L(s) = 1 | − 12.2i·2-s + 362.·4-s + (−1.14e3 + 803. i)5-s + 4.34e3i·7-s − 1.06e4i·8-s + (9.81e3 + 1.39e4i)10-s − 3.67e4·11-s − 1.87e5i·13-s + 5.30e4·14-s + 5.50e4·16-s + 3.94e3i·17-s + 2.37e5·19-s + (−4.14e5 + 2.91e5i)20-s + 4.49e5i·22-s − 2.19e6i·23-s + ⋯ |
L(s) = 1 | − 0.540i·2-s + 0.708·4-s + (−0.818 + 0.574i)5-s + 0.683i·7-s − 0.922i·8-s + (0.310 + 0.442i)10-s − 0.756·11-s − 1.82i·13-s + 0.369·14-s + 0.210·16-s + 0.0114i·17-s + 0.417·19-s + (−0.579 + 0.407i)20-s + 0.408i·22-s − 1.63i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.818 + 0.574i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (-0.818 + 0.574i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(5)\) |
\(\approx\) |
\(0.319226 - 1.01017i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.319226 - 1.01017i\) |
\(L(\frac{11}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (1.14e3 - 803. i)T \) |
good | 2 | \( 1 + 12.2iT - 512T^{2} \) |
| 7 | \( 1 - 4.34e3iT - 4.03e7T^{2} \) |
| 11 | \( 1 + 3.67e4T + 2.35e9T^{2} \) |
| 13 | \( 1 + 1.87e5iT - 1.06e10T^{2} \) |
| 17 | \( 1 - 3.94e3iT - 1.18e11T^{2} \) |
| 19 | \( 1 - 2.37e5T + 3.22e11T^{2} \) |
| 23 | \( 1 + 2.19e6iT - 1.80e12T^{2} \) |
| 29 | \( 1 + 6.47e6T + 1.45e13T^{2} \) |
| 31 | \( 1 + 4.92e6T + 2.64e13T^{2} \) |
| 37 | \( 1 - 6.61e6iT - 1.29e14T^{2} \) |
| 41 | \( 1 + 2.22e7T + 3.27e14T^{2} \) |
| 43 | \( 1 + 1.25e7iT - 5.02e14T^{2} \) |
| 47 | \( 1 + 3.42e7iT - 1.11e15T^{2} \) |
| 53 | \( 1 - 3.09e7iT - 3.29e15T^{2} \) |
| 59 | \( 1 - 7.50e7T + 8.66e15T^{2} \) |
| 61 | \( 1 - 1.30e7T + 1.16e16T^{2} \) |
| 67 | \( 1 - 1.37e8iT - 2.72e16T^{2} \) |
| 71 | \( 1 - 2.12e8T + 4.58e16T^{2} \) |
| 73 | \( 1 + 2.65e8iT - 5.88e16T^{2} \) |
| 79 | \( 1 + 2.69e8T + 1.19e17T^{2} \) |
| 83 | \( 1 - 5.22e8iT - 1.86e17T^{2} \) |
| 89 | \( 1 - 3.29e8T + 3.50e17T^{2} \) |
| 97 | \( 1 + 1.12e9iT - 7.60e17T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.97246813478117923553165435206, −12.12683544720310304017592701599, −10.97357946189056503730462691262, −10.21913993296446254188884956554, −8.262664387501124929008862411311, −7.15019873206511938592225170376, −5.56880080779020026025246864216, −3.43043298591612643097573338262, −2.43019326337793910592443227917, −0.33965086271740723864416505606,
1.68107266329201587971483229568, 3.76876722703005229222261280469, 5.32508528193697811554590446978, 7.04627361071236380142010749380, 7.76993717119441715558051805867, 9.287779131646571957431606092515, 11.06824266834025094016153130614, 11.76624323689540720070048311848, 13.25056169706402218679284890861, 14.51572390146767509052226174113