Properties

Label 45.10.b.d
Level 4545
Weight 1010
Character orbit 45.b
Analytic conductor 23.17723.177
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,10,Mod(19,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.19");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 45=325 45 = 3^{2} \cdot 5
Weight: k k == 10 10
Character orbit: [χ][\chi] == 45.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 23.176612627423.1766126274
Analytic rank: 00
Dimension: 88
Coefficient field: Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x82x7774x62822x5+257730x4+2421892x32488179x234986488x+335502416 x^{8} - 2x^{7} - 774x^{6} - 2822x^{5} + 257730x^{4} + 2421892x^{3} - 2488179x^{2} - 34986488x + 335502416 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2183857 2^{18}\cdot 3^{8}\cdot 5^{7}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+(β218)q4+(β4β3+24β1)q5β5q7+(8β4+220β1)q8+(β6+β5+60β212835)q10++(910560β453014073β1)q98+O(q100) q + \beta_1 q^{2} + (\beta_{2} - 18) q^{4} + ( - \beta_{4} - \beta_{3} + 24 \beta_1) q^{5} - \beta_{5} q^{7} + (8 \beta_{4} + 220 \beta_1) q^{8} + (\beta_{6} + \beta_{5} + 60 \beta_{2} - 12835) q^{10}+ \cdots + (910560 \beta_{4} - 53014073 \beta_1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q144q4102680q101009088q162079872q19595720q25+12077344q31+25286480q34+18248480q40+3119840q46174619144q49105991200q55165845744q61+4117219360q94+O(q100) 8 q - 144 q^{4} - 102680 q^{10} - 1009088 q^{16} - 2079872 q^{19} - 595720 q^{25} + 12077344 q^{31} + 25286480 q^{34} + 18248480 q^{40} + 3119840 q^{46} - 174619144 q^{49} - 105991200 q^{55} - 165845744 q^{61}+ \cdots - 4117219360 q^{94}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x82x7774x62822x5+257730x4+2421892x32488179x234986488x+335502416 x^{8} - 2x^{7} - 774x^{6} - 2822x^{5} + 257730x^{4} + 2421892x^{3} - 2488179x^{2} - 34986488x + 335502416 : Copy content Toggle raw display

β1\beta_{1}== (6904938953ν737144894182ν64851062706478ν56257780345790ν4++60 ⁣ ⁣44)/27 ⁣ ⁣00 ( 6904938953 \nu^{7} - 37144894182 \nu^{6} - 4851062706478 \nu^{5} - 6257780345790 \nu^{4} + \cdots + 60\!\cdots\!44 ) / 27\!\cdots\!00 Copy content Toggle raw display
β2\beta_{2}== (116957544ν7+4833928896ν6+7776782184ν51371549880020ν4++85 ⁣ ⁣78)/227580881007625 ( - 116957544 \nu^{7} + 4833928896 \nu^{6} + 7776782184 \nu^{5} - 1371549880020 \nu^{4} + \cdots + 85\!\cdots\!78 ) / 227580881007625 Copy content Toggle raw display
β3\beta_{3}== (668560664711ν72645074001034ν6530608174016386ν5+23 ⁣ ⁣72)/54 ⁣ ⁣00 ( 668560664711 \nu^{7} - 2645074001034 \nu^{6} - 530608174016386 \nu^{5} + \cdots - 23\!\cdots\!72 ) / 54\!\cdots\!00 Copy content Toggle raw display
β4\beta_{4}== (331927634177ν72247832279038ν6234962282948902ν5++35 ⁣ ⁣96)/13 ⁣ ⁣00 ( 331927634177 \nu^{7} - 2247832279038 \nu^{6} - 234962282948902 \nu^{5} + \cdots + 35\!\cdots\!96 ) / 13\!\cdots\!00 Copy content Toggle raw display
β5\beta_{5}== (9891204792ν7237035160948ν65741279386692ν5+138230829015540ν4++75 ⁣ ⁣16)/227580881007625 ( 9891204792 \nu^{7} - 237035160948 \nu^{6} - 5741279386692 \nu^{5} + 138230829015540 \nu^{4} + \cdots + 75\!\cdots\!16 ) / 227580881007625 Copy content Toggle raw display
β6\beta_{6}== (25452206052ν7+794327480988ν6+13593374795352ν5+28 ⁣ ⁣71)/227580881007625 ( - 25452206052 \nu^{7} + 794327480988 \nu^{6} + 13593374795352 \nu^{5} + \cdots - 28\!\cdots\!71 ) / 227580881007625 Copy content Toggle raw display
β7\beta_{7}== (644689654177ν71707245576362ν6+657301176385502ν5++37 ⁣ ⁣04)/18 ⁣ ⁣00 ( - 644689654177 \nu^{7} - 1707245576362 \nu^{6} + 657301176385502 \nu^{5} + \cdots + 37\!\cdots\!04 ) / 18\!\cdots\!00 Copy content Toggle raw display
ν\nu== (β7+8β484β360β2+1775β1+1800)/7200 ( -\beta_{7} + 8\beta_{4} - 84\beta_{3} - 60\beta_{2} + 1775\beta _1 + 1800 ) / 7200 Copy content Toggle raw display
ν2\nu^{2}== (2β7+10β6+30β544β448β3595β2+1810β1+279360)/1440 ( -2\beta_{7} + 10\beta_{6} + 30\beta_{5} - 44\beta_{4} - 48\beta_{3} - 595\beta_{2} + 1810\beta _1 + 279360 ) / 1440 Copy content Toggle raw display
ν3\nu^{3}== (319β7+300β6+1800β518328β415996β3++11806200)/7200 ( - 319 \beta_{7} + 300 \beta_{6} + 1800 \beta_{5} - 18328 \beta_{4} - 15996 \beta_{3} + \cdots + 11806200 ) / 7200 Copy content Toggle raw display
ν4\nu^{4}== (826β7+6070β6+24330β560892β436624β3++36397440)/1440 ( - 826 \beta_{7} + 6070 \beta_{6} + 24330 \beta_{5} - 60892 \beta_{4} - 36624 \beta_{3} + \cdots + 36397440 ) / 1440 Copy content Toggle raw display
ν5\nu^{5}== (30689β7+456500β6+1989000β513178452β4+1437276β3++2081314800)/7200 ( 30689 \beta_{7} + 456500 \beta_{6} + 1989000 \beta_{5} - 13178452 \beta_{4} + 1437276 \beta_{3} + \cdots + 2081314800 ) / 7200 Copy content Toggle raw display
ν6\nu^{6}== (221484β7+2967010β6+12410670β548906792β4+10041216β3+34516536840)/1440 ( 221484 \beta_{7} + 2967010 \beta_{6} + 12410670 \beta_{5} - 48906792 \beta_{4} + 10041216 \beta_{3} + \cdots - 34516536840 ) / 1440 Copy content Toggle raw display
ν7\nu^{7}== (117363141β7+276526600β6+1170804600β56107526168β4+4421476909800)/7200 ( 117363141 \beta_{7} + 276526600 \beta_{6} + 1170804600 \beta_{5} - 6107526168 \beta_{4} + \cdots - 4421476909800 ) / 7200 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/45Z)×\left(\mathbb{Z}/45\mathbb{Z}\right)^\times.

nn 1111 3737
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
19.1
−16.5231 7.54427i
23.3674 7.54427i
−8.93777 3.05515i
3.09348 3.05515i
−8.93777 + 3.05515i
3.09348 + 3.05515i
−16.5231 + 7.54427i
23.3674 + 7.54427i
30.1771i 0 −398.657 −755.297 1175.86i 0 10271.7i 3420.35i 0 −35484.1 + 22792.7i
19.2 30.1771i 0 −398.657 755.297 1175.86i 0 10271.7i 3420.35i 0 −35484.1 22792.7i
19.3 12.2206i 0 362.657 −1143.76 + 803.080i 0 4342.19i 10688.8i 0 9814.11 + 13977.4i
19.4 12.2206i 0 362.657 1143.76 + 803.080i 0 4342.19i 10688.8i 0 9814.11 13977.4i
19.5 12.2206i 0 362.657 −1143.76 803.080i 0 4342.19i 10688.8i 0 9814.11 13977.4i
19.6 12.2206i 0 362.657 1143.76 803.080i 0 4342.19i 10688.8i 0 9814.11 + 13977.4i
19.7 30.1771i 0 −398.657 −755.297 + 1175.86i 0 10271.7i 3420.35i 0 −35484.1 22792.7i
19.8 30.1771i 0 −398.657 755.297 + 1175.86i 0 10271.7i 3420.35i 0 −35484.1 + 22792.7i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 19.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 45.10.b.d 8
3.b odd 2 1 inner 45.10.b.d 8
5.b even 2 1 inner 45.10.b.d 8
5.c odd 4 2 225.10.a.x 8
15.d odd 2 1 inner 45.10.b.d 8
15.e even 4 2 225.10.a.x 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.10.b.d 8 1.a even 1 1 trivial
45.10.b.d 8 3.b odd 2 1 inner
45.10.b.d 8 5.b even 2 1 inner
45.10.b.d 8 15.d odd 2 1 inner
225.10.a.x 8 5.c odd 4 2
225.10.a.x 8 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T24+1060T22+136000 T_{2}^{4} + 1060T_{2}^{2} + 136000 acting on S10new(45,[χ])S_{10}^{\mathrm{new}}(45, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4+1060T2+136000)2 (T^{4} + 1060 T^{2} + 136000)^{2} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 T8++14 ⁣ ⁣25 T^{8} + \cdots + 14\!\cdots\!25 Copy content Toggle raw display
77 (T4++19 ⁣ ⁣00)2 (T^{4} + \cdots + 19\!\cdots\!00)^{2} Copy content Toggle raw display
1111 (T4++11 ⁣ ⁣00)2 (T^{4} + \cdots + 11\!\cdots\!00)^{2} Copy content Toggle raw display
1313 (T4++46 ⁣ ⁣00)2 (T^{4} + \cdots + 46\!\cdots\!00)^{2} Copy content Toggle raw display
1717 (T4++67 ⁣ ⁣00)2 (T^{4} + \cdots + 67\!\cdots\!00)^{2} Copy content Toggle raw display
1919 (T2+519968T179554976144)4 (T^{2} + 519968 T - 179554976144)^{4} Copy content Toggle raw display
2323 (T4++40 ⁣ ⁣00)2 (T^{4} + \cdots + 40\!\cdots\!00)^{2} Copy content Toggle raw display
2929 (T4++25 ⁣ ⁣00)2 (T^{4} + \cdots + 25\!\cdots\!00)^{2} Copy content Toggle raw display
3131 (T2+39095996869376)4 (T^{2} + \cdots - 39095996869376)^{4} Copy content Toggle raw display
3737 (T4++23 ⁣ ⁣00)2 (T^{4} + \cdots + 23\!\cdots\!00)^{2} Copy content Toggle raw display
4141 (T4++16 ⁣ ⁣00)2 (T^{4} + \cdots + 16\!\cdots\!00)^{2} Copy content Toggle raw display
4343 (T4++47 ⁣ ⁣00)2 (T^{4} + \cdots + 47\!\cdots\!00)^{2} Copy content Toggle raw display
4747 (T4++48 ⁣ ⁣00)2 (T^{4} + \cdots + 48\!\cdots\!00)^{2} Copy content Toggle raw display
5353 (T4++21 ⁣ ⁣00)2 (T^{4} + \cdots + 21\!\cdots\!00)^{2} Copy content Toggle raw display
5959 (T4++50 ⁣ ⁣00)2 (T^{4} + \cdots + 50\!\cdots\!00)^{2} Copy content Toggle raw display
6161 (T2+709545978526076)4 (T^{2} + \cdots - 709545978526076)^{4} Copy content Toggle raw display
6767 (T4++43 ⁣ ⁣00)2 (T^{4} + \cdots + 43\!\cdots\!00)^{2} Copy content Toggle raw display
7171 (T4++51 ⁣ ⁣00)2 (T^{4} + \cdots + 51\!\cdots\!00)^{2} Copy content Toggle raw display
7373 (T4++38 ⁣ ⁣00)2 (T^{4} + \cdots + 38\!\cdots\!00)^{2} Copy content Toggle raw display
7979 (T2++13 ⁣ ⁣16)4 (T^{2} + \cdots + 13\!\cdots\!16)^{4} Copy content Toggle raw display
8383 (T4++82 ⁣ ⁣00)2 (T^{4} + \cdots + 82\!\cdots\!00)^{2} Copy content Toggle raw display
8989 (T4++44 ⁣ ⁣00)2 (T^{4} + \cdots + 44\!\cdots\!00)^{2} Copy content Toggle raw display
9797 (T4++26 ⁣ ⁣00)2 (T^{4} + \cdots + 26\!\cdots\!00)^{2} Copy content Toggle raw display
show more
show less