Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [45,10,Mod(19,45)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(45, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 10, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("45.19");
S:= CuspForms(chi, 10);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 45.b (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 |
|
− | 30.1771i | 0 | −398.657 | −755.297 | − | 1175.86i | 0 | − | 10271.7i | − | 3420.35i | 0 | −35484.1 | + | 22792.7i | |||||||||||||||||||||||||||||||||||
19.2 | − | 30.1771i | 0 | −398.657 | 755.297 | − | 1175.86i | 0 | 10271.7i | − | 3420.35i | 0 | −35484.1 | − | 22792.7i | |||||||||||||||||||||||||||||||||||||
19.3 | − | 12.2206i | 0 | 362.657 | −1143.76 | + | 803.080i | 0 | 4342.19i | − | 10688.8i | 0 | 9814.11 | + | 13977.4i | |||||||||||||||||||||||||||||||||||||
19.4 | − | 12.2206i | 0 | 362.657 | 1143.76 | + | 803.080i | 0 | − | 4342.19i | − | 10688.8i | 0 | 9814.11 | − | 13977.4i | ||||||||||||||||||||||||||||||||||||
19.5 | 12.2206i | 0 | 362.657 | −1143.76 | − | 803.080i | 0 | − | 4342.19i | 10688.8i | 0 | 9814.11 | − | 13977.4i | ||||||||||||||||||||||||||||||||||||||
19.6 | 12.2206i | 0 | 362.657 | 1143.76 | − | 803.080i | 0 | 4342.19i | 10688.8i | 0 | 9814.11 | + | 13977.4i | |||||||||||||||||||||||||||||||||||||||
19.7 | 30.1771i | 0 | −398.657 | −755.297 | + | 1175.86i | 0 | 10271.7i | 3420.35i | 0 | −35484.1 | − | 22792.7i | |||||||||||||||||||||||||||||||||||||||
19.8 | 30.1771i | 0 | −398.657 | 755.297 | + | 1175.86i | 0 | − | 10271.7i | 3420.35i | 0 | −35484.1 | + | 22792.7i | ||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 45.10.b.d | ✓ | 8 |
3.b | odd | 2 | 1 | inner | 45.10.b.d | ✓ | 8 |
5.b | even | 2 | 1 | inner | 45.10.b.d | ✓ | 8 |
5.c | odd | 4 | 2 | 225.10.a.x | 8 | ||
15.d | odd | 2 | 1 | inner | 45.10.b.d | ✓ | 8 |
15.e | even | 4 | 2 | 225.10.a.x | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
45.10.b.d | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
45.10.b.d | ✓ | 8 | 3.b | odd | 2 | 1 | inner |
45.10.b.d | ✓ | 8 | 5.b | even | 2 | 1 | inner |
45.10.b.d | ✓ | 8 | 15.d | odd | 2 | 1 | inner |
225.10.a.x | 8 | 5.c | odd | 4 | 2 | ||
225.10.a.x | 8 | 15.e | even | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .