L(s) = 1 | − 30.1i·2-s − 398.·4-s + (−755. − 1.17e3i)5-s − 1.02e4i·7-s − 3.42e3i·8-s + (−3.54e4 + 2.27e4i)10-s + 9.07e4·11-s − 1.14e5i·13-s − 3.09e5·14-s − 3.07e5·16-s + 2.07e5i·17-s − 7.57e5·19-s + (3.01e5 + 4.68e5i)20-s − 2.73e6i·22-s + 9.13e5i·23-s + ⋯ |
L(s) = 1 | − 1.33i·2-s − 0.778·4-s + (−0.540 − 0.841i)5-s − 1.61i·7-s − 0.295i·8-s + (−1.12 + 0.720i)10-s + 1.86·11-s − 1.11i·13-s − 2.15·14-s − 1.17·16-s + 0.603i·17-s − 1.33·19-s + (0.420 + 0.655i)20-s − 2.49i·22-s + 0.680i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.540 - 0.841i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (-0.540 - 0.841i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(5)\) |
\(\approx\) |
\(0.754792 + 1.38191i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.754792 + 1.38191i\) |
\(L(\frac{11}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (755. + 1.17e3i)T \) |
good | 2 | \( 1 + 30.1iT - 512T^{2} \) |
| 7 | \( 1 + 1.02e4iT - 4.03e7T^{2} \) |
| 11 | \( 1 - 9.07e4T + 2.35e9T^{2} \) |
| 13 | \( 1 + 1.14e5iT - 1.06e10T^{2} \) |
| 17 | \( 1 - 2.07e5iT - 1.18e11T^{2} \) |
| 19 | \( 1 + 7.57e5T + 3.22e11T^{2} \) |
| 23 | \( 1 - 9.13e5iT - 1.80e12T^{2} \) |
| 29 | \( 1 - 7.82e5T + 1.45e13T^{2} \) |
| 31 | \( 1 - 7.94e6T + 2.64e13T^{2} \) |
| 37 | \( 1 - 7.25e6iT - 1.29e14T^{2} \) |
| 41 | \( 1 - 5.80e4T + 3.27e14T^{2} \) |
| 43 | \( 1 + 1.73e7iT - 5.02e14T^{2} \) |
| 47 | \( 1 + 2.02e7iT - 1.11e15T^{2} \) |
| 53 | \( 1 - 4.71e6iT - 3.29e15T^{2} \) |
| 59 | \( 1 - 9.45e7T + 8.66e15T^{2} \) |
| 61 | \( 1 + 5.44e7T + 1.16e16T^{2} \) |
| 67 | \( 1 + 1.52e8iT - 2.72e16T^{2} \) |
| 71 | \( 1 - 3.39e8T + 4.58e16T^{2} \) |
| 73 | \( 1 - 2.34e8iT - 5.88e16T^{2} \) |
| 79 | \( 1 + 4.97e6T + 1.19e17T^{2} \) |
| 83 | \( 1 - 1.74e8iT - 1.86e17T^{2} \) |
| 89 | \( 1 + 6.42e8T + 3.50e17T^{2} \) |
| 97 | \( 1 + 4.54e8iT - 7.60e17T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.81884121771486838463123228598, −11.85445003447717057422894961636, −10.79812492315173055429716480443, −9.794654572409611290653912115725, −8.359449044347774362930128982708, −6.75116455664065575934296379351, −4.31140635651742738156895706066, −3.64632153983978601035844239487, −1.38874532077118551801707861388, −0.58801489903530422885681153116,
2.35608959522620515023841156039, 4.39606919536586108834765337756, 6.24425887531194310329137424844, 6.72108173973090648573801282072, 8.380824069198958270789311362832, 9.238846907971189214548425134475, 11.38826872212567852761771440589, 12.08263699095345214764194505288, 14.21852220689517025015152080975, 14.72922649197242406114831461664