 0 0
\(556\) −2.86593e12 −1.27183
\(557\) 1.55326e12i 0.683747i 0.939746 + 0.341874i \(0.111061\pi\)
−0.939746 + 0.341874i \(0.888939\pi\)
\(558\) 0 0
\(559\) −2.34521e12 −1.01585
\(560\) 1.91990e11 + 2.73436e11i 0.0824960 + 0.117492i
\(561\) 0 0
\(562\) 1.69448e12i 0.716512i
\(563\) 3.94106e12i 1.65320i 0.562789 + 0.826601i \(0.309728\pi\)
−0.562789 + 0.826601i \(0.690272\pi\)
\(564\) 0 0
\(565\) 4.27371e11 + 6.08668e11i 0.176436 + 0.251283i
\(566\) 6.98964e11 0.286273
\(567\) 0 0
\(568\) 2.26763e12i 0.914121i
\(569\) 1.03063e11 0.0412189 0.0206094 0.999788i \(-0.493439\pi\)
0.0206094 + 0.999788i \(0.493439\pi\)
\(570\) 0 0
\(571\) 2.92191e12 1.15028 0.575141 0.818054i \(-0.304947\pi\)
0.575141 + 0.818054i \(0.304947\pi\)
\(572\) 2.49949e12i 0.976269i
\(573\) 0 0
\(574\) −1.17821e12 −0.453023
\(575\) 4.02511e12 + 1.45322e12i 1.53558 + 0.554402i
\(576\) 0 0
\(577\) 2.67123e12i 1.00327i −0.865078 0.501637i \(-0.832731\pi\)
0.865078 0.501637i \(-0.167269\pi\)
\(578\) 1.44902e12i 0.540008i
\(579\) 0 0
\(580\) 2.68703e12 1.88667e12i 0.985932 0.692263i
\(581\) 2.27007e12 0.826506
\(582\) 0 0
\(583\) 1.13761e12i 0.407837i
\(584\) 2.83720e12 1.00933
\(585\) 0 0
\(586\) −1.34101e12 −0.469777
\(587\) 2.14358e12i 0.745191i 0.927994 + 0.372596i \(0.121532\pi\)
−0.927994 + 0.372596i \(0.878468\pi\)
\(588\) 0 0
\(589\) −1.16744e12 −0.399681
\(590\) −7.36770e11 1.04932e12i −0.250321 0.356512i
\(591\) 0 0
\(592\) 3.64047e11i 0.121818i
\(593\) 2.79629e12i 0.928616i 0.885674 + 0.464308i \(0.153697\pi\)
−0.885674 + 0.464308i \(0.846303\pi\)
\(594\) 0 0
\(595\) 1.95782e10 1.37467e10i 0.00640394 0.00449647i
\(596\) −3.22149e12 −1.04580
\(597\) 0 0
\(598\) 5.02152e12i 1.60576i
\(599\) 5.67415e12 1.80086 0.900430 0.435002i \(-0.143252\pi\)
0.900430 + 0.435002i \(0.143252\pi\)
\(600\) 0 0
\(601\) 3.70560e12 1.15857 0.579287 0.815124i \(-0.303331\pi\)
0.579287 + 0.815124i \(0.303331\pi\)
\(602\) 6.63579e11i 0.205925i
\(603\) 0 0
\(604\) 1.57937e12 0.482855
\(605\) −1.15215e12 + 8.08971e11i −0.349631 + 0.245490i
\(606\) 0 0
\(607\) 3.05665e12i 0.913894i −0.889494 0.456947i \(-0.848943\pi\)
0.889494 0.456947i \(-0.151057\pi\)
\(608\) 1.45743e12i 0.432537i
\(609\) 0 0
\(610\) 1.27808e11 + 1.82027e11i 0.0373745 + 0.0532294i
\(611\) 6.41698e12 1.86271
\(612\) 0 0
\(613\) 1.97493e12i 0.564911i 0.959280 + 0.282456i \(0.0911490\pi\)
−0.959280 + 0.282456i \(0.908851\pi\)
\(614\) −2.31419e12 −0.657116
\(615\) 0 0
\(616\) −1.70570e12 −0.477299
\(617\) 3.84845e12i 1.06906i −0.845149 0.534531i \(-0.820488\pi\)
0.845149 0.534531i \(-0.179512\pi\)
\(618\) 0 0
\(619\) 4.09595e11 0.112136 0.0560682 0.998427i \(-0.482144\pi\)
0.0560682 + 0.998427i \(0.482144\pi\)
\(620\) −2.04189e12 + 1.43370e12i −0.554971 + 0.389668i
\(621\) 0 0
\(622\) 1.71800e12i 0.460222i
\(623\) 1.43005e12i 0.380324i
\(624\) 0 0
\(625\) −2.93490e12 2.43686e12i −0.769366 0.638808i
\(626\) 1.75676e12 0.457222
\(627\) 0 0
\(628\) 7.63361e11i 0.195845i
\(629\) 2.60661e10 0.00663970
\(630\) 0 0
\(631\) 2.20647e12 0.554072 0.277036 0.960860i \(-0.410648\pi\)
0.277036 + 0.960860i \(0.410648\pi\)
\(632\) 2.88335e12i 0.718904i
\(633\) 0 0
\(634\) −2.04135e12 −0.501782
\(635\) 2.05579e12 + 2.92788e12i 0.501760 + 0.714615i
\(636\) 0 0
\(637\) 4.03189e12i 0.970244i
\(638\) 2.90937e12i 0.695194i
\(639\) 0 0
\(640\) 2.06649e12 + 2.94312e12i 0.486881 + 0.693424i
\(641\) −7.59163e12 −1.77613 −0.888064 0.459720i \(-0.847950\pi\)
−0.888064 + 0.459720i \(0.847950\pi\)
\(642\) 0 0
\(643\) 6.12938e12i 1.41406i −0.707184 0.707029i \(-0.750035\pi\)
0.707184 0.707029i \(-0.249965\pi\)
\(644\) −3.45032e12 −0.790446
\(645\) 0 0
\(646\) 1.14249e10 0.00258111
\(647\) 1.67991e12i 0.376893i 0.982084 + 0.188446i \(0.0603451\pi\)
−0.982084 + 0.188446i \(0.939655\pi\)
\(648\) 0 0
\(649\) −2.75897e12 −0.610443
\(650\) 1.52005e12 4.21023e12i 0.334001 0.925115i
\(651\) 0 0
\(652\) 2.81786e12i 0.610668i
\(653\) 2.09466e12i 0.450821i 0.974264 + 0.225410i \(0.0723723\pi\)
−0.974264 + 0.225410i \(0.927628\pi\)
\(654\) 0 0
\(655\) −6.41042e12 + 4.50101e12i −1.36082 + 0.955486i
\(656\) 1.22246e12 0.257732
\(657\) 0 0
\(658\) 1.81569e12i 0.377594i
\(659\) −7.17038e11 −0.148101 −0.0740505 0.997254i \(-0.523593\pi\)
−0.0740505 + 0.997254i \(0.523593\pi\)
\(660\) 0 0
\(661\) 4.83658e12 0.985444 0.492722 0.870187i \(-0.336002\pi\)
0.492722 + 0.870187i \(0.336002\pi\)
\(662\) 2.42485e11i 0.0490708i
\(663\) 0 0
\(664\) 5.58804e12 1.11559
\(665\) 8.26987e11 + 1.17781e12i 0.163984 + 0.233549i
\(666\) 0 0
\(667\) 1.41937e13i 2.77670i
\(668\) 6.58357e12i 1.27928i
\(669\) 0 0
\(670\) −1.91548e12 + 1.34494e12i −0.367233 + 0.257849i
\(671\) 4.78602e11 0.0911429
\(672\) 0 0
\(673\) 4.63436e12i 0.870808i 0.900235 + 0.435404i \(0.143394\pi\)
−0.900235 + 0.435404i \(0.856606\pi\)
\(674\) −8.20985e11 −0.153238
\(675\) 0 0
\(676\) −8.90907e12 −1.64086
\(677\) 6.94095e12i 1.26990i −0.772553 0.634950i \(-0.781021\pi\)
0.772553 0.634950i \(-0.218979\pi\)
\(678\) 0 0
\(679\) 4.90151e12 0.884944
\(680\) 4.81942e10 3.38391e10i 0.00864380 0.00606917i
\(681\) 0 0
\(682\) 2.21085e12i 0.391318i
\(683\) 6.91635e12i 1.21614i −0.793883 0.608070i \(-0.791944\pi\)
0.793883 0.608070i \(-0.208056\pi\)
\(684\) 0 0
\(685\) −4.23255e12 6.02806e12i −0.734504 1.04609i
\(686\) −3.28215e12 −0.565848
\(687\) 0 0
\(688\) 6.88500e11i 0.117154i
\(689\) −5.80523e12 −0.981371
\(690\) 0 0
\(691\) 1.45798e12 0.243277 0.121638 0.992574i \(-0.461185\pi\)
0.121638 + 0.992574i \(0.461185\pi\)
\(692\) 3.19351e12i 0.529408i
\(693\) 0 0
\(694\) 3.02987e12 0.495800
\(695\) −9.03864e12 + 6.34640e12i −1.46951 + 1.03180i
\(696\) 0 0
\(697\) 8.75294e10i 0.0140477i
\(698\) 1.98480e12i 0.316496i
\(699\) 0 0
\(700\) 2.89287e12 + 1.04444e12i 0.455394 + 0.164415i
\(701\) −5.87637e12 −0.919132 −0.459566 0.888144i \(-0.651995\pi\)
−0.459566 + 0.888144i \(0.651995\pi\)
\(702\) 0 0
\(703\) 1.56811e12i 0.242147i
\(704\) −1.72407e12 −0.264531
\(705\) 0 0
\(706\) −2.88754e12 −0.437429
\(707\) 2.20642e12i 0.332124i
\(708\) 0 0
\(709\) 7.62910e12 1.13388 0.566938 0.823761i \(-0.308128\pi\)
0.566938 + 0.823761i \(0.308128\pi\)
\(710\) −2.08206e12 2.96530e12i −0.307489 0.437931i
\(711\) 0 0
\(712\) 3.52024e12i 0.513348i
\(713\) 1.07859e13i 1.56298i
\(714\) 0 0
\(715\) −5.53496e12 7.88297e12i −0.792022 1.12801i
\(716\) 2.54169e11 0.0361421
\(717\) 0 0
\(718\) 5.94167e12i 0.834350i
\(719\) 2.38732e12 0.333142 0.166571 0.986029i \(-0.446730\pi\)
0.166571 + 0.986029i \(0.446730\pi\)
\(720\) 0 0
\(721\) −7.06523e10 −0.00973682
\(722\) 3.25612e12i 0.445947i
\(723\) 0 0
\(724\) 6.81373e12 0.921640
\(725\) 4.29653e12 1.19005e13i 0.577560 1.59972i
\(726\) 0 0
\(727\) 5.38271e12i 0.714654i −0.933979 0.357327i \(-0.883688\pi\)
0.933979 0.357327i \(-0.116312\pi\)
\(728\) 8.70419e12i 1.14852i
\(729\) 0 0
\(730\) 3.71011e12 2.60502e12i 0.483542 0.339514i
\(731\) −4.92972e10 −0.00638549
\(732\) 0 0
\(733\) 7.93743e12i 1.01557i 0.861483 + 0.507787i \(0.169536\pi\)
−0.861483 + 0.507787i \(0.830464\pi\)
\(734\) 8.45272e12 1.07489
\(735\) 0 0
\(736\) −1.34652e13 −1.69146
\(737\) 5.03637e12i 0.628801i
\(738\) 0 0
\(739\) 2.88800e12 0.356203 0.178101 0.984012i \(-0.443004\pi\)
0.178101 + 0.984012i \(0.443004\pi\)
\(740\) 1.92576e12 + 2.74270e12i 0.236080 + 0.336229i
\(741\) 0 0
\(742\) 1.64259e12i 0.198936i
\(743\) 9.68056e12i 1.16533i 0.812711 + 0.582667i \(0.197991\pi\)
−0.812711 + 0.582667i \(0.802009\pi\)
\(744\) 0 0
\(745\) −1.01600e13 + 7.13378e12i −1.20835 + 0.848431i
\(746\) 6.61898e12 0.782467
\(747\) 0 0
\(748\) 5.25402e10i 0.00613670i
\(749\) −6.73286e12 −0.781684
\(750\) 0 0
\(751\) 1.55121e12 0.177947 0.0889735 0.996034i \(-0.471641\pi\)
0.0889735 + 0.996034i \(0.471641\pi\)
\(752\) 1.88388e12i 0.214819i
\(753\) 0 0
\(754\) 1.48465e13 1.67283
\(755\) 4.98105e12 3.49740e12i 0.557904 0.391727i
\(756\) 0 0
\(757\) 2.05679e12i 0.227646i −0.993501 0.113823i \(-0.963690\pi\)
0.993501 0.113823i \(-0.0363096\pi\)
\(758\) 8.76893e12i 0.964795i
\(759\) 0 0
\(760\) 2.03573e12 + 2.89932e12i 0.221340 + 0.315235i
\(761\) 4.01826e12 0.434317 0.217159 0.976136i \(-0.430321\pi\)
0.217159 + 0.976136i \(0.430321\pi\)
\(762\) 0 0
\(763\) 6.34735e12i 0.678004i
\(764\) 9.85171e12 1.04614
\(765\) 0 0
\(766\) −2.21742e12 −0.232712
\(767\) 1.40790e13i 1.46890i
\(768\) 0 0
\(769\) 7.34878e12 0.757786 0.378893 0.925441i \(-0.376305\pi\)
0.378893 + 0.925441i \(0.376305\pi\)
\(770\) −2.23049e12 + 1.56612e12i −0.228661 + 0.160552i
\(771\) 0 0
\(772\) 1.22161e13i 1.23781i
\(773\) 7.03720e12i 0.708912i −0.935073 0.354456i \(-0.884666\pi\)
0.935073 0.354456i \(-0.115334\pi\)
\(774\) 0 0
\(775\) −3.26496e12 + 9.04327e12i −0.325103 + 0.900467i
\(776\) 1.20657e13 1.19447
\(777\) 0 0
\(778\) 1.90814e12i 0.186725i
\(779\) 5.26569e12 0.512314
\(780\) 0 0
\(781\) −7.79663e12 −0.749855
\(782\) 1.05554e11i 0.0100936i
\(783\) 0 0
\(784\) 1.18367e12 0.111894
\(785\) 1.69041e12 + 2.40751e12i 0.158884 + 0.226285i
\(786\) 0 0
\(787\) 3.89415e12i 0.361848i −0.983497 0.180924i \(-0.942091\pi\)
0.983497 0.180924i \(-0.0579088\pi\)
\(788\) 1.27980e11i 0.0118243i
\(789\) 0 0
\(790\) −2.64739e12 3.77046e12i −0.241823 0.344408i
\(791\) −2.31076e12 −0.209875
\(792\) 0 0
\(793\) 2.44230e12i 0.219315i
\(794\) −7.48402e10 −0.00668256
\(795\) 0 0
\(796\) −1.01510e13 −0.896188
\(797\) 6.27475e12i 0.550851i 0.961322 + 0.275425i \(0.0888187\pi\)
−0.961322 + 0.275425i \(0.911181\pi\)
\(798\) 0 0
\(799\) 1.34887e11 0.0117087
\(800\) 1.12897e13 + 4.07600e12i 0.974488 + 0.351827i
\(801\) 0 0
\(802\) 9.32743e12i 0.796118i
\(803\) 9.75496e12i 0.827953i
\(804\) 0 0
\(805\) −1.08817e13 + 7.64049e12i −0.913305 + 0.641269i
\(806\) −1.12819e13 −0.941620
\(807\) 0 0
\(808\) 5.43136e12i 0.448289i
\(809\) −8.39256e12 −0.688852 −0.344426 0.938813i \(-0.611926\pi\)
−0.344426 + 0.938813i \(0.611926\pi\)
\(810\) 0 0
\(811\) 4.06885e12 0.330277 0.165138 0.986270i \(-0.447193\pi\)
0.165138 + 0.986270i \(0.447193\pi\)
\(812\) 1.02011e13i 0.823464i
\(813\) 0 0
\(814\) −2.96964e12 −0.237079
\(815\) −6.23996e12 8.88705e12i −0.495419 0.705584i
\(816\) 0 0
\(817\) 2.96568e12i 0.232876i
\(818\) 2.63189e12i 0.205532i
\(819\) 0 0
\(820\) 9.20990e12 6.46665e12i 0.711365 0.499479i
\(821\) 1.00927e13 0.775287 0.387643 0.921809i \(-0.373289\pi\)
0.387643 + 0.921809i \(0.373289\pi\)
\(822\) 0 0
\(823\) 1.21960e13i 0.926654i 0.886187 + 0.463327i \(0.153344\pi\)
−0.886187 + 0.463327i \(0.846656\pi\)
\(824\) −1.73919e11 −0.0131424
\(825\) 0 0
\(826\) 3.98365e12 0.297763
\(827\) 1.65725e13i 1.23201i −0.787743 0.616003i \(-0.788751\pi\)
0.787743 0.616003i \(-0.211249\pi\)
\(828\) 0 0
\(829\) 7.37572e12 0.542387 0.271193 0.962525i \(-0.412582\pi\)
0.271193 + 0.962525i \(0.412582\pi\)
\(830\) 7.30730e12 5.13075e12i 0.534448 0.375258i
\(831\) 0 0
\(832\) 8.79789e12i 0.636537i
\(833\) 8.47518e10i 0.00609883i
\(834\) 0 0
\(835\) −1.45789e13 2.07635e13i −1.03785 1.47812i
\(836\) 3.16077e12 0.223803
\(837\) 0 0
\(838\) 6.27516e12i 0.439569i
\(839\) 7.96014e12 0.554615 0.277308 0.960781i \(-0.410558\pi\)
0.277308 + 0.960781i \(0.410558\pi\)
\(840\) 0 0
\(841\) 2.74575e13 1.89269
\(842\) 5.20367e12i 0.356784i
\(843\) 0 0
\(844\) 6.93883e12 0.470701
\(845\) −2.80977e13 + 1.97285e13i −1.89590 + 1.33119i
\(846\) 0 0
\(847\) 4.37404e12i 0.292016i
\(848\) 1.70428e12i 0.113178i
\(849\) 0 0
\(850\) 3.19520e10 8.85006e10i 0.00209949 0.00581515i
\(851\) −1.44877e13 −0.946928
\(852\) 0 0
\(853\) 7.49408e12i 0.484672i −0.970192 0.242336i \(-0.922086\pi\)
0.970192 0.242336i \(-0.0779136\pi\)
\(854\) −6.91049e11 −0.0444579
\(855\) 0 0
\(856\) −1.65738e13 −1.05509
\(857\) 2.06124e12i 0.130531i 0.997868 + 0.0652656i \(0.0207895\pi\)
−0.997868 + 0.0652656i \(0.979211\pi\)
\(858\) 0 0
\(859\) −1.61145e13 −1.00983 −0.504914 0.863169i \(-0.668476\pi\)
−0.504914 + 0.863169i \(0.668476\pi\)
\(860\) −3.64207e12 5.18709e12i −0.227041 0.323356i
\(861\) 0 0
\(862\) 7.47615e12i 0.461207i
\(863\) 1.14800e13i 0.704521i −0.935902 0.352261i \(-0.885413\pi\)
0.935902 0.352261i \(-0.114587\pi\)
\(864\) 0 0
\(865\) 7.07181e12 + 1.00718e13i 0.429495 + 0.611694i
\(866\) 1.19212e12 0.0720260
\(867\) 0 0
\(868\) 7.75187e12i 0.463519i
\(869\) −9.91364e12 −0.589718
\(870\) 0 0
\(871\) 2.57005e13 1.51307
\(872\) 1.56248e13i 0.915145i
\(873\) 0 0
\(874\) −6.35005e12 −0.368108
\(875\) 1.14365e13 3.11209e12i 0.659561 0.179480i
\(876\) 0 0
\(877\) 1.14652e13i 0.654460i 0.944945 + 0.327230i \(0.106115\pi\)
−0.944945 + 0.327230i \(0.893885\pi\)
\(878\) 1.34536e13i 0.764035i
\(879\) 0 0
\(880\) 2.31426e12 1.62494e12i 0.130089 0.0913406i
\(881\) −2.36703e13 −1.32377 −0.661885 0.749605i \(-0.730243\pi\)
−0.661885 + 0.749605i \(0.730243\pi\)
\(882\) 0 0
\(883\) 2.01686e13i 1.11648i −0.829678 0.558242i \(-0.811476\pi\)
0.829678 0.558242i \(-0.188524\pi\)
\(884\) −2.68112e11 −0.0147666
\(885\) 0 0
\(886\) −4.15144e12 −0.226332
\(887\) 2.58905e13i 1.40438i −0.711992 0.702188i \(-0.752207\pi\)
0.711992 0.702188i \(-0.247793\pi\)
\(888\) 0 0
\(889\) −1.11155e13 −0.596856
\(890\) −3.23216e12 4.60330e12i −0.172678 0.245931i
\(891\) 0 0
\(892\) 2.05426e13i 1.08646i
\(893\) 8.11469e12i 0.427012i
\(894\) 0 0
\(895\) 8.01605e11 5.62839e11i 0.0417596 0.0293211i
\(896\) −1.11733e13 −0.579157
\(897\) 0 0
\(898\) 4.36730e12i 0.224115i
\(899\) −3.18892e13 −1.62826
\(900\) 0 0
\(901\) −1.22028e11 −0.00616877
\(902\) 9.97197e12i 0.501593i
\(903\) 0 0
\(904\) −5.68821e12 −0.283281
\(905\) 2.14893e13 1.50885e13i 1.06489 0.747702i
\(906\) 0 0
\(907\) 2.09156e13i 1.02621i 0.858325 + 0.513107i \(0.171506\pi\)
−0.858325 + 0.513107i \(0.828494\pi\)
\(908\) 1.20229e13i 0.586979i
\(909\) 0 0
\(910\) 7.99188e12 + 1.13822e13i 0.386334 + 0.550223i
\(911\) 4.47158e12 0.215094 0.107547 0.994200i \(-0.465700\pi\)
0.107547 + 0.994200i \(0.465700\pi\)
\(912\) 0 0
\(913\) 1.92130e13i 0.915118i
\(914\) −1.81223e13 −0.858923
\(915\) 0 0
\(916\) −6.11776e12 −0.287120
\(917\) 2.43366e13i 1.13657i
\(918\) 0 0
\(919\) −1.06549e13 −0.492753 −0.246377 0.969174i \(-0.579240\pi\)
−0.246377 + 0.969174i \(0.579240\pi\)
\(920\) −2.67867e13 + 1.88080e13i −1.23275 + 0.865561i
\(921\) 0 0
\(922\) 1.24106e13i 0.565594i
\(923\) 3.97861e13i 1.80436i
\(924\) 0 0
\(925\) 1.21470e13 + 4.38554e12i 0.545547 + 0.196963i
\(926\) 8.02461e12 0.358653
\(927\) 0 0
\(928\) 3.98106e13i 1.76211i
\(929\) 3.87854e13 1.70843 0.854217 0.519917i \(-0.174037\pi\)
0.854217 + 0.519917i \(0.174037\pi\)
\(930\) 0 0
\(931\) 5.09859e12 0.222421
\(932\) 2.17520e13i 0.944340i
\(933\) 0 0
\(934\) −1.20046e13 −0.516165
\(935\) −1.16347e11 1.65703e11i −0.00497854 0.00709052i
\(936\) 0 0
\(937\) 6.15535e11i 0.0260870i 0.999915 + 0.0130435i \(0.00415199\pi\)
−0.999915 + 0.0130435i \(0.995848\pi\)
\(938\) 7.27197e12i 0.306718i
\(939\) 0 0
\(940\) 9.96543e12 + 1.41929e13i 0.416314 + 0.592921i
\(941\) 3.81077e13 1.58438 0.792190 0.610275i \(-0.208941\pi\)
0.792190 + 0.610275i \(0.208941\pi\)
\(942\) 0 0
\(943\) 4.86494e13i 2.00343i
\(944\) −4.13326e12 −0.169402
\(945\) 0 0
\(946\) 5.61629e12 0.228003
\(947\) 2.37836e13i 0.960955i 0.877007 + 0.480478i \(0.159537\pi\)
−0.877007 + 0.480478i \(0.840463\pi\)
\(948\) 0 0
\(949\) −4.97794e13 −1.99229
\(950\) 5.32411e12 + 1.92221e12i 0.212076 + 0.0765673i
\(951\) 0 0
\(952\) 1.82965e11i 0.00721942i
\(953\) 4.19004e12i 0.164551i −0.996610 0.0822755i \(-0.973781\pi\)
0.996610 0.0822755i \(-0.0262187\pi\)
\(954\) 0 0
\(955\) 3.10706e13 2.18159e13i 1.20874 0.848709i
\(956\) 3.86604e12 0.149694
\(957\) 0 0
\(958\) 1.74824e12i 0.0670589i
\(959\) 2.28850e13 0.873710
\(960\) 0 0
\(961\) −2.20685e12 −0.0834675
\(962\) 1.51540e13i 0.570480i
\(963\) 0 0
\(964\) −3.15508e12 −0.117670
\(965\) 2.70517e13 + 3.85274e13i 1.00420 + 1.43020i
\(966\) 0 0
\(967\) 2.08426e13i 0.766537i −0.923637 0.383268i \(-0.874798\pi\)
0.923637 0.383268i \(-0.125202\pi\)
\(968\) 1.07672e13i 0.394153i
\(969\) 0 0
\(970\) 1.57779e13 1.10783e13i 0.572236 0.401790i
\(971\) −1.13186e13 −0.408606 −0.204303 0.978908i \(-0.565493\pi\)
−0.204303 + 0.978908i \(0.565493\pi\)
\(972\) 0 0
\(973\) 3.43144e13i 1.22735i
\(974\) 2.28508e13 0.813554
\(975\) 0 0
\(976\) 7.17002e11 0.0252928
\(977\) 3.51597e13i 1.23458i 0.786735 + 0.617291i \(0.211770\pi\)
−0.786735 + 0.617291i \(0.788230\pi\)
\(978\) 0 0
\(979\) −1.21034e13 −0.421100
\(980\) 8.91764e12 6.26144e12i 0.308839 0.216849i
\(981\) 0 0
\(982\) 2.92195e12i 0.100270i
\(983\) 2.63427e12i 0.0899850i 0.998987 + 0.0449925i \(0.0143264\pi\)
−0.998987 + 0.0449925i \(0.985674\pi\)
\(984\) 0 0
\(985\) −2.83404e11 4.03628e11i −0.00959274 0.0136621i
\(986\) 3.12078e11 0.0105152
\(987\) 0 0
\(988\) 1.61294e13i 0.538532i
\(989\) 2.73997e13 0.910674
\(990\) 0 0
\(991\) −9.08136e12 −0.299102 −0.149551 0.988754i \(-0.547783\pi\)
−0.149551 + 0.988754i \(0.547783\pi\)
\(992\) 3.02524e13i 0.991874i
\(993\) 0 0
\(994\) 1.12575e13 0.365766
\(995\) −3.20145e13 + 2.24787e13i −1.03548 + 0.727054i
\(996\) 0 0
\(997\) 3.23962e13i 1.03840i −0.854652 0.519201i \(-0.826229\pi\)
0.854652 0.519201i \(-0.173771\pi\)
\(998\) 2.60419e13i 0.830969i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.10.b.d.19.6 yes 8
3.2 odd 2 inner 45.10.b.d.19.3 8
5.2 odd 4 225.10.a.x.1.3 8
5.3 odd 4 225.10.a.x.1.6 8
5.4 even 2 inner 45.10.b.d.19.4 yes 8
15.2 even 4 225.10.a.x.1.5 8
15.8 even 4 225.10.a.x.1.4 8
15.14 odd 2 inner 45.10.b.d.19.5 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.10.b.d.19.3 8 3.2 odd 2 inner
45.10.b.d.19.4 yes 8 5.4 even 2 inner
45.10.b.d.19.5 yes 8 15.14 odd 2 inner
45.10.b.d.19.6 yes 8 1.1 even 1 trivial
225.10.a.x.1.3 8 5.2 odd 4
225.10.a.x.1.4 8 15.8 even 4
225.10.a.x.1.5 8 15.2 even 4
225.10.a.x.1.6 8 5.3 odd 4