L(s) = 1 | − 12.2i·2-s + 362.·4-s + (−1.14e3 + 803. i)5-s + 4.34e3i·7-s − 1.06e4i·8-s + (9.81e3 + 1.39e4i)10-s − 3.67e4·11-s − 1.87e5i·13-s + 5.30e4·14-s + 5.50e4·16-s + 3.94e3i·17-s + 2.37e5·19-s + (−4.14e5 + 2.91e5i)20-s + 4.49e5i·22-s − 2.19e6i·23-s + ⋯ |
L(s) = 1 | − 0.540i·2-s + 0.708·4-s + (−0.818 + 0.574i)5-s + 0.683i·7-s − 0.922i·8-s + (0.310 + 0.442i)10-s − 0.756·11-s − 1.82i·13-s + 0.369·14-s + 0.210·16-s + 0.0114i·17-s + 0.417·19-s + (−0.579 + 0.407i)20-s + 0.408i·22-s − 1.63i·23-s + ⋯ |
Λ(s)=(=(45s/2ΓC(s)L(s)(−0.818+0.574i)Λ(10−s)
Λ(s)=(=(45s/2ΓC(s+9/2)L(s)(−0.818+0.574i)Λ(1−s)
Degree: |
2 |
Conductor: |
45
= 32⋅5
|
Sign: |
−0.818+0.574i
|
Analytic conductor: |
23.1766 |
Root analytic conductor: |
4.81420 |
Motivic weight: |
9 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ45(19,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 45, ( :9/2), −0.818+0.574i)
|
Particular Values
L(5) |
≈ |
0.319226−1.01017i |
L(21) |
≈ |
0.319226−1.01017i |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(1.14e3−803.i)T |
good | 2 | 1+12.2iT−512T2 |
| 7 | 1−4.34e3iT−4.03e7T2 |
| 11 | 1+3.67e4T+2.35e9T2 |
| 13 | 1+1.87e5iT−1.06e10T2 |
| 17 | 1−3.94e3iT−1.18e11T2 |
| 19 | 1−2.37e5T+3.22e11T2 |
| 23 | 1+2.19e6iT−1.80e12T2 |
| 29 | 1+6.47e6T+1.45e13T2 |
| 31 | 1+4.92e6T+2.64e13T2 |
| 37 | 1−6.61e6iT−1.29e14T2 |
| 41 | 1+2.22e7T+3.27e14T2 |
| 43 | 1+1.25e7iT−5.02e14T2 |
| 47 | 1+3.42e7iT−1.11e15T2 |
| 53 | 1−3.09e7iT−3.29e15T2 |
| 59 | 1−7.50e7T+8.66e15T2 |
| 61 | 1−1.30e7T+1.16e16T2 |
| 67 | 1−1.37e8iT−2.72e16T2 |
| 71 | 1−2.12e8T+4.58e16T2 |
| 73 | 1+2.65e8iT−5.88e16T2 |
| 79 | 1+2.69e8T+1.19e17T2 |
| 83 | 1−5.22e8iT−1.86e17T2 |
| 89 | 1−3.29e8T+3.50e17T2 |
| 97 | 1+1.12e9iT−7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.97246813478117923553165435206, −12.12683544720310304017592701599, −10.97357946189056503730462691262, −10.21913993296446254188884956554, −8.262664387501124929008862411311, −7.15019873206511938592225170376, −5.56880080779020026025246864216, −3.43043298591612643097573338262, −2.43019326337793910592443227917, −0.33965086271740723864416505606,
1.68107266329201587971483229568, 3.76876722703005229222261280469, 5.32508528193697811554590446978, 7.04627361071236380142010749380, 7.76993717119441715558051805867, 9.287779131646571957431606092515, 11.06824266834025094016153130614, 11.76624323689540720070048311848, 13.25056169706402218679284890861, 14.51572390146767509052226174113