L(s) = 1 | − 2.64i·2-s − 3.00·4-s + 11.2·7-s − 2.64i·8-s − 4.24i·11-s + 11.2·13-s − 29.6i·14-s − 18.9·16-s − 10.5i·17-s − 20·19-s − 11.2·22-s − 5.29i·23-s − 29.6i·26-s − 33.6·28-s − 8.48i·29-s + ⋯ |
L(s) = 1 | − 1.32i·2-s − 0.750·4-s + 1.60·7-s − 0.330i·8-s − 0.385i·11-s + 0.863·13-s − 2.12i·14-s − 1.18·16-s − 0.622i·17-s − 1.05·19-s − 0.510·22-s − 0.230i·23-s − 1.14i·26-s − 1.20·28-s − 0.292i·29-s + ⋯ |
Λ(s)=(=(225s/2ΓC(s)L(s)(−0.577+0.816i)Λ(3−s)
Λ(s)=(=(225s/2ΓC(s+1)L(s)(−0.577+0.816i)Λ(1−s)
Degree: |
2 |
Conductor: |
225
= 32⋅52
|
Sign: |
−0.577+0.816i
|
Analytic conductor: |
6.13080 |
Root analytic conductor: |
2.47604 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ225(26,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 225, ( :1), −0.577+0.816i)
|
Particular Values
L(23) |
≈ |
0.837380−1.61769i |
L(21) |
≈ |
0.837380−1.61769i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
good | 2 | 1+2.64iT−4T2 |
| 7 | 1−11.2T+49T2 |
| 11 | 1+4.24iT−121T2 |
| 13 | 1−11.2T+169T2 |
| 17 | 1+10.5iT−289T2 |
| 19 | 1+20T+361T2 |
| 23 | 1+5.29iT−529T2 |
| 29 | 1+8.48iT−841T2 |
| 31 | 1−26T+961T2 |
| 37 | 1+33.6T+1.36e3T2 |
| 41 | 1−55.1iT−1.68e3T2 |
| 43 | 1−22.4T+1.84e3T2 |
| 47 | 1−21.1iT−2.20e3T2 |
| 53 | 1+84.6iT−2.80e3T2 |
| 59 | 1−46.6iT−3.48e3T2 |
| 61 | 1+22T+3.72e3T2 |
| 67 | 1−89.7T+4.48e3T2 |
| 71 | 1−50.9iT−5.04e3T2 |
| 73 | 1−67.3T+5.32e3T2 |
| 79 | 1+14T+6.24e3T2 |
| 83 | 1−74.0iT−6.88e3T2 |
| 89 | 1−89.0iT−7.92e3T2 |
| 97 | 1+22.4T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.38020456201942924699480149328, −11.07251277493000026820162927007, −10.08898216862017590169412023573, −8.823591286066384544964609765432, −8.025600263840239737755999330761, −6.52617123230284920621000946189, −4.96735298161233952164142898068, −3.91285342762432973155287660059, −2.40392633734657348304349419978, −1.14804305772938842096207146812,
1.88075454730649538828532941852, 4.23739862473275538878131488710, 5.24511381819518476455370923540, 6.27548230695885076146624175486, 7.38161315369540023169646876468, 8.272656334490200088131503145574, 8.829886369583236264775668643586, 10.56704401917107635811286803538, 11.27326738733517251479102014527, 12.40125826073179931096854080867