L(s) = 1 | − 30.1i·2-s − 398.·4-s + (−755. − 1.17e3i)5-s − 1.02e4i·7-s − 3.42e3i·8-s + (−3.54e4 + 2.27e4i)10-s + 9.07e4·11-s − 1.14e5i·13-s − 3.09e5·14-s − 3.07e5·16-s + 2.07e5i·17-s − 7.57e5·19-s + (3.01e5 + 4.68e5i)20-s − 2.73e6i·22-s + 9.13e5i·23-s + ⋯ |
L(s) = 1 | − 1.33i·2-s − 0.778·4-s + (−0.540 − 0.841i)5-s − 1.61i·7-s − 0.295i·8-s + (−1.12 + 0.720i)10-s + 1.86·11-s − 1.11i·13-s − 2.15·14-s − 1.17·16-s + 0.603i·17-s − 1.33·19-s + (0.420 + 0.655i)20-s − 2.49i·22-s + 0.680i·23-s + ⋯ |
Λ(s)=(=(45s/2ΓC(s)L(s)(−0.540−0.841i)Λ(10−s)
Λ(s)=(=(45s/2ΓC(s+9/2)L(s)(−0.540−0.841i)Λ(1−s)
Degree: |
2 |
Conductor: |
45
= 32⋅5
|
Sign: |
−0.540−0.841i
|
Analytic conductor: |
23.1766 |
Root analytic conductor: |
4.81420 |
Motivic weight: |
9 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ45(19,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 45, ( :9/2), −0.540−0.841i)
|
Particular Values
L(5) |
≈ |
0.754792+1.38191i |
L(21) |
≈ |
0.754792+1.38191i |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(755.+1.17e3i)T |
good | 2 | 1+30.1iT−512T2 |
| 7 | 1+1.02e4iT−4.03e7T2 |
| 11 | 1−9.07e4T+2.35e9T2 |
| 13 | 1+1.14e5iT−1.06e10T2 |
| 17 | 1−2.07e5iT−1.18e11T2 |
| 19 | 1+7.57e5T+3.22e11T2 |
| 23 | 1−9.13e5iT−1.80e12T2 |
| 29 | 1−7.82e5T+1.45e13T2 |
| 31 | 1−7.94e6T+2.64e13T2 |
| 37 | 1−7.25e6iT−1.29e14T2 |
| 41 | 1−5.80e4T+3.27e14T2 |
| 43 | 1+1.73e7iT−5.02e14T2 |
| 47 | 1+2.02e7iT−1.11e15T2 |
| 53 | 1−4.71e6iT−3.29e15T2 |
| 59 | 1−9.45e7T+8.66e15T2 |
| 61 | 1+5.44e7T+1.16e16T2 |
| 67 | 1+1.52e8iT−2.72e16T2 |
| 71 | 1−3.39e8T+4.58e16T2 |
| 73 | 1−2.34e8iT−5.88e16T2 |
| 79 | 1+4.97e6T+1.19e17T2 |
| 83 | 1−1.74e8iT−1.86e17T2 |
| 89 | 1+6.42e8T+3.50e17T2 |
| 97 | 1+4.54e8iT−7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.81884121771486838463123228598, −11.85445003447717057422894961636, −10.79812492315173055429716480443, −9.794654572409611290653912115725, −8.359449044347774362930128982708, −6.75116455664065575934296379351, −4.31140635651742738156895706066, −3.64632153983978601035844239487, −1.38874532077118551801707861388, −0.58801489903530422885681153116,
2.35608959522620515023841156039, 4.39606919536586108834765337756, 6.24425887531194310329137424844, 6.72108173973090648573801282072, 8.380824069198958270789311362832, 9.238846907971189214548425134475, 11.38826872212567852761771440589, 12.08263699095345214764194505288, 14.21852220689517025015152080975, 14.72922649197242406114831461664